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Abstract: CK2 is a protein kinase that plays an important role in numerous cellular pathways
involved in cell growth, differentiation, proliferation, and death. Consequently, upregulation of
CK2 is implicated in many disease types, in particular cancer. As such, CK2 has gained significant
attention as a potential therapeutic target in cancer, and over 40 chemical probes targeting CK2 have
been developed in the past decade. In this review, we highlighted several chemical probes that target
sites outside the conventional ATP-binding site. These chemical probes belong to different classes
of molecules, from small molecules to peptides, and possess different mechanisms of action. Many
of the chemical probes discussed in this review could serve as promising new candidates for drugs
selectively targeting CK2.
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1. Introduction
1.1. An Overview of CK2

The human protein kinome, comprising over 500 kinases, regulates almost all fun-
damental cellular processes responsible for cell growth, proliferation, differentiation, and
death [1]. Kinases phosphorylate their substrates by catalyzing the transfer of a terminal
phosphate group from adenosine triphosphate (ATP) or guanosine triphosphate (GTP) to
its substrate, depending on the type. This ultimately activates or deactivates crucial cell
signaling pathways. Therefore, normal cell function depends on precise kinase regula-
tion [2]. Unsurprisingly, gene mutations that cause aberrant kinase function are implicated
in the progression of many malignant and benign disorders; the implications of kinase
mutations are most documented in cancer progression, and the pursuit of kinase inhibition
is prominent in pharmaceutical research. As of today, there are 75 FDA-approved kinase
inhibitors, and this number is expected to grow as drug development efforts continue [3].

CK2 is a highly conserved and ubiquitously expressed kinase belonging to the CMGC
(cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen
synthase kinases (GSKs), and Cdc2-like kinases (CLKs)) family, which contains 63 family
members [4,5]. CK2 was first discovered by Burnett and Kennedy in 1954, named originally
as casein kinase 2 after casein that was used in the original work and was considered
an in vivo substrate of CK2 [6]. However, further studies elucidated that CK2 can only
phosphorylate casein in vitro; therefore, the kinase is no longer referred to as casein kinase 2,
and the shorthand name CK2 is used [7]. CK2 is a serine/threonine protein kinase that exists
as a heterotetrameric holoenzyme and adopts a butterfly-shaped conformation, as shown
in Figure 1. The heterotetrameric holoenzyme is composed of two catalytic subunits (α
and/or α’) and two non-catalytic regulatory β subunits. The β subunits dimerize through a
zinc finger domain and bind the α or α’ kinase subunits [8]. The heterotetrameric structure
can take the forms ααββ, α’αββ, or α’α’ββ, where the α subunit is on occasion replaced
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by the α’ isoform [9,10]. Both the CK2α and CK2α’ subunits and the CK2 holoenzyme
itself are constitutively active. This is unusual for a eukaryotic kinase and means the
enzyme does not rely on an upstream phosphorylation event for its functionality [11]. This
unusual feature is thought to contribute to the multifunctionality and pathogenic potential
of CK2 [12].
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amyotrophic lateral scoliosis (ALS) [10,22]. Additionally, siRNA knockdown of CK2 has 
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Figure 1. The heterotetrameric structure of protein kinase CK2. The catalytic α/α’ subunits are
shown in cyan and burgundy; the regulatory β subunits are shown in navy and lilac (PDB: 1JWH).

This highly pleiotropic kinase has over 760 identified substrates in humans, according
to the PhosphoSitePlus database, https://www.phosphosite.org/ (accessed on 1 January
2024), generating a large proportion of the human phosphoproteome [13,14]. A large por-
tion of CK2’s substrates are involved in various cell signaling pathways related to cancer
progression, such as phosphoinositide 3-kinase (PI3K)/Protein kinase B (PKB, also known
as Akt); inhibitor of nuclear factor-κB kinase (IKK)/nuclear factor-κB (NFκB); Janus kinase
2 (JAK2)/signal transducer and activator of transcription protein 3 (SAT3); wingless-related
integration site (Wnt)/β-catenin; Hedgehog, and neurogenic locus notch homolog protein
1 (Notch 1) [15–21]. A few of these pathways are detailed in Figure 2. Through phospho-
proteomic studies, CK2 has also been found to phosphorylate several key constituents in
drug efflux, DNA damage, and DNA repair pathways. CK2 expression within healthy
eukaryotic cells only increases during mitosis, whilst in cancerous cells CK2 is commonly
overexpressed, aiding in proliferation, tumorigenesis, metastasis, drug resistance, and
the ability to evade apoptosis [10]. The extent to which CK2 potentiates each cell signal-
ing pathway is proportional to its expression [21]. The survival of a plethora of cancer
types, including, but not limited to, glioblastoma, medulloblastoma, cholangiocarcinoma,
and breast and renal cell carcinoma, has been shown to be negatively impacted by the
downregulation of CK2 [22]. Thus, CK2 is considered an extremely attractive target for
cancer therapy.

It is important to note that CK2 is not only found within the cytoplasm but is found in
nearly every compartment of eukaryotic cells [23]. The translocation of CK2 from cytoplasm
to nucleus is correlated with elevated levels of CK2 and cell proliferation. This indicates
that the subcellular localization of CK2 is a dynamic process, adapting to the varying needs
of CK2 within different cellular compartments.

The role of CK2 is not only prominent in the pathogenesis of cancer but also in the
progression of many other diseases, such as Parkinson’s disease, Alzheimer’s disease, and
amyotrophic lateral scoliosis (ALS) [10,22]. Additionally, siRNA knockdown of CK2 has
shown that CK2 is implicated in the regulation of the human papilloma virus (HPV) life
cycle [24]. Furthermore, CK2 inhibition has been suggested as a potential antiviral agent
against SARS-CoV-2; upregulation and then interaction of CK2 with the nucleocapsid of
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SARS-CoV-2 has been found in host cells [25]. Therefore, targeting CK2 may serve as a
valid antiviral approach against viruses such as HPV and SARS-CoV-2 in the future.
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From small molecule inhibitors to proteolysis targeting chimeras (PROTACs), pep-
tides, peptidomimetics, and polyoxometalates, there are many drug modalities that can be
utilized to target CK2. Predominantly, these modalities are class I kinase ligands, which
typically occupy the ATP-binding site, hence impeding substrate phosphorylation. Un-
fortunately, the structure of the ATP-binding site is highly conserved across the human
kinome, which can lead to off-target activity and adverse side effects [26]. This poses a
serious impediment in the development of new CK2 inhibitors with high selectivity. This
drawback is highlighted in the case of CX-4945, commercially known as silmitasertib, a po-
tent CK2α ATP-competitive inhibitor in phase II clinical trials (ClinicalTrials.gov identifier
NCT02128282), where strong inhibitory activity has been detected against several isoforms
of Cdc2-like kinases (CLKs) [23,27,28]. In fact, CX-4945 exhibited stronger inhibition for
CLK2 than for CK2 (IC50 = 3.8 nM against CLK2 and IC50 = 14.7 nM against CK2) [28].
Therefore, CX-4945 cannot be classified as a selective CK2 inhibitor and could perhaps be
considered a CK2/CLK2 dual inhibitor. Alternative approaches have been explored that
aim to achieve high CK2 selectivity, such as endogenous substrate displacement, inhibition
of holoenzyme formation, and allosteric inhibition of CK2 [29].

This review will provide an overview of the molecular and structural biology of
CK2, mechanisms of inhibition, and highlight inhibitors that target the ATP site. Most
importantly, we will discuss chemical probes that have been developed to target CK2
outside the catalytic ATP site. Through this review, we hope to inspire further investigation
into this promising area of research.

1.2. Structure of CK2

The ATP site comprises a deep hydrophobic binding pocket flanked by the hinge
region and a catalytic Lys68 residue, making it an ideal location for aromatic compounds
that contain hydrogen bonding substituents [8]. The Lys68 residue is essential for catalytic
activity as it aids in the binding of the phosphates of ATP in the active site; this residue is
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conserved across all human protein kinases [30]. The structure of the ATP site is shown in
Figure 3.
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The α and α’ subunits are encoded by different genes, CSNK2A1 and CSNK2A2,
respectively [31]. CK2α contains 391 amino acid residues and CK2α’ contains 350 amino
acid residues; both isoforms share 90% sequence identity [10]. Both catalytic subunits adopt
a bilobal structure that contains a lysine-rich N-terminus, and a C-terminus rich in α-helices.
The ATP site is situated between the N-terminal and C-terminal domains, linked by the αD
region, a region of the protein that has been exploited in the development of selective CK2
inhibitors [32]. The N-terminal segment contains five β-sheets, named β1-5, and one α-helix,
named αC. The αC helix establishes substrate contact and, owing to its abundance of lysine
residues, confers a tendency to favor acidic substrates. The C-terminal segment comprises
seven α-helices and one β-sheet, which collectively form the structural foundation for both
the ATP-binding site and activation loop. The activation loop is conformationally fixed by
numerous stabilizing interactions between itself and the N-terminal segment. These stable
interactions essentially “lock” CK2 in an active conformation, making it constitutively
active without the need for an upstream phosphorylation event [8,33].

Many of CK2’s substrates do not require the presence ofβ-subunits for phosphorylation [34,35].
The β-subunits, each containing 215 amino acids, are encoded by the CSNK2B gene [36].
Although the presence of CK2β is not fundamental for substrate phosphorylation, the
subunit plays a crucial role in enhancing the tetrameric complex’s thermostability, thus
enhancing catalytic activity. Additionally, it aids in substrate recruitment by establishing
both polar and hydrophobic interactions with the substrate, essentially acting as a “docking
station” [37]. In this respect, substrates such as p53, nuclear phosphoprotein 140 (Nopp140),
Fas-associated Factor 1 (FAS1), and topoisomerase II interact with CK2 via CK2β [28].
CK2β also regulates kinase activity by facilitating the shuttling of the kinase between the
intracellular compartments, enabling the holoenzyme to enter the nucleus and gain access
to most of CK2’s substrates [38,39].

1.3. CK2 in Cancer

The disease type in which the role of CK2 is most well-documented is cancer [40,41].
There is evidence to suggest that CK2 is directly involved in each of Hanahan and Wein-
berg’s six hallmarks of cancer: proliferative signaling, resisting cell death, evading growth
suppressors, inducing angiogenesis, enabling replicative immortality, and activating inva-
sion and mortality [42,43]. This involvement is highlighted in Figure 4.
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examples of proteins directly regulated by CK2. Substrates marked with a P indicate they are
phosphorylated by CK2. CK2 is involved in the stabilization of endothelin converting enzyme 1c
(ECE-1c) and inhibitor of apoptosis proteins (IAPs) and increases expression of lactate dehydrogenase
A (LDHA). Despite known CK2 involvement in enabling replicative immortality and inducing
angiogenesis, the specific pathways that CK2 is involved in are unknown. Created with BioRender.
com (Accessed on 23 October 2023).

The upregulation of CK2 has been found within the nucleus of a multitude of different
cancer cell types, such as lung, breast, colorectal, and head and neck carcinomas [14,44–46].
Therefore, elevated levels of CK2 serve as a prognostic marker in cancer progression.
However, CK2 is not considered an oncogene itself as it is ubiquitously expressed within
healthy cells. Cancer cells exhibit a “non-oncogene addiction” to CK2, heavily relying on
the kinase for survival [22,47].

Both CK2α and CK2α’ subunits are implicated in promoting tumor progression more
than CK2β. The question of which isoform contributes most to CK2’s oncogenic potential
remains the subject of ongoing debate [40]. However, the involvement of CK2α is more
commonly reported than CK2α’. A study by Zou et al. showed that CK2α plays an essential
role in the progression of colorectal carcinoma [48]. The suppression of CK2α via siRNA
in LoVo cells led to G0/G1 phase arrest, induced cell senescence, elevated expression of
p53/p21, and decreased expression of c-Myc. In 2015, Zhang et al. showed that silencing
CK2α in hepatocellular carcinoma (HCC) induced HCC cell apoptosis and inhibited HCC
cell migration, proliferation, and angiogenesis both in vitro and in vivo [49]. In line with
more of a “tumor suppressor-like” role, CK2β prevents the phosphorylation of substrates
vital for apoptosis evasion, such as caspase-3 [50]. Additionally, the role of CK2 in drug
resistance has been linked to upregulation of CK2α, not CK2β [51]. However, CK2α’ has
been shown to reduce migration in the mouse gonadotropin-releasing hormone (GnRH)
neuronal cell line GN11, and CK2β promotes migration [36]. Furthermore, Takahashi
et al. determined that the expression of CK2α and CK2β is elevated in human osteosar-
coma, and siRNA knockdown of either CK2α or CK2β inhibited human osteosarcoma cell
proliferation [52].

The pro-oncogenic function of each subunit cannot be objectively determined as this is
dependent on cancer type, which CK2 substrates are present, and which isoform is needed
to phosphorylate the substrates. However, CK2α/α’ and CK2β have differing roles in
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cancer progression, which is supportive of monomeric CK2 being more related to CK2’s
oncogenic phenotype than tetrameric CK2.

2. Targeting CK2 within the ATP Site
2.1. ATP-Competitive Inhibition

The ATP site of CK2 is a primary target for inhibition as it is a highly ligandable pocket.
As this site is conserved across the human kinome, selectivity issues often arise with ATP
site binders.

Small-molecule ATP-competitive inhibitors of CK2 can be divided into four main
classes: polyhalogenated benzimidazole and benzotriazole derivatives; anthraquinone
derivatives; pyrazolo-triazines and pyrazolo-pyrimidines; and indoloquinazolines such
as CX-4945. Some details of these classes of inhibitors are outlined below. However, for
further details, the reader is directed towards an up-to-date and comprehensive review on
ATP-competitive CK2 inhibitors [53].

2.1.1. Polyhalogenated Benzimidazole and Benzotriazole Derivatives

The nucleoside analogue 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) 1,
Figure 5, was initially recognized for its biological activity in 1954 [54]. However, it was not
until 1986 when Zandomeni et al. reported inhibition of CK2 by DRB, although its activity
against CK2 is only moderate (IC50 = 15 µM, Ki = 23 µM)* [55]. DRB has been found to
be active against several other kinases (CK1, for example) with similar affinities to CK2.
Additionally, it is also capable of binding to the CK2α/β interface. Despite its promiscuity,
DRB has served as a foundation for many studies that have led to the development of
numerous potent CK2 inhibitors that are in use today.
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The first significant improvement regarding DRB stemmed from two key modifications:
the elimination of the sugar moiety and the substitution of chlorine atoms with bulkier
bromines. This resulted in the formation of 4,5,6,7-tetrabromo-1H-benzotriazole TBB 2,
Figure 5, (IC50 = 0.14 µM, Ki = 0.40), and exhibited substantially improved cell permeability
compared to DRB [56,57]. A screening of 10 µM TBB against 70 kinases unfortunately led
to significant inhibition of over 90% of them, again highlighting the promiscuous nature of
ATP-competitive kinase inhibitors.

Following the development of 4,5,6,7-tetrabromo-benzotriazole (TBB), subsequent
structure–activity relationship studies led to the development of 2-dimethylamino-4,5,6,7-
tetrabromo-benzimidazole (DMAT) 3, Figure 5, which exhibited even greater potency
towards CK2 (Ki = 0.04 µM) [58]. However, DMAT was found to be less selective for CK2
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compared to TBB; ten kinases were more than 90% inhibited by 10 µM DMAT, and eight
kinases were more than 90% inhibited by 10 µM TBB [59]. Both TBB and DMAT have been
used extensively and in vivo [60–62].

2.1.2. Anthraquinone Derivatives

Anthraquinones constitute a class of natural products containing phenolic substituents [63].
An important example is emodin 4, Figure 6, which is found in rhubarb rhizomes and
inhibits numerous targets, including CK2 (IC50 = 2 µM, Ki = 7.2 µM) [64]. Several studies
have been conducted to enhance anthraquinone-based inhibition of CK2, resulting in the
development of MNA 5 (IC50 = 0.30 µM, Ki = 0.78 µM) and MNX 6 (IC50 = 0.40 µM,
Ki = 0.80 µM), Figure 6 [65,66]. The presence of a nitro group in these derivatives increases
polarization of the para-hydroxyl substituent through the electron-withdrawing effect. On
the other hand, an alternative emodin derivative DAA 7, Figure 6, lacks a nitro group yet
exhibits a lower Ki value (Ki = 0.35 µM, IC50 = 0.30 µM) than MNA and MNX [67]. This is
attributed to the formation of additional hydrogen bonds to Glu114 and Val116.

Kinases Phosphatases 2024, 2, FOR PEER REVIEW 7 
 

 
Figure 5. (A) Structure of CK2α inhibitor DRB 1; (B) structures of CK2α inhibitors TBB 2 and DMAT 
3; (C) crystal structure of DMAT bound to CK2α; the green sphere represents a chloride; bonding 
interactions are shown in magenta (PDB 1ZOE). 

2.1.2. Anthraquinone Derivatives 
Anthraquinones constitute a class of natural products containing phenolic substitu-

ents [63]. An important example is emodin 4, Figure 6, which is found in rhubarb rhizomes 
and inhibits numerous targets, including CK2 (IC50 = 2 μM, Ki = 7.2 μM) [64]. Several stud-
ies have been conducted to enhance anthraquinone-based inhibition of CK2, resulting in 
the development of MNA 5 (IC50 = 0.30 μM, Ki = 0.78 μM) and MNX 6 (IC50 = 0.40 μM, Ki 
= 0.80 μM), Figure 6 [65,66]. The presence of a nitro group in these derivatives increases 
polarization of the para-hydroxyl substituent through the electron-withdrawing effect. 
On the other hand, an alternative emodin derivative DAA 7, Figure 6, lacks a nitro group 
yet exhibits a lower Ki value (Ki = 0.35 μM, IC50 = 0.30 μM) than MNA and MNX [67]. This 
is attributed to the formation of additional hydrogen bonds to Glu114 and Val116.  

 
Figure 6. (A) Structures of CK2α inhibitors DAA 7, Emodin 4, MNA 5, MNX 6, and quinalizarin 8; 
(B) crystal structure of quinalizarin 8 bound to CK2α; bonding interactions are shown in magenta; 
red points indicate the presence of a water molecule (PDB 3FL5). 

Among further emodin derivatives is quinalizarin 8 (1,2,5,8-tetrahydroxyanthraqui-
none) (Ki = 60 nm), discovered via virtual screening [68]. Although structurally like 
emodin, quinalizarin is particularly potent and selective for CK2, more so than its prede-
cessor. A selectivity profile of 1 μM quinalizarin was performed on a panel of 140 protein 
kinases, which found only 8% residual CK2 activity, and none of the other 139 kinases 
displayed residual activity of less than 50%. Moreover, quinalizarin showed the ability to 

Figure 6. (A) Structures of CK2α inhibitors DAA 7, Emodin 4, MNA 5, MNX 6, and quinalizarin 8;
(B) crystal structure of quinalizarin 8 bound to CK2α; bonding interactions are shown in magenta;
red points indicate the presence of a water molecule (PDB 3FL5).

Among further emodin derivatives is quinalizarin 8 (1,2,5,8-tetrahydroxyanthraquinone)
(Ki = 60 nm), discovered via virtual screening [68]. Although structurally like emodin,
quinalizarin is particularly potent and selective for CK2, more so than its predecessor. A
selectivity profile of 1 µM quinalizarin was performed on a panel of 140 protein kinases,
which found only 8% residual CK2 activity, and none of the other 139 kinases displayed
residual activity of less than 50%. Moreover, quinalizarin showed the ability to differentiate
between isolated CK2α and the CK2 holoenzyme [69]. Quinalizarin was found to be more
active against the CK2 holoenzyme (IC50 = 0.15 µM and IC50 = 1.35 µM for CK2 holoenzyme
and CK2α, respectively) and, therefore, could be used as a tool to quantify the presence of
intracellular CK2 holoenzyme and CK2α.

2.1.3. Pyrazolo-Triazines and Pyrazolo-Pyrimidines

A series of pyrazolo-triazines (PT) were designed for CK2 inhibition by Nie et al. in
2007 after a co-crystal structure of CK2 and pyrazolo-triazine 9 was obtained, Figure 7 [70].
The co-crystal structure revealed that the pyrazolo-triazine core occupied the adenine
pocket within the ATP site and was anchored in place via two hydrogen bonds in the
hinge region.
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Subsequent structure–activity relationship studies led to the development of three com-
pounds that differed at the phenyl substituent (PT2 10, PT3 11, and PT4 12, Figure 8) [70].
Although all the compounds displayed nanomolar Ki for CK2, they failed to exhibit potent
inhibition of cell growth in the human colorectal carcinoma cell line HCT116 and human
prostate cancer PC3 cell lines when tested using an MTT assay. Therefore, further im-
provement in physicochemical properties was required, resulting in the development of a
second generation of pyrazolo-triazines, for example, PT5 13 [71]. Efforts to increase cell
permeability resulted in a reduction in planarity in the second generation through macro-
cyclization with an alkyl side chain. Although this successfully increased cell permeability,
a 10-fold increase in Ki was observed and PT5 had comparable cell growth inhibition to
the first-generation derivatives. Pyrazolo-triazines have the potential to be developed into
successful CK2 inhibitors; however, binding affinity must first be optimized. To date, no
such optimization of pyrazolo-triazines has been published, and there are no data detailing
the selectivity of this class of compounds.
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Dowling et al. identified a related group of compounds known as pyrazolo-pyrimidines.
In their work, kinase-focused subset screening methods, structure–activity relationship
studies, and crystallography were employed [72]. Using these methods ultimately led to
the identification of a lead compound AZ-7h 14, Figure 9, which has picomolar binding
affinity to CK2 (Kd = 6.33 pM), and nanomolar growth inhibition activity in HCT116
(GI50 = 10 nM, HCT116) [73]. The compound’s selectivity was tested at 0.1 µM against a
panel of 402 kinases, which showed only 12 kinases being inhibited by more than 50%, of
which all were CMGC family members. Although limited off-target activity was observed,
AZ-7h showed nanomolar activity for death-associated protein kinase 2 (DAPK2) and
DAPK3 (IC50 = 8.0 nM and IC50 = 18 nM, respectively). In vivo mouse PK studies showed
poor oral bioavailability of AZ-7h [73]. However, dose-dependent tumor growth inhibition
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was achieved through intravenous and intraperitoneal injection. This suggests that further
optimization of AZ-7h could yield a promising CK2 inhibitor; however, activity against
DAPK2 and DAPK3 should be reduced.

Kinases Phosphatases 2024, 2, FOR PEER REVIEW 9 
 

Dowling et al. identified a related group of compounds known as pyrazolo-pyrim-
idines. In their work, kinase-focused subset screening methods, structure–activity rela-
tionship studies, and crystallography were employed [72]. Using these methods ulti-
mately led to the identification of a lead compound AZ-7h 14, Figure 9, which has picomo-
lar binding affinity to CK2 (Kd = 6.33 pM), and nanomolar growth inhibition activity in 
HCT116 (GI50 = 10 nM, HCT116) [73]. The compound’s selectivity was tested at 0.1 μM 
against a panel of 402 kinases, which showed only 12 kinases being inhibited by more 
than 50%, of which all were CMGC family members. Although limited off-target activity 
was observed, AZ-7h showed nanomolar activity for death-associated protein kinase 2 
(DAPK2) and DAPK3 (IC50 = 8.0 nM and IC50 = 18 nM, respectively). In vivo mouse PK 
studies showed poor oral bioavailability of AZ-7h [73]. However, dose-dependent tumor 
growth inhibition was achieved through intravenous and intraperitoneal injection. This 
suggests that further optimization of AZ-7h could yield a promising CK2 inhibitor; how-
ever, activity against DAPK2 and DAPK3 should be reduced. 

 
Figure 9. (A) Structure of CK2α inhibitor AZ-7h 14; (B) crystal structure of AZ-7h bound to CK2α; 
residues that are involved in binding are labelled; red points indicate presence of water molecule 
(PDB 5H8E). 

Through optimization of the pyrazolopyrimidine scaffold of AZ-7h, the Structural 
Genomics Consortium (SGC-UNC) developed SGC-CK2-1 15, Figure 10, (IC50 = 4.2 nM, 
and IC50 = 2.3 nM for CK2α and CK2α’, respectively) [74]. Sub-micromolar target engage-
ment of CK2 was determined using nanoBRET assays in human embryonic kidney 293 
(HEK-239) cells (IC50 = 36 nM and IC50 = 16 nM for CK2α and CK2α’, respectively), and, 
when tested against a panel of 403 wild-type human protein kinases at 1 μM, only three 
kinases were found to be inhibited by more than 90%. The authors claim that, unexpect-
edly, SGC-CK2-1 “does not demonstrate significant antiproliferative activity against a 
panel of 140 different cancer cell lines”. This claim sparked premature conclusions that 
the broad cancer essentiality of CK2 had therefore been disproved [75]. However, further 
investigation is needed to determine the potential effects of SGC-CK2-1 on cancer given 
that CK2 is implicated in all the recognized cancer hallmarks [44] beyond just influencing 
cell proliferation. The reader is directed towards a comprehensive review regarding this 
argument [76]. It is important to note that SGC-CK2-1 is an exceptional tool and represents 
the most selective CK2 inhibitor to date and would therefore be a first-choice compound 
for the exploration of CK2 cellular functions. A further review, which provides further 
details on the development and uses of SGC-CK2-1, is brought to the attention of the 
reader [77]. 

Figure 9. (A) Structure of CK2α inhibitor AZ-7h 14; (B) crystal structure of AZ-7h bound to CK2α;
residues that are involved in binding are labelled; red points indicate presence of water molecule
(PDB 5H8E).

Through optimization of the pyrazolopyrimidine scaffold of AZ-7h, the Structural
Genomics Consortium (SGC-UNC) developed SGC-CK2-1 15, Figure 10, (IC50 = 4.2 nM, and
IC50 = 2.3 nM for CK2α and CK2α’, respectively) [74]. Sub-micromolar target engagement
of CK2 was determined using nanoBRET assays in human embryonic kidney 293 (HEK-
239) cells (IC50 = 36 nM and IC50 = 16 nM for CK2α and CK2α’, respectively), and, when
tested against a panel of 403 wild-type human protein kinases at 1 µM, only three kinases
were found to be inhibited by more than 90%. The authors claim that, unexpectedly,
SGC-CK2-1 “does not demonstrate significant antiproliferative activity against a panel
of 140 different cancer cell lines”. This claim sparked premature conclusions that the
broad cancer essentiality of CK2 had therefore been disproved [75]. However, further
investigation is needed to determine the potential effects of SGC-CK2-1 on cancer given
that CK2 is implicated in all the recognized cancer hallmarks [44] beyond just influencing
cell proliferation. The reader is directed towards a comprehensive review regarding this
argument [76]. It is important to note that SGC-CK2-1 is an exceptional tool and represents
the most selective CK2 inhibitor to date and would therefore be a first-choice compound for
the exploration of CK2 cellular functions. A further review, which provides further details
on the development and uses of SGC-CK2-1, is brought to the attention of the reader [77].
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2.1.4. Indoloquinazolines Such as CX-4945

CX-4945 16, Figure 11, an indoloquinazoline, also known as silmitasertib, was devel-
oped by Siddiqui-Jain et al. in 2010 and is a potent orally bioavailable ATP-competitive
inhibitor of CK2 (IC50 = 1 nM, Ki = 0.38 nM) [78]. CX-4945 is characterized by its com-
paratively small polar surface area, few rotatable bonds, and low aqueous solubility. It
possesses a single carboxylic acid and two aromatic nitrogen heterocycles, which are both
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weakly basic. CX-4945′s potent binding affinity is attributed to the formation of an ionic
bridge with Lys68, in addition to hydrophobic interactions and hydrogen bonding with the
hinge region of the ATP site [27,28,73].
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CX-4945 was granted orphan drug designation by the FDA for advanced cholangio-
carcinoma in 2017 [79]. In 2021, CX-4945 demonstrated excellent preclinical anti-tumor
activity and strong synergism with gemcitabine and cisplatin in phase Ib/II clinical stud-
ies (ClinicalTrials.gov identifier: NCT02128282) [80,81]. This combined therapeutic ap-
proach has the potential to be a promising first-line treatment against locally advanced and
metastatic cholangiocarcinoma.

When screened in a selectivity panel of 238 kinases, CX-4945 was shown to inhibit
a further seven kinases by over 90% at a concentration of 500 nM. The most significant
inhibition was against dual-specificity tyrosine regulated kinases DRYK1A and DRYK1B;
proviral integration site for Moloney murine leukemia virus kinase 1 (PIM-1), and CLK2 [27].
Despite suboptimal selectivity, CX-4945 is currently viewed as the gold standard of CK2
inhibitors due to its strong inhibitory activity and oral bioavailability. This illustrates a
potential shift in perspective regarding off-target kinase activity as only moderate adverse
side effects have been observed in CX-4945 clinical trials, and targeting multiple kinases
with related substrate phosphorylation patterns could be considered advantageous [82].
Nonetheless, the development of more selective inhibitors is crucial for the advancement
of CK2 chemical probes.

Recently, Menyhart et al. evaluated the selectivity of CX-4945 and SGC-CK2-1 via
triple SILAC quantitative phosphoproteomics using human osteosarcoma U2OS cells
expressing exogenous wild-type CSNK2A1 or an inhibitor-resistant triple mutant (TM,
V66A/H160D/I174A) [83]. Only a minority of the phosphosites that were downregulated
in response to CX-4945 treatment (15% at 4 h and 5% at 24 h) were found to be CSNK2A1-
dependent. However, the majority of the phosphosites downregulated in response to
SGC-CK2-1 treatment (more than 55% after 4 h and 24 h) were found to be CSNK2A1-
dependent. Thus, SGC-CK2-1 is significantly more selective for CK2 than CX-4945.

Following the development of CX-4945 16, structure–activity relationship studies
led to the development of CX-5011 17 and CX-5279 18, (Ki = 0.18 nM and Ki = 0.22 nM
for CX-5011 and CX-5279, respectively) [84], Figure 12. Both new derivatives contain a
pyrimidine ring instead of pyridine and showed better specificity for CK2 than CX-4945
(the Gini coefficients were 0.735, 0.755, and 0.615 for CX-5011, CX-5279, and CX-4945,
respectively [85]), which improves upon one of the main downfalls of CX-4945 [69,84].
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3. Extending beyond the ATP Site
3.1. Dual-Binding Ligands

The development of dual-binding therapeutics, especially those that inhibit synergistic
targets, has received increasing attention in anticancer drug development. Many dual-
binding bromodomain and extra-terminal domain (BET)/kinase inhibitors have been
described, which simultaneously regulate multiple targets in disease pathways and have
synergistic anti-tumor effects [86–88]. A dual-binding ligand approach could be a more
effective therapeutic strategy than single-target therapeutics. To date, several CK2-based
dual-binding ligands have been reported in the literature that have the potential to be
successful clinical candidates.

3.1.1. CK2/PIM Dual-Binding Ligands

Proviral integration site for Moloney murine leukemia virus (PIM) kinases are ser-
ine/threonine kinases, much like CK2, which interact with c-Myc [89,90]. PIM kinases are
attractive targets in diseases that have high PIM expression, such as leukemia and prostate
cancer [91,92]. CK2 and PIM both act on similar pathways, which, when dysregulated,
result in tumorigenesis [93,94]. Off-target PIM inhibition has been observed in selectivity
studies of CK2 inhibitors, making dual-binding CK2/PIM kinases a feasible therapeutic
strategy [27].

CK2/PIM dual-binding inhibitors were first reported in the literature by Lopez-Ramos
et al. in 2010 [95]. A series of CK2/PIM inhibitors (CPA 19, CPB 20, and AMR 21, Figure 13),
which had nanomolar IC50 values for CK2 and PIM kinases, were developed through
automated in vitro screening and hit expansion techniques. Unfortunately, these CK2/PIM
dual-binding inhibitors are not suitable for use in the clinic due to poor cell permeability.
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NBC 22, Figure 14, was initially developed as a CK2 inhibitor alongside anthraquinone
derivative MNX 6 by Meggio et al. in 2004 [65]. NBC displayed potent inhibitory activity
against CK2 (IC50 = 0.37 µM, Ki = 0.22 µM) but was found to inhibit PIM kinases, partic-
ularly PIM-1 and PIM-3 (IC50 = 3.1 µM and 0.34 µM, respectively). Furthermore, NBC
induced apoptosis in Jurkat cells and displayed DC50 values around 15 µM, making NBC a
promising CK2/PIM dual-binding ligand [96].

The inhibitory potential of the known CK2α inhibitor TBI 23, Figure 14, was explored
by Cozza at al., where significant off-target activity against PIM-1 was identified [97]. The
selectivity of TBI was then tuned towards CK2 and PIM-1 via inclusion of a deoxyribose to
yield TDB (CK2 IC50 = 32 nM, PIM-1 IC50 = 86 nM) [98]. TDB 24, Figure 14, was found to
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show permanent inhibition of cell survival and migration of U2OS cells to a greater extent
than “single-target” CK2 inhibitors, such as CX-4945, which is thought to be attributed
to the synergistic effect of simultaneous CK2 and PIM-1 inhibition. However, CX-4945
displayed greater in vitro potency than TBI despite lower cytotoxicity [99].
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Further analogues of CK2/PIM-1 dual-binding inhibitors were developed by Chojnaki
et al. in 2018 based on the structure of TBI [100]. Aminopropyl-substituted derivative 25
was identified, which exhibits potent inhibition of CK2 and PIM-1 (Ki = 0.18 and 0.08 µM
for CK2 and PIM-1, respectively). In vitro studies showed that 25, Figure 14, inhibited cell
proliferation in human T-lymphoblasts CCRF-CEM, human breast cancer MCF-7, and PC3
cancer cell lines, and cell viability was reduced more significantly when compared with
TBI and CX-4945, proving the synergistic effect of CK2/PIM-1 that dual-binding inhibitors
could have in terms of a clinical benefit over ‘single-target’ CK2 inhibition.

3.1.2. CK2/BRD4 Dual-Binding Ligands

Bromodomain-containing protein 4 (BRD4), a member of BET family, is a histone
acetyltransferase (HAT) that plays a pivotal role in embryogenesis and cancer devel-
opment [101,102]. Studies show that CK2 is responsible for the phosphorylation of
BRD4 [101,103,104]. Hyperphosphorylation of BRD4 by CK2 is associated with drug resis-
tance in triple-negative breast cancer (TNBC), making CK2/BRD4 dual-binding ligands a
feasible therapeutic approach in breast cancer treatment [14,44,105,106].

Moreover, 26, Figure 15, is a CK2/BRD4 dual-binding inhibitor, first described by
Zhang et al. in 2021, and was developed via rational drug design and structure–activity
relationship studies [107]. Furthermore, 26 was found to possess potent and similar inhibi-
tion against CK2 (IC50 = 230 nM) and BRD4 (IC50 = 180 nM). In in vitro experiments, 26 was
shown to inhibit proliferation and induce dose-dependent apoptosis and autophagy-related
cell death in human TNBC MDA-MB-231 and MDA-MB-468 cells. In vivo experiments
further validated a therapeutic effect, with potent anticancer activity being observed with-
out any obvious toxicities. Hence, CK2/BRD4 dual-binding ligands have emerged as an
appealing strategy for treating TNBC.
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3.1.3. CK2/SRPK1 Dual Inhibitor

Serine-arginine protein kinase 1 (SRPK1) is an oncoprotein that plays a key role in
the epidermal growth factor (EGFR)/Akt pathway, contributing to tumorigenesis [108].
SRPK1 is involved in angiogenesis and is overexpressed in numerous cancer types, such
as prostate, breast and lung cancers, and glioma [109,110]. Furthermore, CK2 has been
found to be the main kinase that phosphorylates SRPK1 [111]. Therefore, CK2/SRPK1 dual
inhibitors could be used as anti-angiogenic therapies.

SRPIN803 27, Figure 16, was identified by Morooka et al. as a CK2/SRPK1 dual
inhibitor (IC50 = 2.4 µM and 203 nM for CK2 and SRPK1, respectively) through pharma-
cophore docking models followed by in vitro kinase assays [112]. Exposure of SRPIN803 to
Jurkat cells resulted in a significant reduction in cell viability, and suppression of vascular
endothelial growth factor (VEGF) production was observed in a dose- and time-dependent
manner in human retinal pigment epithelial ARPE-19 cells. Furthermore, genes, including
IL8, HMOX1, and HK2, involved in angiogenesis were downregulated according to gene-
expression array data. In an in vivo mouse model of age-related macular degeneration
(AMD), SRPIN803, administered in the form of topical eye ointment, significantly inhibited
choroidal neovascularization. Thus, SRPIN803 merits further investigation as an inhibitor
of VEGF and as a topical ointment for ocular neovascularization in a clinical setting.
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Figure 16. (A) Structure of CK2/SRPK1 dual inhibitor SRPIN803 27; (B) crystal structure of SRPIN803
bound to CK2α; bonding interactions are shown in magenta; red points indicate the presence of a
water molecule (PDB 6RFE).

In 2021, Leonidis et al. developed a series of c(RGDyK) peptide conjugates of SR-
PIN803, of which geo35 28, Figure 17, was the most cytotoxic against MC7 and MRC5 cell
lines (IC50 = 61 and 63 µM, respectively) [113]. Furthermore, the most active compound,
geo35 (CK2 IC50 = 85.2 µM and SRPK1 IC50 = >100 µM), induced antiangiogenic activity
in zebrafish embryos in a dose-dependent fashion. However, SRPIN803 alone was found
to be more potent than geo35. Furthermore, geo35 displayed weak binding affinity to
SRPK1, and it is unknown whether the observed cytotoxicity can be attributed to inhibi-
tion of both CK2 and SRPK1 or just CK2 alone. However, the development of an active
peptide conjugate suggests that this approach could be adopted to develop a new class of
antiangiogenic therapeutics.
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3.1.4. CK2/HDAC1 Dual Inhibitor

Histone deacetylases (HDACs) are a family of epigenetic proteins that control gene
transcription and regulation, alongside cell proliferation, differentiation, migration, death,
and angiogenesis [114]. As CK2 and HDAC are both related in similar cancer-related
biological pathways, it is speculated that simultaneous inhibition of these targets by a dual
inhibitor should improve efficacy compared to single-target therapeutics [115].

Recently, the Ramos group developed a series of CK2/HDAC1 inhibitors through
combining the structures of vorinostat 29, Figure 18, a known HDAC1 inhibitor, and TBB
or DMAT, known CK2 inhibitors [116–119]. The series, to which compound 30, Figure 18,
belongs, had low micromolar activity in enzymatic assays and low micromolar LC50
values across numerous cell lines. In 2020, the Ramos group reported another series
of CK2/HDAC1 dual-binding inhibitors in which CX-4945 replaced the DMAT-derived
portion [120]. The lead compound, 31, Figure 19, displayed 3.0- and 3.5-times higher
activity against recombinant CK2 and HDAC1 than CX-4945 and vorinostat, respectively.
However, the in vitro inhibition observed with 31 in human lymph node carcinoma of the
prostate (LNCaP) cells (IC50 = 16.31 µM) was lower than the individual parent compounds,
which could be attributed to poorer cell permeability of the lead compound. Therefore,
further optimization of the pharmacokinetic properties of 31 is needed before it could be a
potential therapeutic.
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3.1.5. CK2/TNIK/DYRK1 Multiple Inhibitor

Dual-specificity tyrosine-regulated class 1 kinases (DYRK1) have multiple implications
in cell differentiation and proliferation pathways via phosphorylation of key cell cycle
regulators, such as CYCLIN D1 and p21, and regulate their degradation [98,121]. DYRK1
kinases also regulate chromatin modification and gene expression [122]. TRAF2- and
NCK-interacting kinase (TNIK) has emerged as a kinase that is critical in the regulation of
Wnt/β-catenin cell signaling pathway [123]. Collectively, CK2, DYRK1, and TNIK kinases
activate STAT3, Wnt/β-catenin, PI3K/Akt, Hedgehog, and Notch 1 signaling molecules.
Therefore, simultaneous inhibition of these three kinases, and their associated cancer-
promoting pathways, could sensitize malignant drug-resistant cancer cells to standard-of-
care chemotherapy.
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A novel multi-kinase inhibitor, 108600 32, Figure 19, inhibited CK2, TNIK, and DYRK1
activity in a dose-dependent manner in triple-negative breast cancer cell lines [124]. More-
over, 108600 displayed IC50 values for CK2α, CK2α’, TNIK, DYRK1A, and DYRK1B of 50,
5, 5, 16, and 7 nM. Surprisingly, 108600’s inhibitory activity against the CK2α isoform is
10-fold higher than the CK2α’ isoform, indicating potential for isoform-selective derivatives
to be developed. An unfavorable conformational change in CK2α was observed upon
binding of 108600, which is not conductive with holoenzyme formation [124]. 108600 could,
therefore, be acting as an ATP-competitive inhibitor and as an allosteric inhibitor. Treatment
of LM2-4 cells, a highly metastatic variant of MDA-MB-231, showed that 108600 was an
effective suppressor of established metastases when used in combination with paclitaxel.
In an in vivo patient-derived xenograft (PDX) mouse model, 108600 successfully acted
synergistically with paclitaxel, even when tumors were non-responsive to paclitaxel as a
single agent. This may prove to be highly advantageous in a clinical setting and could lead
to improvements in morbidity and mortality rates associated with advanced TNBC, and
those that are resistant to chemotherapy [125].

3.2. Substrate Binding Site Inhibition

An alternative approach for CK2 inhibition is to target the substrate binding site and
therefore inhibit the binding of CK2 substrates. One defining feature of CK2 is that it solely
phosphorylates acidophilic substrates [10]. Therefore substrate-competitive inhibitors with
great selectivity could be developed to regulate CK2’s activity.

Polyglutamyl peptides were first identified as substrate-competitive inhibitors by
Meggio et al. in 1983 [126]. (Glu)70 was found to inhibit CK2 in vitro (Ki = 0.11 µM) and
did not have activity against closely related proteins, such as CK1. This highlighted that
naturally occurring polypeptides that contain long stretches of acidic units could act as
substrate-competitive CK2 inhibitors.

Perea et al. identified peptide P15 (WMSPRHLGT) through screening of a random
cyclic peptide phage display library [127]. P15 was found to inhibit CK2 substrate phos-
phorylation in vitro in a competitive manner. The known cell-penetrating peptide TAT
was attached to the N-terminus of P15, along with two cysteine residues attached to either
end of P15. Cyclization of the modified peptide via a disulfide bridge afforded the cell-
permeable peptide CIGB-325 (formerly known as P15-TAT and CIGB-300), which displayed
moderate inhibition of cell viability across different cancerous cell lines. Additionally,
intra-tumoral administration of CIGB-325 into TC-1 lung epithelial tumors in C57BL6 mice
led to a significant reduction in tumor growth [127].

In 2008, CIGB-325 was administered to patients with cervical cancer in its first-in-man
clinical trial [128]. It was observed that 75% of the patients had significant lesion reduction,
and 19% of the patients showed full histological regression. In 2020, a preclinical trail
was conducted to evaluate the potential of CIGB-325 as a treatment for breast cancer [14].
CIGB-325 demonstrated reduced breast cancer cell growth across the MDA-MB-231, MCF-7,
and sarcomatoid mammary carcinoma F3II cell lines, and exhibited apoptosis and cell
cycle arrest in vitro. In malignant cells, cell adhesion, migration, and clonogenic capacity
were reduced. Promisingly, in an orthotopic model, treatment of CIGB-325 resulted in the
inhibition of breast cancer colonization of the lung as the size and number of metastatic
lesions was reduced. These encouraging results propose CIGB-325 as an adjuvant therapy
post-surgery to limit tumor metastasis and recurrence.

In 2020, an exploratory clinical trial of CIGB-325 was conducted to investigate the use
of the synthetic peptide against COVID-19 [129]. CIGB-325 was administered intravenously
to COVID-19 patients, along with standard-of-care treatment, over a period of 15 days.
Significantly fewer pulmonary lesions were observed at day 7 in patients who had received
CIGB-325 and standard-of-care treatment, indicating that CK2 inhibitors could be used in
combinatorial therapy against COVID-19.
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3.3. Bi-Specific ATP/Substrate Competitive Inhibition

The substrate binding channel of CK2 has been defined based on the substrate binding
channels identified in other kinases [130]. However, to date, there are no published crystal
structure data to show a substrate of CK2α, or substrate channel inhibitor, bound in this
channel. Bi-specific ATP/substrate-competitive inhibitors have emerged as a therapeutic
strategy for selective CK2 inhibitors. These inhibitors incorporate both an ATP-competitive
binder and an acidophilic peptide to bind in an ATP- and substrate-competitive manner.
Due to the lack of crystal structure data, it is difficult to predict how much binding in the
substrate channel contributes to the overall binding affinity of these inhibitors.

The first bi-specific ATP/substrate-competitive inhibitor was ARC-1502 33, Figure 20,
developed by Enkvist et al. in 2012 [131]. ARC-1502 (Ki = 0.5 nM) contained the ATP-
competitive inhibitor TBI conjugated to an aspartic acid-rich peptide. Alongside a strong
binding affinity for CK2α, ARC-1502 exhibited good selectivity: when tested at 1 µM
against a panel of one-hundred-forty kinases, only nine other kinases were inhibited at
more than 50%. Unfortunately, ARC-1502 is not cell-permeable and is susceptible to
proteolytic degradation; therefore, its uses as a chemical probe are limited.
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Following ARC-1502, Viht et al. developed a cell-permeable and stable derivative
of ARC-1502, named ARC-1859 [132]. This improved bi-specific inhibitor was designed
as a pro-drug: the acidic aspartic acid side chains were ‘masked’ with cell-cleavable
acetoxymethyl esters. The stability of the peptide was also improved through the re-
placement of amino acids with a poly-N-substituted glycine peptoid chain. In vitro, ARC-
1502 was found to inhibit the phosphorylation of CK2α substrates Cdc37 and NFκB in a
concentration-dependent manner.

In 2017, Vahter et al. developed a series of bi-specific ATP/substrate-competitive
inhibitors using CX-4945 as the ATP site binder [133]. The most promising inhibitors of the
series, ARC-1424-50 and its fluorescently labelled counterpart ARC-1513-50 34, Figure 21,
showed outstanding binding affinity for CK2 (Kd = 37 and 16 pM, respectively). When
tested at 1 µM in a panel of one-hundred-forty kinases, twenty-three kinases were inhibited
at more than 50% and six were strongly inhibited at more than 90%. Therefore, ARC-1424-50
is one of the best chemical tools for competition experiments to measure binding affinities
of other CK2α inhibitors due to its picomolar activity.
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Figure 21. Structure of ARC-1513-50 34, the fluorescently labelled counterpart of CK2α inhibitor
ARC-1424-50.

3.4. Inhibitors Acting in the αD Site

A pocket adjacent to the ATP site, named the αD site, was discovered by Brear et al.
in 2016 [134]. The site was found through high-concentration fragment screening and
is unique to CK2α/α’. Therefore, targeting this site could possibly lead to the creation
of highly selective CK2 inhibitors. Most reported inhibitors that bind to the αD site
simultaneously bind to the ATP site. There is one reported compound that is proposed to
bind to the αD site and allosterically inhibit CK2; however, there are no structural data to
support this hypothesis, and it remains unclear whether the αD site can act as an allosteric
site alone [135].

Through crystallographic fragment screening efforts, De Fusco et al. successfully iden-
tified fragments 35 and 36 that bind to the ATP site, shown in Figure 22 [32]. Remarkably,
several cell-permeable small molecules with picomolar affinity to the ATP site have been
discovered. These fragments are ATP-competitive as they compete with endogenous ATP
and thus prevent phosphorylation of CK2’s substrates.
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Figure 22. Structures of ATP site fragments 35 and 36; adjacent are their respective ribbon crystal
structures; residues involved in binding are labelled ((A): PDB 5CSP and (B): PDB 5CSV).

A fragment-based drug discovery approach, via collaboration of the Spring and
Hyvönen groups, resulted in a series of benzylamine biaryl molecules that bind in the αD
site [32,134]. Due to the proximity of the ATP and αD sites, a weak ATP site fragment
36, Figure 22, was linked to an αD fragment. It was hypothesized that linking fragments
that bind either the αD or ATP site would result in a selective CK2 inhibitor; selectivity
would be driven by binding to the αD pocket. This proved true for the resulting inhibitor
CAM4066 37, Figure 23, which exhibited subnanomolar affinity in enzymatic assays and
low micromolar cellular activity (Kd = 320 nM, IC50 = 370 nM, GI50 = 8.8 µM for pro-
CAM4066). Excitingly, CAM4066 possessed a Gini coefficient of 0.82 (52 kinase panel, 2 µM
CAM4066), making CAM4066 the most selective CK2 inhibitor to date. The promising
selectivity and biological data suggest that the unique binding mode of CAM4066 serves as
an effective strategy for achieving potent selectivity and good inhibition when developing
kinase inhibitors.
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Bancet et al. recently discovered AB668 38 (Ki = 41 nM, IC50 = 65 nM), Figure 23,
which also binds to the αD pocket and ATP site [136]. AB668 was screened against a panel
of 468 kinases at a concentration of 2 µM, and only one other kinase (RPS6KA5) displayed
a percentage inhibition above 50%. Additionally, AB668 was found to induce apoptotic
cell death in 786-O renal carcinoma (at a concentration of 4 µM) and A375 melanoma (at
a concentration of 5 µM) cell lines after 48 h, detected via live cell imaging. Interestingly,
AB668 was better at inducing apoptosis in both cell lines than CX-4945 and SGC-CK2-1.
Furthermore, AB668 did not induce cytotoxicity in extracts of non-cancerous HEK-293
cells, and the viability of normal human breast epithelial cells (MCF10A) was unchanged
at high concentrations of AB668. These results suggest that only cancerous cell lines are
sensitive to AB668. However, further in vitro and in vivo studies would be needed to better
understand this anticancer effect.

3.5. Holoenzyme Assembly Inhibition

Targeting the CK2α/β interface is an alternative strategy of CK2 inhibition and dis-
rupts formation of the holoenzyme complex.

One notable peptide that targets the CK2α/β protein-protein interaction (PPI) is
CAM7117 39, Figure 24, developed by the Spring and Hyvönen groups [137]. CAM7117
was developed through the optimization of peptide Pc (IC50 = 3.0 µM, Kd = 1 µM), pre-
viously identified by Laudet et al. [138]. Pc contains the central interacting region of the
CK2β C-terminal loop cyclized via a disulfide bridge. In the development of CAM7117,
a structure-based approach was adopted to determine which covalent constraint would
hold the peptide in an optimal conformation. Additionally, molecular modeling and X-ray
crystallography of the peptide sequence revealed a single point mutation within the central
region of Pc, namely Ile192 to Trp. Using copper-catalyzed azide-alkyne cycloaddition
(CUAAC) chemistry and the movement of one of the cyclizing residues by one position
yielded CAM7117 (Kd = 0.2 µM, GI50 = 33 µM). Unfortunately, CAM7117 contains unnatural
amino acids, and its size limits any further optimization attempts.

In 2022, the Spring group developed another peptide-based CK2α/β PPI inhibitor,
P8C9 40, Figure 25, through an iterative cycle of enzymatic assays, X-ray crystallography,
molecular modelling, and cellular assays [139]. The peptide successfully binds CK2α at the
CK2α/β PPI interaction site and is easily functionalized, highly stable in serum, and small
enough to be further optimized. Cell-permeable analogues were synthesized, TAT-P8C9
and R3-P8C9, which successfully inhibited cell proliferation. These analogues can serve as
chemical probes to aid the development of novel CK2α/β PPI inhibitors that can be used
as therapeutics.
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Figure 24. (A) Structure of CK2α/β interface binder CAM7117 39; (B) crystal structure of CAM7117
bound to CK2α/β interface (PDB 6Q4Q).
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In addition to peptides targeting the CK2α/β interface, Kufareva et al. developed a
small molecule probe 41, Figure 26, that suppressed subunit association in vitro [140]. The
procedure of fumigation was applied to the CK2β-binding interface of CK2α, followed
by the ICM PocketFinder algorithm, which identified druggable conformations of the
target pocket. The best conformations were then subjected to virtual screening, which
evaluated 40 as a hit compound. Compound 41 was found to selectively inhibit the phos-
phorylation of a CK2β-dependent peptide, with an estimated IC50 of 50 µM. Additionally,
50 µM of 41 selectively inhibited phosphorylation of a CK2β-dependent protein, namely
Olig-2 transcription factor, by ~50% as compared to the same experiment without the
inhibitor. An in vitro CK2α/β interaction assay showed that 41 inhibited the CK2α/β
subunit interaction in a dose-dependent manner. Finally, 100 µM of 41 was screened against
a panel of 45 Ser/Thr kinases and only one other kinase was inhibited, namely PIM-1 at
36%. Furthermore, the Gini coefficient was calculated to be 0.81, comparable with the Gini
coefficient of CAM4066, which is 0.82. These results highlight the promise of targeting the
CK2α/β interface in the development of highly selective CK2 inhibitors.
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Compound 41 was used as a starting point in subsequent structure–activity relation-
ship studies, which resulted in the development of compounds 42 (Kd = 43 µM) and 43
(Kd = 30 µM, IC50 = 22 µM), Figure 26, which inhibited phosphorylation of Olgio-2 by
66% and 80%, respectively [141]. In addition to interaction with the CK2α/β interface, an
allosteric effect was observed: the electron density of ATP in crystal structures that have 42
or 43 bound is very weak compared to that observed in the apo form. This suggests that
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ATP is being destabilized by the binding of 42 or 43. Unfortunately, these inhibitors were
not subjected to the 45-kinase selectivity panel and their inhibitory activities against other
kinases is currently unknown.

3.6. CK2 Proteolysis-Targeting Chimeras

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have
emerged as an alternative therapeutic strategy to overcome limitations often encountered
when using small molecule inhibitors [141,142]. PROTACs consist of an E3-ubiquitin ligase
binder and a protein of interest binder (in this case CK2), connected by a linker. PROTACs
hijack the cell’s ubiquitin–proteasome system (UPS) to induce proteasomal degradation
of the target protein. This occurs via formation of a ternary complex, consisting of an
E3-ubiquitin ligase, PROTAC, and the protein of interest, which holds the E3-ubiquitin
ligase and protein of interest in proximity for the transfer of ubiquitin to the protein of
interest [143]. After several iterations of ubiquitin transfer, a polyubiquitin chain forms on
the protein of interest, which is recognized by the 26S proteasome and results in degradation
of the protein of interest.

In 2018, Chen et al. incorporated known small-molecule CK2α inhibitor CX-4945
into a series of cereblon (CRBN)-recruiting PROTACs, using pomalidomide as the E3-
ubiquitin ligase binder [144]. Degradation of CK2 in a time-dependent manner was found
with 10 µM of one PROTAC 44, Figure 27, (IC50 = 17 µM) in MDA-MB-231 cells after
24 h. It remains unclear whether the α, α’ and/or β subunits were equally degraded.
Promisingly, the PROTAC also upregulated p53 and inhibited phosphorylation of Akt, a
known CK2α substrate. Furthermore, apoptotic analysis of MDA-MB-231 cells showed the
rate of apoptosis of the PROTAC (26.2%, 17.3 µM) was higher than that of CX-4945 (16.8%,
15.7 µM) after 24 h. After a 24 h incubation with 35 µM of both compounds, the rate of
apoptosis was still higher with the PROTAC (31.0%) than compared with CX-4945 (19.3%).
The faster rate of apoptosis with the PROTAC could be advantageous over the original
binder; however, more in vitro and in vivo studies are needed to determine any potential
clinical advantages.

Kinases Phosphatases 2024, 2, FOR PEER REVIEW 20 
 

 
Figure 26. Structures of CK2α/β interface inhibitors 41, 42, and 43. 

Compound 41 was used as a starting point in subsequent structure–activity relation-
ship studies, which resulted in the development of compounds 42 (Kd = 43 μM) and 43 (Kd 
= 30 μM, IC50 = 22 μM), Figure 26, which inhibited phosphorylation of Olgio-2 by 66% and 
80%, respectively [141]. In addition to interaction with the CK2α/β interface, an allosteric 
effect was observed: the electron density of ATP in crystal structures that have 42 or 43 
bound is very weak compared to that observed in the apo form. This suggests that ATP is 
being destabilized by the binding of 42 or 43. Unfortunately, these inhibitors were not 
subjected to the 45-kinase selectivity panel and their inhibitory activities against other ki-
nases is currently unknown. 

3.6. CK2 Proteolysis-Targeting Chimeras 
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that 

have emerged as an alternative therapeutic strategy to overcome limitations often encoun-
tered when using small molecule inhibitors [141,142]. PROTACs consist of an E3-ubiquitin 
ligase binder and a protein of interest binder (in this case CK2), connected by a linker. 
PROTACs hijack the cell’s ubiquitin–proteasome system (UPS) to induce proteasomal 
degradation of the target protein. This occurs via formation of a ternary complex, consist-
ing of an E3-ubiquitin ligase, PROTAC, and the protein of interest, which holds the E3-
ubiquitin ligase and protein of interest in proximity for the transfer of ubiquitin to the 
protein of interest [143]. After several iterations of ubiquitin transfer, a polyubiquitin 
chain forms on the protein of interest, which is recognized by the 26S proteasome and 
results in degradation of the protein of interest. 

In 2018, Chen et al. incorporated known small-molecule CK2α inhibitor CX-4945 into 
a series of cereblon (CRBN)-recruiting PROTACs, using pomalidomide as the E3-ubiqui-
tin ligase binder [144]. Degradation of CK2 in a time-dependent manner was found with 
10 μM of one PROTAC 44, Figure 27, (IC50 = 17 μM) in MDA-MB-231 cells after 24 h. It 
remains unclear whether the α, α’ and/or β subunits were equally degraded. Promisingly, 
the PROTAC also upregulated p53 and inhibited phosphorylation of Akt, a known CK2α 
substrate. Furthermore, apoptotic analysis of MDA-MB-231 cells showed the rate of apop-
tosis of the PROTAC (26.2%, 17.3 μM) was higher than that of CX-4945 (16.8%, 15.7 μM) 
after 24 h. After a 24 h incubation with 35 μM of both compounds, the rate of apoptosis 
was still higher with the PROTAC (31.0%) than compared with CX-4945 (19.3%). The 
faster rate of apoptosis with the PROTAC could be advantageous over the original binder; 
however, more in vitro and in vivo studies are needed to determine any potential clinical 
advantages. 

 
Figure 27. Structure of CK2/CRBN recruiting PROTAC 44, which contains CX-4945 as the CK2 
binder and pomalidomide as the CRBN binder. 

4. Conclusions 

41
IC50 = 50 µM

N
H OMe

F
O

O
N N

H
S Me

O

O

42
IC50 = n.d.
Ki = 43 µM

N
H

F
O

O
N N

H
S

O

O

43
IC50 = 22 µM
Ki = 30 µM

N
H OMe

F
O

O
N N

H
S

O

O

Figure 27. Structure of CK2/CRBN recruiting PROTAC 44, which contains CX-4945 as the CK2 binder
and pomalidomide as the CRBN binder.

4. Conclusions

The main aim of this review was to provide an update regarding CK2 inhibition
strategies. In this review, we have discussed important features of the protein kinase CK2
and its role in numerous diseases, particularly cancer. We hope to have provided the reader
with an overview of different ATP-competitive therapeutics, as well as their limitations.
Furthermore, we hope to have provided insight into the main developments of inhibitors
that act outside the ATP site.

There have been numerous efforts to develop effective and clinically useful CK2
inhibitors, and one small molecule, CX-4945, and one peptide, CIGB-325, have entered
clinical trials. However, due to selectivity issues associated with CX-4945 and poor oral
bioavailability encountered with peptides, we are still a long way from seeing CK2 as
an established target in clinical oncology. Therefore, there is emphasis on developing
selective CK2 inhibitors, which has driven researchers to explore CK2 beyond the ATP
site. Two sites external to the ATP site have emerged, namely the αD site and the CK2α/β
PPI interface, as valid sites for selective inhibition. Furthermore, new strategies have
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emerged to develop selective CK2 therapeutics: dual-functional inhibitors, bi-substrate
inhibitors, and PROTACs. It is reasonable to hypothesize that continued research in this
field will result in the development of potent, selective, and cell-permeable chemical probes
that could be optimized to yield a clinically useful CK2 therapeutic. It is possible to also
foresee, with continued chemical and biochemical developments, development of covalent
inhibitors and small molecule/peptide hybrids that target multiple sites simultaneously.

Due to significant developments in CK2 inhibition, especially those discussed in
this review, one can speculate that CK2 inhibition will remain at the forefront of kinase
research over the coming years, especially in the pursuit of selective kinase inhibitors. The
development of selective CK2 inhibitors will have major implications in a multitude of
disease types, especially cancer and COVID-19.
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