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Abstract: Attention deficit and hyperactivity disorder (ADHD) is a prevalent neurodevelopmental
condition, impacting approximately 10% of children globally. A significant proportion, around
30–50%, of those diagnosed during childhood continue to manifest ADHD symptoms into adulthood,
with 2–5% of adults experiencing the condition. The existing diagnostic framework for ADHD relies
on clinical assessments and interviews conducted by healthcare professionals. This diagnostic process
is complicated by the disorder’s overlap in symptoms and frequent comorbidities with other neu-
rodevelopmental conditions, particularly bipolar disorder during its manic phase, adding complexity
to achieving accurate and timely diagnoses. Despite extensive efforts to identify reliable biomarkers
that could enhance the clinical diagnosis, this objective remains elusive. In this study, Raman spec-
troscopy, combined with multivariate statistical methods, was employed to construct a model based
on the analysis of blood serum samples. The developed partial least-squares discriminant analysis
(PLS-DA) model demonstrated an ability to differentiate between individuals with ADHD, healthy
individuals, and those diagnosed with bipolar disorder in the manic phase, with a total accuracy
of 97.4%. The innovative approach in this model involves utilizing the entire Raman spectrum,
within the 450–1720 cm−1 range, as a comprehensive representation of the biochemical blood serum
setting, thus serving as a holistic spectroscopic biomarker. This method circumvents the necessity to
pinpoint specific chemical substances associated with the disorders, eliminating the reliance on specific
molecular biomarkers. Moreover, the developed model relies on a sensitive and reliable technique that
is cost-effective and rapid, presenting itself as a promising complementary diagnostic tool for clinical
settings. The potential for Raman spectroscopy to contribute to the diagnostic process suggests a
step forward in addressing the challenges associated with accurately identifying and distinguishing
ADHD from other related conditions.

Keywords: attention deficit and hyperactivity disorder (ADHD); bipolar disorder; Raman spectroscopy;
partial least-squares discriminant analysis (PLS-DA)

1. Introduction

Attention deficit and hyperactivity disorder (ADHD) stands out as one of the most
common neurobehavioral diseases. It is classified as a neurodevelopmental disorder,
typically manifesting during childhood, thus being primarily associated with infancy and
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adolescence, where symptoms are also more pronounced [1–3]. ADHD affects 9–10% of the
population under 17, with boys exhibiting a prevalence that is over twice that of girls [4–7].
Notably, ca. 30–50% of the children diagnosed with ADHD continue to show symptoms
into adulthood, resulting in an incidence of the disorder in adults ranging from 2–5% [4–7].

While factors such as genetics, nutrition, and disruptions in the central nervous system
during development are thought to contribute significantly to the onset of the disease, its
etiology remains uncertain and appears to differ from one case to another [8–12]. ADHD is
influenced by various determinants, including age, sex, and environmental factors, both
prenatal, such as smoking and alcohol use during pregnancy, and postnatal, like early
exposure to neurotoxic chemicals and stress [8–15].

The disease impacts executive functions that are essential for assessing, planning, and
sustaining individuals’ ongoing lives [16]. As mentioned above, ADHD symptoms are
generally more subtle in adults than in children and adolescents, with a significant decrease
in hyperactivity, while inattentiveness tends to persist [6,7]. Signs of the condition in adults
include impulsivity (inconsistent behavior), inattentiveness (difficulty concentrating and
focusing), and emotional dysregulation. Typical behaviors in ADHD adults encompass
poor organizational skills, mood swings, irritability, quick temper, difficulty handling stress,
frequent and loud talking, struggles with keeping quiet, impatience, ongoing misplacement
of items, and a tendency to take risks in activities with little concern for one’s personal
safety or the safety of others (e.g., engaging in risky driving) [1–7]. Adults with ADHD
may exhibit comorbidity with other neurobehavioral conditions, including personality,
obsessive–compulsive, and bipolar disorders [1–7,17,18].

Diagnosing ADHD poses a challenge for clinicians. The current diagnostic approach
is based on the criteria outlined in the Diagnostic and Statistical Manual of Mental Disor-
ders (Fifth Edition; DSM-5) and relies on a clinical evaluation, involving interviews and
the assessment of symptom clusters [1]. However, this diagnostic procedure has been
criticized for not allowing for sufficiently reliable and valid diagnoses [19]. This is par-
ticularly evident because ADHD shares clinical symptoms with various other disorders,
most notably the manic episodes of bipolar disorder [17,18,20,21], which exhibit many
behavioral parallels with ADHD, such as difficulties in focusing, impulsive behavior, and
hyperactivity [17,18,20–24]. The substantial overlap in symptoms often leads to misdiag-
noses, resulting in delays in appropriate treatment and unnecessary additional suffering
for patients.

Unfortunately, like for many other neurodevelopmental diseases, there are currently no
molecular-level diagnostic techniques for ADHD to support the clinical diagnosis. Several
studies have explored different approaches (such as neuroimaging and metabolic and
genetic investigations) to find explicit biochemical changes associated with ADHD in the
search for specific biomarkers in patients, but with very limited success [13,19,25]. Indeed,
despite their promise and some indications that biochemicals related to the dopaminergic
and noradrenergic systems might be associated with the ADHD status [19], the search
for biomarkers of ADHD (and for psychiatric disorders in general) has largely proven
elusive. In a comprehensive review prepared by the task force on biological markers
of the World Federation of Societies of Biological Psychiatry (WFSBP) and the World
Federation of ADHD [25], the authors concluded that according to their stringent criteria,
no single biomarker is available for diagnosing ADHD, while clusters of reliable molecular
biomarkers for the condition have also not been identified yet.

Delving into specific molecular biomarkers of a disease is invariably a challenging task,
requiring sophisticated and often costly advanced analytical techniques. To overcome
these challenges, we have recently proposed an alternative approach that overcomes
the need to pinpoint any specific chemical substance related with the disorder. This
methodology uses information extracted from the Raman or infrared spectra of blood
serum samples of patients, together with multivariate statistical methods, as a spectroscopic
biomarker that provides a holistic representation of the biochemical environment of the
blood serum. Such an approach was successfully applied to a series of neurobehavioral
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diseases, including autism spectrum disorder [26,27], schizophrenia, and different phases
of bipolar disorder [28], as well as ADHD in children and adolescents [29]. While this
holistic approach does not yield information about specific metabolic mechanisms or precise
chemical species involved in the disease, it offers a more dependable overall description
of the samples and simplifies their distinction from controls, because no information is
overlooked, and the entire biochemical environment is subjected to examination.

Body fluids are easily accessible and are widely employed in medical diagnostics.
The utilization of vibrational spectroscopy, whether Raman or infrared, in analyzing body
fluids has increasingly garnered recognition from clinicians as a complementary diag-
nostic instrument. This approach offers distinct advantages over other techniques, being
a sensitive, reliable, cost-effective, rapid, and easily adaptable methodology within the
clinical setting [26,30]. When coupled with contemporary chemometric methods, Raman and
infrared spectroscopies have demonstrated their efficacy as powerful analytical instruments
for efficient examination of the biochemical environment of a given biological sample [26–39].

In our prior investigation of ADHD in children and adolescents [29], infrared spec-
troscopy, coupled with hierarchical clustering (HC) and partial least-squares discriminant
analysis (PLS-DA), was employed to construct a model based on the spectra of blood serum
samples. This model successfully differentiated ADHD patients from healthy individuals.
In particular, the PLS 2D score plot (Factor-1 vs. Factor-2) of the model clearly demonstrated
discrimination between the ADHD and control groups, and the classification rendered no
mismatches (100% accuracy for the tested samples). These results encouraged us to apply a
similar approach to investigate ADHD in adults, where the disease has received compara-
tively less attention from researchers. It is worth mentioning that, as noted above, ADHD
symptoms in adults are less pronounced compared to those in children and adolescents,
making diagnosis more challenging with the current clinical methods and underscoring
the need for finding reliable complementary diagnosis methods in this context. Further-
more, in the quest to contribute to helping clinicians make a differential diagnosis between
ADHD and bipolar disorder, in the present study, our goal was to develop a chemometric
analytical model that is capable of distinguishing not only ADHD patients from healthy
individuals but also from those who are clinically diagnosed as bipolar (in the manic
phase). As shown below, the obtained results suggest that this approach holds potential for
application in the clinical environment as a supplementary differential diagnostic tool for
ADHD in adulthood.

2. Materials and Methods
2.1. Clinical Phase
2.1.1. Patient and Control Group Selection

Blood serum samples were obtained from a set of clinically characterized (according
to the DSM-5 criteria [1]) ADHD and bipolar manic phase (BP-M) patients, who were
under treatment at the Marmara University Pendik Training and Research (Department of
Psychiatrics) Hospital, Istanbul Aydın University V. M. Medical Park Florya Hospital, and
Selcuk University Faculty of Medicine Psychiatry Outpatient Clinics, Konya, Turkey. The
diagnoses encompassed detailed medical and psychiatric interviews that used the ADHD
Self Report Scaling Test (ASRS) and the Young Mania Rating Scale (YMRS) and Hamilton
Depression Rating Scale (HDRS) [40–42] for ADHD and BP-M, respectively. Individuals
with a history of lifetime drug or alcohol use and comorbidities with other mental disorders
were excluded from the study. For each group (ADHD or BP-M), subjects were chosen
from patients undergoing identical medical treatment.

Blood serum samples were obtained from 41 patients placed in the BP-M group and
49 in the ADHD group. Furthermore, 49 healthy individuals were chosen from the staff
members and students of Istanbul Kultur University to form the control group (C group).
The selected members of the C group had no history of psychopathology or major medical
conditions, including Alzheimer’s and Parkinson’s diseases, heart attack, angina, cancer,
diabetes, and rheumatoid arthritis. The distributions of gender (C: 29 women, 20 men;
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ADHD: 27 women, 22 men; BP-M: 22 women, 19 men) and age of participants in the
various groups are identical. In the case of the ages, mean, standard deviation, and
variance of the distributions for the C, ADHD, and BP-M groups, they are 22.02, 3.0855, and
9.5204; 21.88, 3.3269, and 11.0680; and 22.93, 3.3793, and 11.4195, respectively, with t-test
values for the pairs C/ADHD, C/BP-M, and ADHD/BP-M, at the 0.05 significant level,
being −1.30931, −1.3182, and −1.4774 (different variances assumed), which correspond to
p-values of 0.1967, 0.1949, and 0.1474, indicating that the distributions are identical to the
used confidence level.

This study was approved by the Ethics Committees of the Istanbul Aydın University V.
M. Medical Park Florya Hospital, Istanbul, Turkey (date: 19 May 2021), and Koç University,
Istanbul, Turkey (date: 24 February 2016). Every participant was given a written informed
consent form and received a comprehensive explanation of the study.

2.1.2. Samples Preparation

Five milliliters of the gathered blood samples were permitted to clot and subsequently
centrifuged at 14,000 rpm for 10 min to separate the serum from the cellular material. The
resulting serum samples were then aliquoted into Eppendorf tubes and promptly frozen at
−80 ◦C. The maximum time of storage of the frozen samples until Raman spectra collection
was two weeks.

2.2. Spectroscopic Phase
2.2.1. Sample Measurements

In the present investigation, Raman spectroscopy was used instead of infrared spec-
troscopy (which was used in our previous study on children and adolescents) [29]. The
main advantage of Raman spectroscopy for the purposes of this study is that this technique
is much less sensitive to the presence of water (which is a strong IR absorber but a weak
Raman scatterer), so that drying of the samples prior to spectra collection is not required,
simplifying the experimental procedure. For obtaining the Raman spectra, the unfrozen
blood serum samples (1 µL) were placed on an aluminum foil and used without addi-
tional treatment. The spectra were recorded on the top of the drops using a micro-Raman
(50× Metrohm objective RML150A, infinity-corrected, working distance 9.15 mm, focal
length 4 mm, numerical aperture 0.55) B&W-Tek i-Raman Plus-785 system, equipped with
a High-Quantum-Efficiency CCD Array (−25 ◦C) with excitation at 785 nm (laser power
at the sample: 280 mW), an integration time of 30 s, and 32 scans. For each sample, five
spectra (within the 450–3050 cm−1 spectral range) were collected from different locations.
These spectra were used in the subsequent spectral and statistical analyses.

2.2.2. Data Pre-Processing

Before statistical analysis, the Raman spectra were only pre-processed by performing
baseline correction and normalization. The baseline correction was applied simultaneously
to all samples using the “adaptive algorithm” implemented in Spectragryph [43], with the
coarseness parameter being equal to 8 and no offset. The “adaptive algorithm” creates a
baseline that tightly fits to the bottom of spectra, allowing us to remove broad underlying
features (like fluorescence background in Raman spectra) while keeping actual peaks.
The coarseness parameter defines the tightening of the fit. The algorithm is a single-run,
non-iterating algorithm. It creates a baseline by applying a 0% percentile smoothing,
followed by a moving average smoothing, with the same interval size for both steps
(coarseness translates to interval size) [43]. After the base line correction, all spectra were
area-normalized in UnscramblerTM (Version 10.5) [44], and, in order to detect outliers, the
obtained data were subjected to Principal Component Analysis (PCA) [45–47] using the
NIPALS (Nonlinear Iterative Partial Least-Squares) algorithm [48]. The average spectra for
each sample were then obtained, which formed the data matrix (139 × 1348 dimensional).
The global mean spectra for a given group (ADHD, BP-M, C) were also obtained for
comparison purposes.
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2.3. Statistical Phase
Classification Model Development and Testing

Hierarchical clustering (HC) was applied to all samples as a first non-supervised
approach to examine their similarity according to Ward’s criterion with squared Euclidean
metrics [49,50]. Partial least-squares discriminant analysis (PLS-DA) [51–54] was chosen
to develop the classification model, with internal full cross-validation being used in the
calibration procedure [55].

For developing and testing the classification model, a total of 139 samples were used,
41 belonging to the BP-M group, and 49 to the ADHD and C groups. The calibration set
included 100 samples (30 for BP-M and 35 for the remaining groups), whereas the test set
was formed by 11 samples belonging to the BP-M group and 14 samples of each one of
the other two groups, making a total of 39 samples. The samples used for calibration and
testing were randomly chosen.

The chemometrics analyses were performed using UnscramblerTM (Version 10.5) [44].

3. Results and Discussion
3.1. Preliminary Analysis of the Data

Following pre-processing, the data were first examined using the analysis of the global
mean spectra difference profiles, the heat map method (which is a general graphical scheme
allowing us to visualize attribute values by class in a two-way matrix [56]), and hierarchical
cluster analysis. The spectra show the usual Raman profile of blood serum, and the band
assignments are summarized in Table 1 according to the literature [28,57–61], although one
must note that these assignments are necessarily an oversimplification due to the extensive
band overlapping of different types of constituents of the studied material.

Table 1. Assignment of major bands of Raman spectra of blood serum a.

Raman Shift Assignment Raman Shift Assignment

2929 Lipids ν(CH) 1205 Amino acids ν(C=C)
1655 Protein (Amide I) ν(C=O) 1173 Cytosine, guanine
1609 Phenylalanine ν(C=C) 1002 Phenylalanine ν(C–H)
1445 Lipoproteins, phospholipids, 945 Phenylalanine ν(C–C)

δ(CH2), δ(CH3) 850 Tyrosine
1338 Proteins (tryptophan) 754 Guanine, thymine
1267 Phospholipids δ(CH) 654 Amide IV (proteins) δ(NC=O)

513 Cystine ν(S–S)
a The assignments follow those of references [28,57–61]. Raman shifts (in cm−1) are measured for the C group’s
global mean spectrum and match those reported in Ref. [28].

After pre-processing as described in Section 2.2.2., the normalized spectra of the
C, BP-M, and ADHD groups show an average standard deviation in the variables of
9.9%, 11.6%, and 16.5%, respectively, indicating that the samples of the control group are
more similar to each other than those belonging to the ADHD and BP-M groups, which
could be anticipated considering the illnesses’ variability, which should impact the blood
serum’s biochemistry.

Figure 1 depicts the global mean Raman spectrum of the control group, together with
the difference Raman spectra generated upon subtraction of this spectrum from the global
mean spectra of the ADHD and BP-M groups. Figure 2 presents the heat map for the
samples, where the values (normalized Raman intensities) are represented by colors, and
the X and Y axes relate to variables (Raman shifts) and samples, respectively, the latter
being gathered according to their class: C, ADHD, and BP-M.
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Figure 1. Area-normalized global mean Raman spectrum of the control group (C group) and
difference Raman spectra generated upon subtraction of this spectrum from the global mean spectra
of the ADHD (red) and BP-M (blue) groups.
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Figure 2. Heat map of the studied samples.

Although, as could be expected, the global mean spectra of the different groups look
rather similar, both the difference spectra profiles shown in Figure 1 and the heat map
method presented in Figure 2 reveal that the different groups of samples (more visibly
ADHD samples compared to the remaining) exhibit discernible patterns, a result that is
also clearly shown in the similarity test performed on the samples by using the hierarchical
clustering method (Figure 3).
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Figure 3. Results of the performed hierarchical clustering analysis.

In the low-frequency region (in the ca. 500–600 cm−1 range), the spectra of ADHD
patients exhibit a generally slightly higher intensity in comparison with those of the control
healthy individuals, while those of the BP-M patients exhibit the opposite trend. On the
other hand, between ca. 1050 and 1500 cm−1, as well as between 2900 and 3000 cm−1, the
spectra of the ADHD samples are somewhat less intense than those of the control group
(and BP-M group) (see Figure 1). The region between 900 and 1100 cm−1, where the most
prominent band is found due to phenylalanine (around 1000 cm−1), also shows clearly
distinct patterns in the average spectra of the three groups. We will avoid speculating on
the assignment of these changes in the band intensities to variations in the relative amount
of specific types of biomolecules that are present in the samples of the different groups
of individuals, due to the compositional complexity of the studied samples and, as noted
above, extensive band overlapping.

It is worth noting that the hierarchical clustering analysis dendrogram (Figure 3) also
reveals that the samples of the control group are more similar to each other than those
belonging to the ADHD and BP-M groups, which is in consonance with the results of the
relative average standard deviations in the variables that is exhibited by the spectra of
the groups.
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3.2. Classification Model Development

The PLS-DA approach was chosen to construct the classification model. The dataset
used in the calibration of the model comprised 100 samples (30 for the BP-M and 35 for
the ADHD and C groups), which were randomly chosen. The 450–1720 cm−1 Raman
shift range was selected for the model development, with the used data matrix then being
100 × 660-dimensional. Seven latent variables (factors) were used to develop the model,
with the first three factors accounting for more than 77% and 83% of variance in the X and Y
variables, respectively, in the training set (Factor-1: X, 64%; Y, 50%; Factor-2: X, 8%, Y, 24%;
Factor-3: X, 5%, Y, 9%), and 75% and 80% in X and Y in the validation set (Factor-1: X, 63%;
Y, 49%; Factor-2: X, 7%, Y, 22%; Factor-3: X, 5%, Y, 9%).

Figure 4 shows the obtained score plots (2D: Factor-2 vs. Factor-1, and 3D: Factor-1 vs.
Factor-2 vs. Factor 3), where the samples belonging to each of the three groups (C, ADHD,
or BP-M) give rise to separated clusters. The ADHD samples are discriminated along
Factor-1 from the control and BP-M groups, while along Factor-2, the ADHD samples are
discriminated from the control ones. Within each group, the samples are mostly scattered
along Factors-2 and -3, as shown in the depicted 3D score graph.
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correspond to the explained variance in the x and y variables.

The loadings graphs for Factor-1, Factor-2, and Factor-3 are shown in Figure 5. The
spectra of the loadings of Factor-1 and Factor-2, which discriminate the ADHD group
from both the control and BP-M groups and the BP-M and control groups from each
other, respectively, share many similarities with the ADHD minus control and the inverse
of the BP-M minus control global means difference spectra that are shown in Figure 4.
The similarity is greater in the first case, as could be expected, because the ADHD group
appears to be more separated from the control group than the BP-M group (as shown in the
score plot shown in Figure 4, and also in consonance with the information extracted from
the hierarchical clustering analysis shown in Figure 3). The loadings of Factor-3 express
variability in the samples within each group and has (small) contributions from the whole
investigated spectral region.
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3.3. Predictions

The prediction accuracy of the constructed PLS-DA model was examined using 11 sam-
ples belonging to the BP-M group and 14 samples from both the ADHD and control groups
that were not used for the model calibration and, as mentioned before, were chosen ran-
domly from the whole set of samples. The test set spectra were pre-processed in the same
way as those belonging to the calibration set.

The results of applying the model to the test set are summarized in Figures 6 and 7. The
criterion adopted for classification of the samples in a given group was that its predicted
y-value falls within ±0.5 relative to the corresponding y reference value, which was taken
as 1. The limiting value corresponds to the half distance between the reference y value of
the tested class and that of the reference values for the samples that do not belong to the
class. According to the used criterion, samples whose predicted y values are < 0.5 for all
classes or > 0.5 for more than one class are defined as “outliers” to the classification model.
As shown below, the first of these conditions is obeyed by one sample (BP-M-9), while no
samples were found to obey the second condition.

Using the first five factors (Factors-1 to -5), the model is able to correctly classify all
the tested samples except the BP-M-9 sample (classified as an “outlier”; total accuracy of
97.4%), with the predicted y-values staying within the range of values allowing for their
classification into the proper class. Using only the first three factors (Factor-1, Factor-2, and
Factor-3), the classifications are still correct for all ADHD and C samples, but in this case,
two samples belonging to the BP-M group (samples BP-M-7 and BP-M-39) are incorrectly
classified as belonging to the C group (sample BP-M-9 is again classified as an “outlier”),
reducing the accuracy of the classification to 92.3%. The deviation parameter, calculated
using the Unscrambler software (10.5.1), that is used in this work is a measure of the
uncertainty of the predicted y value, and consequently, of the classification. However,
problems associated with the practical use of this parameter have been reviewed [62,63].
We will refrain from commenting in detail on the significance of the obtained results in
light of this parameter, but in any case, it should be mentioned that when deviations are
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taken into account, the classification of samples that was achieved by considering five as
well as only three factors is still robust in relation to samples belonging to both the ADHD
and C groups (with zero and one sample, respectively, showing deviations that extend to
outside of the region for the correct classification of the samples in the case of the five-factor
classification, and zero and three samples in the case of the classification with only three
factors), while the classification of the BP-M samples appears to be less secure, with only
four samples being predicted with the extreme values of their deviation within the region
for their correct classification (for both three- and five-factor classifications).
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Figure 6. Predicted y values of test samples using the first 5 factors (Factor-1, Factor-2, Factor-3,
Factor-4, and Factor-5) (left) and using the first 3 factors (Factor-1, Factor-2, and Factor-3) (right). The
predicted values are indicated by the red lines and the deviation by the blue boxes. In (a), samples
belonging to the ADHD group define Class 1 (value 1 for y), and samples belonging to C and BP-M
define Class 2 (value 0 for y). In (b), samples belonging to the BP-M group define Class 1 (value 1 for y),
and samples belonging to C and BP-M define Class 2 (value 0 for y). In (c), samples belonging to the
C group define Class 1 (value 1 for y), and samples belonging to ADHD and BP-M define Class 2
(value 0 for y). Sample BP-M-9 appears as an outlier to the classification in both the 3- and 5-factor
classifications; samples BP-M-7 and BP-M-39 are classified as belonging to the C group when 3 factors
are used, but are predicted correctly when 5 factors are used for classification.



Spectrosc. J. 2024, 2 63
Spectrosc. J. 2024, 2, FOR PEER REVIEW 11 
 

 

 
Figure 7. Two-dimensional score plot (Factor-2 vs. Factor-1) of the constructed PLS-DA model, de-
picting the calibration and projected test (proj.) samples. The % numbers in parenthesis correspond 
to the explained variance in the x variable in the calibration and test sets. The 95% confidence ellipses 
for the calibration set are shown. BP-M samples 7, 39, and 9 are indicated. 

Using the first five factors (Factors-1 to -5), the model is able to correctly classify all 
the tested samples except the BP-M-9 sample (classified as an “outlier”; total accuracy of 
97.4%), with the predicted y-values staying within the range of values allowing for their 
classification into the proper class. Using only the first three factors (Factor-1, Factor-2, 
and Factor-3), the classifications are still correct for all ADHD and C samples, but in this 
case, two samples belonging to the BP-M group (samples BP-M-7 and BP-M-39) are incor-
rectly classified as belonging to the C group (sample BP-M-9 is again classified as an “out-
lier”), reducing the accuracy of the classification to 92.3%. The deviation parameter, cal-
culated using the Unscrambler software (10.5.1), that is used in this work is a measure of 
the uncertainty of the predicted y value, and consequently, of the classification. However, 
problems associated with the practical use of this parameter have been reviewed [62,63]. 
We will refrain from commenting in detail on the significance of the obtained results in 
light of this parameter, but in any case, it should be mentioned that when deviations are 
taken into account, the classification of samples that was achieved by considering five as 
well as only three factors is still robust in relation to samples belonging to both the ADHD 
and C groups (with zero and one sample, respectively, showing deviations that extend to 
outside of the region for the correct classification of the samples in the case of the five-
factor classification, and zero and three samples in the case of the classification with only 
three factors), while the classification of the BP-M samples appears to be less secure, with 
only four samples being predicted with the extreme values of their deviation within the 
region for their correct classification (for both three- and five-factor classifications). 

A simple additional illustration of the classification capability of the model can be 
seen in Figure 7, which shows the projections of the test samples on the 2D Factor-2 vs. 
Factor-1 model score plot. In the figure, the 95% confidence ellipses [64] of the classes for 
the calibration set are also depicted. It can be seen that only one ADHD sample (ADHD-
49) and one BP-M sample (BP-M-9) are projected outside the corresponding 95% confi-
dence ellipse, with all the C samples being projected inside the C group’s 95% ellipse. 
Figure 7 also clearly shows the intersection area between the ellipses of the C and BP-M 
groups and highlights the position in the score plot of the two BP-M samples that were 
classified as C by the three-factor classification (the BP-M-7 and BP-M-39 samples), as well 

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

 BP-M   
 ADHD  
 C          
 BP-M (proj.)
 ADHD (proj.)
 C (proj.)

Fa
ct

or
-2

 (x
10

2 ) (
8%

,4
%

) 

Factor-1 (x102) (64%,65%)

9

7
39

Figure 7. Two-dimensional score plot (Factor-2 vs. Factor-1) of the constructed PLS-DA model,
depicting the calibration and projected test (proj.) samples. The % numbers in parenthesis correspond
to the explained variance in the x variable in the calibration and test sets. The 95% confidence ellipses
for the calibration set are shown. BP-M samples 7, 39, and 9 are indicated.

A simple additional illustration of the classification capability of the model can be seen in
Figure 7, which shows the projections of the test samples on the 2D Factor-2 vs. Factor-1 model
score plot. In the figure, the 95% confidence ellipses [64] of the classes for the calibration
set are also depicted. It can be seen that only one ADHD sample (ADHD-49) and one BP-M
sample (BP-M-9) are projected outside the corresponding 95% confidence ellipse, with
all the C samples being projected inside the C group’s 95% ellipse. Figure 7 also clearly
shows the intersection area between the ellipses of the C and BP-M groups and highlights
the position in the score plot of the two BP-M samples that were classified as C by the
three-factor classification (the BP-M-7 and BP-M-39 samples), as well as that of the sample
that was classified as an “outlier” by both the three- and five-factor classification (BP-M-9).

4. Conclusions

In the present investigation, Raman spectroscopy and multivariate statistical methods
were used to build a prediction model for ADHD vs. BP-M adult patients based on the
spectra of their blood serum (a bodily fluid that is easily accessible and widely employed
in medical diagnostics). The model is based on an inexpensive and fast spectroscopic tech-
nique that is reliable and very sensitive to compositional changes in samples. These qualities
facilitate the practical application of the model, which was able to correctly classify all the
samples in the test set, with a single exception, when five factors were used to perform the
classification (accuracy = 97.4%), indicating that the applied approach is promising for use
as a complementary diagnostic instrument in the clinical setting. The present investigation
extends our previous study on ADHD in children and adolescents [29] to adults, demon-
strating that even in this latter case, where the disorder symptoms are more subtle [1–3], the
used approach still works appropriately. Furthermore, in the quest to contribute to helping
clinicians make a differential diagnosis between ADHD and bipolar disorder (in the manic
phase, which shows many behavioral parallels with ADHD [17,18,20,21]), the model was
built to be capable of differentiating not only ADHD patients from healthy individuals but
also from those who are clinically diagnosed as bipolar (in the main episode).
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An important advantage of the approach used here to develop the model is that it
considers the whole Raman spectrum (in the 450–1720 cm−1 range) as a holistic signature
of the biochemical blood serum’s compositional characteristics (spectroscopic biomarker), sur-
passing the necessity to search for any specific chemical substance related to the disorders
(molecular biomarkers) and the well-known practical difficulties of this approach.

As a final note, it is interesting to mention that the problem investigated in the present
study is very complex in nature, and that many variables might be thought to affect the
results. Controlling for these multitude of variables is, in practical terms, an impossible
task. In this investigation, everything was done to reduce, as much as possible, the
putative interference of some of these multiple variables on the results, like, for example,
by selecting individuals without known comorbidities and a history of drug or alcohol
use, which correspond to variables that are easier to control. Other variables that can
putatively interfere with the results were only briefly mentioned here, since it is impossible
in the practice to know all the information that is required to judge their effective relevance.
Medication and doses being taken by the patients, for example, are among these latter
factors, since the responses of individuals to psychiatric medications are known to be
very much variable. The assumption adopted in the present study was, then, that the
differences due to variables like specific medication and doses (and individuals’ responses
to them) are less important in biochemical terms than the effects of the diseases themselves.
One can state that this assumption appeared to be validated by the results obtained in the
present study, but it has also been corroborated in general terms by many other studies that
adopted a similar methodological approach [26–39]. The same reasoning applies also when
one considers the fact that the two groups of patients who were investigated herein were
distinguishable, even while under treatment.
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Disorder and Adult Attention Deficit Hyperactivity Disorder. Turk Psikiyatri Derg. 2014, 23, 1–8.
21. Marangoni, C.; De Chiara, L.; Faedda, G.L. Bipolar Disorder and ADHD: Comorbidity and Diagnostic Distinctions. Curr. Psych.

Rep. 2015, 17, 67. [CrossRef] [PubMed]
22. Tas, C.; Brown, E.C.; Aydemir, O.; Brüne, M.; Lysaker, P.H. Metacognition in Psychosis: Comparison of Schizophrenia with

Bipolar Disorder. Psychiatry Res. 2014, 219, 464–469. [CrossRef] [PubMed]
23. Yang, E.; Tadin, D.; Glasser, D.; Hong, S.W.; Blake, R.; Park, S. Visual Context Processing in Bipolar Disorder: A Comparison with

Schizophrenia. Front. Psychol. 2013, 4, 569. [CrossRef] [PubMed]
24. Mueser, K.T.; Drake, R.E.; Wallach, M.A. Dual Diagnosis: A Review of Etiological Theories. Addict. Behav. 1998, 23, 717–734.

[CrossRef]
25. Thome, J.; Ehlis, A.C.; Fallgatter, A.J.; Krauel, K.; Lange, K.W.; Riederer, P.; Romanos, M.; Taurines, R.; Tucha, O.; Uzbekov, M.; et al.

Biomarkers for attention-deficit/hyperactivity disorder (ADHD). A consensus report of the WFSBP task force on biological
markers and the World Federation of ADHD. World J. Biol. Psychiatry 2012, 13, 379–400, This is a comprehensive review on clinical,
imaging, genetic and proteomic markers and ADHD. The review concluded that, although some promising candidates such as
olfactory sensitivity, substantial echogenicity, no biomarkers for ADHD are available. [CrossRef]

26. Ogruc Ildiz, G.; Bayari, S.; Yorguner, N.; Fausto, R. Blood Serum Infrared Spectra Based Chemometric Models for Auxiliary
Diagnosis of Autism Spectrum Disorder. In Autism Spectrum Disorder: Diagnosis and Treatment; El-Bazm, A.S., Mahmoud, A., Eds.;
Elsevier Science: Amsterdam, The Netherlands, 2021; Volume 1: Imaging and Signal Analysis, Chapter 10; pp. 185–213.

27. Ogruc Ildiz, G.; Bayari, S.; Karadag, A.; Kaygisiz, E.; Fausto, R. Fourier Transform Infrared Spectroscopy Based Complementary
Diagnosis Tool for Autism Spectrum Disorder in Children and Adolescents. Molecules 2020, 25, 2079. [CrossRef] [PubMed]

28. Ogruc Ildiz, G.; Bayari, S.; Aksoy, U.M.; Yorguner, N.; Bulut, H.; Yilmaz, S.S.; Halimoglu, G.; Nur Kabuk, H.; Yavuz, G.; Fausto, R.
Auxiliary Differential Diagnosis of Schizophrenia and Phases of Bipolar Disorder Based on the Blood Serum Raman Spectra.
J. Raman Spectrosc. 2020, 51, 2233–2244. [CrossRef]

29. Ogruc Ildiz, G.; Karadag, A.; Kaygisiz, E.; Fausto, R. PLS-DA Model for the Evaluation of Attention Deficit and Hyperactivity
Disorder in Children and Adolescents through Blood Serum FTIR Spectra. Molecules 2021, 26, 3400. [CrossRef] [PubMed]

30. Shaw, R.A.; Mantsch, H.H. Infrared Spectroscopy of Biological Fluids in Clinical and Diagnostic Analysis. In Encyclopedia of
Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; Volume 2, pp. 1–24.

31. Ahmed, S.S.S.J.; Santosh, W.; Kumar, S.; Christlet, T.H.T. Neural Network Algorithm for the Early Detection of Parkinson’s
Disease from Blood Plasma by FTIR Micro-Spectroscopy. Vib. Spectrosc. 2010, 53, 181–188. [CrossRef]

https://doi.org/10.4088/PCC.13r01600
https://www.ncbi.nlm.nih.gov/pubmed/25317367
https://www.crossrivertherapy.com/adhd-statistics
https://doi.org/10.1007/s12264-012-1295-6
https://www.ncbi.nlm.nih.gov/pubmed/23299717
https://doi.org/10.1111/jcpp.12899
https://www.ncbi.nlm.nih.gov/pubmed/29624671
https://doi.org/10.1007/s10802-018-0466-y
https://doi.org/10.1111/j.1469-7610.2012.02611.x
https://www.ncbi.nlm.nih.gov/pubmed/22963644
https://doi.org/10.14712/23362936.2022.20
https://doi.org/10.1037/abn0000238
https://doi.org/10.1111/jne.12814
https://www.ncbi.nlm.nih.gov/pubmed/31758712
https://doi.org/10.1024/0040-5930/a000316
https://www.ncbi.nlm.nih.gov/pubmed/22851461
https://doi.org/10.3810/pgm.2010.09.2206
https://www.ncbi.nlm.nih.gov/pubmed/20861593
https://doi.org/10.1007/s11920-014-0497-1
https://www.ncbi.nlm.nih.gov/pubmed/25298126
https://doi.org/10.1007/s11920-015-0604-y
https://www.ncbi.nlm.nih.gov/pubmed/26084666
https://doi.org/10.1016/j.psychres.2014.06.040
https://www.ncbi.nlm.nih.gov/pubmed/25017619
https://doi.org/10.3389/fpsyg.2013.00569
https://www.ncbi.nlm.nih.gov/pubmed/24009596
https://doi.org/10.1016/S0306-4603(98)00073-2
https://doi.org/10.3109/15622975.2012.690535
https://doi.org/10.3390/molecules25092079
https://www.ncbi.nlm.nih.gov/pubmed/32365644
https://doi.org/10.1002/jrs.5976
https://doi.org/10.3390/molecules26113400
https://www.ncbi.nlm.nih.gov/pubmed/34205185
https://doi.org/10.1016/j.vibspec.2010.01.019


Spectrosc. J. 2024, 2 66

32. Deleris, G.; Petibois, C. Applications of FT-IR Spectrometry to Plasma Contents Analysis and Monitoring. Vib. Spectrosc. 2003,
32, 129–136. [CrossRef]

33. Khanmohammadi, M.; Ghasemi, K.; Garmarudi, A.B.; Ramin, M. Diagnostic Prediction of Renal Failure from Blood Serum
Analysis by FTIR Spectrometry and Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1782–1785.
[CrossRef] [PubMed]

34. Mostaco-Guidolin, L.B.; Bachmann, L. Application of FTIR Spectroscopy for Identification of Blood and Leukemia Biomarkers:
A Review over the Past 15 Years. Appl. Spectrosc. Rev. 2011, 46, 388–404. [CrossRef]

35. Erukhimovitch, V.; Talyshinsky, M.; Souprun, Y.; Huleihel, M. FTIR Spectroscopy Examination of Leukemia Patients Plasma.
Vibrat. Spectrosc. 2006, 40, 40–46. [CrossRef]

36. Lewis, P.D.; Lewis, K.E.; Ghosal, R.; Bayliss, S.; Lloyd, A.J.; Wills, J.; Godfrey, R.; Kloer, P.; Mur, L.A.J. Evaluation of FTIR
Spectroscopy as a Diagnostic Tool for Lung Cancer Using Sputum. BMC Cancer 2010, 10, 640. [CrossRef]

37. Mordechai, S.; Shufan, E.; Katz Porat, B.S.; Salman, A. Early Diagnosis of Alzheimer’s Disease Using Infrared Spectroscopy of
Isolated Blood Samples Followed by Multivariate Analyses. Analyst 2017, 142, 1276–1284. [CrossRef]

38. Krimm, S.; Bandekar, J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides and Proteins. Adv. Protein Chem.
1986, 38, 181–364. [PubMed]

39. Liu, K.Z.; Shi, M.H.; Mantsch, H.H. Molecular and Chemical Characterization of Blood Cells by Infrared Spectroscopy: A New
Optical Tool in Hematology. Blood Cells Mol. Dis. 2005, 35, 404–412. [CrossRef] [PubMed]

40. Ustun, B. The World Health Organization Adult Attention-Deficit/Hyperactivity Disorder Self-Report Screening Scale for DSM-5.
JAMA Psychiatry 2018, 74, 520–527. [CrossRef] [PubMed]

41. Young, R.C.; Biggs, J.T.; Ziegler, V.E.; Meyer, D.A. A Rating Scale for Mania: Reliability, Validity and Sensitivity. Br. J. Psychiatry
1978, 133, 429–435. [CrossRef] [PubMed]

42. Hedlund, J.L.; Wieweg, B.W. The Hamilton Rating Scale for Depression: A Comprehensive Review. Operat. Psychiatry 1979,
10, 149–165.

43. Menges, F. Spectragryph—Optical Spectroscopy Software (v. 1.2.16.1). 2021. Available online: www.effemm2.de/spectragryph/
(accessed on 1 January 2024).

44. CAMO Software Inc. The UnscramblerTM Version 10.5; CAMO A/S: Trondheim, Norway, 2018.
45. Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Phil. Mag. 1901, 2, 559–572. [CrossRef]
46. Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Components. J. Educat. Psychol. 1933, 24, 417–441,

ibidim 498–520. [CrossRef]
47. Hotelling, H. Relations Between Two Sets of Variates. Biometrika 1936, 28, 321–377. [CrossRef]
48. Wold, H. Quantitative Sociology: International Perspectives on Mathematical and Statistical Model Building; Academic Press: New York,

NY, USA, 1975; pp. 307–357.
49. Ward, J.H.J. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [CrossRef]
50. Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?

J. Classif. 2014, 31, 274–295. [CrossRef]
51. Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Sys. 2001, 58, 109–130.

[CrossRef]
52. Wold, H. Estimation of Principal Components and Related Models by Iterative Least Squares. In Multivariate Analysis; Krishnaiah, P.R.,

Ed.; Academic Press: New York, NY, USA, 1966; pp. 391–420.
53. Bair, E.; Hastie, T.; Paul, D.; Tibshirani, R. Prediction by Supervised Principal Components. J. Am. Stat. Assoc. 2006, 101, 119–137.

[CrossRef]
54. Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of High-Dimensional

(HD) Data: A Review of Contemporary Practice Strategies and Knowledge Gaps. Analyst 2018, 143, 3526–3539. [CrossRef]
55. Barker, M.; Rayens, W. Partial Least Squares for Discrimination. J. Chemom. 2003, 17, 166–173. [CrossRef]
56. Wilkinson, L.; Friendly, M. The History of the Cluster Heat Map. Am. Stat. 2009, 63, 179–184. [CrossRef]
57. Shao, L.; Zhang, A.; Rong, Z.; Wang, C.; Jia, X.; Zhang, K.; Xiao, R.; Wang, S. Fast and Non-Invasive Serum Detection Technology

Based on Surface-Enhanced Raman Spectroscopy and Multivariate Statistical Analysis for Liver Disease. Nanomed. Nanotechnol.
Biol. Med. 2018, 14, 451–459. [CrossRef]

58. Pérez, A.; Prada, Y.A.; Cabanzo, R.; González, C.I.; Mejía-Ospin, E. Diagnosis of Chagas Disease from Human Blood Serum
Using Surface-Enhanced Raman Scattering (SERS) Spectroscopy and Chemometric Methods. Sens. Bio-Sens. Res. 2018, 21, 40–45.
[CrossRef]

59. Atkins, C.G.; Buckley, K.; Blades, M.W.; Turner, R.F.B. Raman Spectroscopy of Blood and Blood Components. Appl. Spectrosc.
2017, 71, 767–793. [CrossRef]

60. Nargis, H.F.; Nawaz, H.; Ditta, A.; Mahmood, T.; Majeed, M.I.; Rashid, N.; Muddassar, M.; Bhatti, H.N.; Saleem, M.; Jilani, K.; et al.
Raman Spectroscopy of Blood Plasma Samples from Breast Cancer Patients at Different Stages. Spectrochim. Acta Part A Mol.
Biomolec. Spectrosc. 2019, 222, 117210. [CrossRef]

61. Saade, J.; Silva, J.N.; Farias, P.M.A.; Lopes, D.F.; Santos, C.T.; Farias, B.A.; Rodrigues, K.C.; Martin, A.A. Glicemical Analysis of
Human Blood Serum Using FT-Raman: A New Approach. Photomed. Laser Surg. 2012, 30, 388–392. [CrossRef]

https://doi.org/10.1016/S0924-2031(03)00053-5
https://doi.org/10.1016/j.saa.2014.10.082
https://www.ncbi.nlm.nih.gov/pubmed/25467670
https://doi.org/10.1080/05704928.2011.565534
https://doi.org/10.1016/j.vibspec.2005.06.004
https://doi.org/10.1186/1471-2407-10-640
https://doi.org/10.1039/C6AN01580H
https://www.ncbi.nlm.nih.gov/pubmed/3541539
https://doi.org/10.1016/j.bcmd.2005.06.009
https://www.ncbi.nlm.nih.gov/pubmed/16126419
https://doi.org/10.1001/jamapsychiatry.2017.0298
https://www.ncbi.nlm.nih.gov/pubmed/28384801
https://doi.org/10.1192/bjp.133.5.429
https://www.ncbi.nlm.nih.gov/pubmed/728692
www.effemm2.de/spectragryph/
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1037/h0071325
https://doi.org/10.1093/biomet/28.3-4.321
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1198/016214505000000628
https://doi.org/10.1039/C8AN00599K
https://doi.org/10.1002/cem.785
https://doi.org/10.1198/tas.2009.0033
https://doi.org/10.1016/j.nano.2017.11.022
https://doi.org/10.1016/j.sbsr.2018.10.003
https://doi.org/10.1177/0003702816686593
https://doi.org/10.1016/j.saa.2019.117210
https://doi.org/10.1089/pho.2012.3238


Spectrosc. J. 2024, 2 67

62. Faber, K.; Kowalski, K.F. Prediction Error in Least Squares Regression: Further Critique on the Deviation Used in the Unscrambler.
Chemom. Intellig. Lab. Syst. 1996, 34, 283–292. [CrossRef]

63. De Vries, S.; Ter Braak, C.J.F. Prediction Error in Partial Least Squares Regression: A Critique on the Deviation Used in the
Unscrambler. Chemom. Intell. Lab. Syst. 1995, 30, 239–245. [CrossRef]

64. Brereton, R.G. The Mahalanobis Distance and Its Relationship to Principal Component Scores. J. Chemom. 2015, 29, 143–145.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0169-7439(96)00022-6
https://doi.org/10.1016/0169-7439(95)00030-5
https://doi.org/10.1002/cem.2692

	Introduction 
	Materials and Methods 
	Clinical Phase 
	Patient and Control Group Selection 
	Samples Preparation 

	Spectroscopic Phase 
	Sample Measurements 
	Data Pre-Processing 

	Statistical Phase 

	Results and Discussion 
	Preliminary Analysis of the Data 
	Classification Model Development 
	Predictions 

	Conclusions 
	References

