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Abstract: Fluorescence lifetime imaging microscopy (FLIM) has emerged as a promising tool for
all scientific studies in recent years. However, the utilization of FLIM data requires complex data
modeling techniques, such as curve-fitting procedures. These conventional curve-fitting procedures
are not only computationally intensive but also time-consuming. To address this limitation, machine
learning (ML), particularly deep learning (DL), can be employed. This review aims to focus on the ML
and DL methods for FLIM data analysis. Subsequently, ML and DL strategies for evaluating FLIM
data are discussed, consisting of preprocessing, data modeling, and inverse modeling. Additionally,
the advantages of the reviewed methods are deliberated alongside future implications. Furthermore,
several freely available software packages for analyzing the FLIM data are highlighted.
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1. Introduction

In 1845, Fredrick W. Herschel made the first official discovery of fluorescence [1].
During his experiments, he observed that a quinine solution, such as tonic water, could
be excited by UV radiation and emit blue light. Building upon this discovery, Sir George
G. Stokes, a British scientist, further investigated fluorescence and noted that the emitted
light had a longer wavelength than the UV radiation that initially excited the object [1]. The
first applications of fluorophores in biological research were found several decades later, in
the early 1900s, when they were used to stain tissues, bacteria, and other pathogens. This
allowed scientists to visualize and study specific components within biological samples.
In 1911, the first working fluorescence microscope was developed by Oskar Heimstaedt.
Later, among many individual contributors, companies Carl Zeiss and Carl Reichert played
a significant role in advancing fluorescence microscopy [1]. In 1929, fluorescence labeling
was first introduced by Ellinger and Hirt [2]. Their contributions were instrumental in
transforming fluorescence microscopy into a powerful tool in every research field. In
1988/1989, the first fluorescence lifetime imaging microscopy (FLIM) microscopy based
on an ultra-fast laser scanning microscope was introduced in Jena, Germany [3]. This
introduction of ultrafast lasers, combined with the advent of semiconductor-based, very
fast detection schemes such as SPAD (single photon avalanche diode) and TCSPC (time-
correlated single-photon counting) detectors, have made FLIM on the pico to nanosecond
timescale a readily available experimental technique. This microscopy technique offers
thorough details and high-resolution images of cell shape, intracellular concentration of
chemicals, etc., and it has broad applications in biology, chemistry, materials science, and
pharmaceutical research [4]. As a result, FLIM has grown in recognition in recent years. It is
often combined with Förster resonance energy transfer (FRET), enabling the investigation
of molecular mechanisms, biosensor activities, and protein–protein interactions within live
cells [4,5]. FRET is a non-radiative energy transfer process wherein an excited fluorescence
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molecule, known as the donor, transfers energy to a non-excited molecule called the
acceptor [4–6]. This energy transfer occurs through dipole-dipole coupling when the
emission spectrum of the donor overlaps with the excitation spectrum of the acceptor, and
the molecules are at a small distance (within 10 nm) with suitable relative orientations
(cf. Figure 1b–e) [6]. FLIM-FRET offers the advantage of generating high-resolution spatial
and temporal images. However, FLIM itself records fluorescence decay profiles rather than
directly measuring fluorescence lifetimes. Thus, the fluorescence decay rate, which we
discuss in the following paragraph, serves as the fundamental principle for FLIM operation.
The underlying physical background of FLIM, the measurement techniques, and the data
acquisition process are covered in the subsequent paragraphs.

To understand the principles underlying FLIM, it is useful to refer to a Jablonski
diagram (cf. Figure 1a), which shows the relevant processes observable in a typical photoex-
cited system. In Figure 1a, S0 refers to an electronic (singlet) ground state of a fluorophore
system. Electrons in this ground state can be excited by absorption of light into various
excited states (S1, S2 . . .) depending on the wavelength of the incident light. Notably,
the electronic states are further divided into various vibrational (and rotational) states.
Typically, excitation by visible light populates a vibrationally excited state of the excited
states S>=1 governed by the Franck–Condon principle.

From this excited state, the electrons return to the ground state either by radiative
or non-radiative processes. The non-radiative decay is governed by two main processes:
ref. [7]. First, vibrational relaxation (also called vibrational cooling), by which energy is
transferred from vibrationally excited states into kinetic modes of the molecule (or neigh-
boring molecules), causes a transition between vibrational states of the same electronic state
and decreases the energy of the system. Second, internal conversion couples different elec-
tronic states (e.g., S1 and S0) via their vibrational modes. Here, the system transitions from
an electronically excited state into a highly vibrationally excited state of a lower electronic
state without loss of energy, i.e., via a horizontal transition. Both of these non-radiative
processes are usually very fast processes, happening in the femto-to-picosecond range.

Radiative decay is typically dominated by fluorescence. Here, the excited state is
deactivated by emitting electromagnetic radiation in the form of a photon with a wave-
length corresponding to the energy difference of the two states. However, due to the above
mentioned speed of the non-radiative deactivation of the vibrationally excited state, this
emission almost always happens from the vibrational ground state of the first electronically
excited state (S0), an empirical observation known as Kasha’s rule [8]. Furthermore, due to
the Franck–Condon principle, deactivation typically occurs in the vibrationally excited state
of S0. Both of these effects cause the wavelength of the emitted photon to be red-shifted
compared to the excitation light.

The easiest parameters to characterize the fluorescence process are the wavelength
of the emitted photon, corresponding to the energy difference between the states and the
intensity of the emitted light (directly related to the number of photons), which is governed
by the absorption coefficient as well as the quantum efficiency of the fluorophore. The
quantum efficiency, in turn, is directly related to the ratio of the radiative to non-radiative
decay processes described above. However, in more complicated systems, these parameters
are often not sufficient to discriminate between similar fluorophores, as their spectral
profiles can overlap.

Here, FLIM can offer many advantages over intensity-based fluorescence techniques.
By characterizing the lifetime of a fluorophore, the non-radiative processes can be charac-
terized as the exact timescale of vibrational cooling to the vibrational ground state of S0,
and the efficiency of internal conversion between S1 and S0 directly influences the lifetime
of the fluorophore [4]. As these processes are extremely sensitive, even to slight changes in
the chemical composition or even environment, the fluorescence lifetime can be used to
discriminate between highly similar structures.

For example, nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine din-
ucleotide (FAD) play a vital role in cellular oxidation–reduction reactions [4,9]. These
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co-enzymes possess autofluorescence properties, enabling non-invasive imaging of living
cell metabolic activity. However, their spectral properties in distinct cellular environments
exhibit considerable similarity. In contrast, FLIM can effectively distinguish between these
two fluorophores due to the disparity in their lifetimes, with NAD(P)H having a shorter
lifetime compared to FAD [9]. See Table 1 for applications of FLIM.

Table 1. Experimental applications of FLIM.

Protein–protein interaction studies

FLIM can be used to investigate
protein–protein interactions based on FRET.
This helps in understanding dynamic protein
complexes and signaling pathways within
living cells.

Cellular metabolism analysis

FLIM can monitor the autofluorescence of
cellular metabolites like NAD(P)H and FAD.
The changes in these metabolites can indicate
an alteration in cellular energy production.

Live-cell imaging and biomedical applications

FLIM can be used as a non-invasive live cell
imaging, providing information about cellular
analysis and molecular interaction.
FLIM can provide useful information in
biomedical research.

Super-resolution microscopy
FLIM can be integrated with super-resolution
microscopy techniques like STED-FCS to
achieve higher-resolution imaging.
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Figure 1. (a) Illustration of Jablonski’s diagram. A molecule in S0 level absorbs energy, leading to
an electronic excitation to a higher energy level for a short period of time. By internal conversion
and vibrational relaxation processes, the electron moves to the lowest vibrational level of excited
state. From the S1 electronic state, the electron returns to the ground state in either a radiative or
non-radiative way (adapted from [4]). (b) The emission spectrum of the donor (blue line) must
overlap with the excitation spectrum of the acceptor (yellow line). (c) The distance between donor
and the acceptor molecule is important for the FLIM-FRET process. (d) If the distance is larger than
the threshold value R0, no FRET is occurring. (e) If both molecules are in very close proximity, the
donor’s energy can be transferred to the acceptor, and the acceptor molecule emits a photon. (b–e)
reprinted with permission from [10] © Leica Microsystems GmbH.

FLIM can be performed using various imaging modalities, such as laser scanning
microscopy (LSM) and wide-field illumination (WFI) microscopy [4,11]. Depending on the
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excitation-detection technique used, LSM systems are classified as either confocal (CLSM) or
multiphoton (MP-LSM) systems. These microscopic techniques provide 3D FLIM data. It is
important to note that WFI has the advantages of higher frame rates and less photodamage
than LSM [4].

Fluorescence lifetimes are measured either in the time domain (TD-FLIM) or in the
frequency domain (FD-FLIM) [4]. TD-FLIM measures the time delay between excitation
and emission photons using time-correlated single-photon counting (TCSPC) or time-
gated detection, while FD-FLIM analyzes the phase and amplitude of fluorescence signals
modulated at different frequencies. Both techniques have their strengths and are suitable
for different experimental setups and sample characteristics.

Among all FLIM measurement methods, TCSPC is probably the most often-used
technique [4,12]. Generally, in TCSPC systems, a photon-over-time histogram is measured.
The intensity I(t) is calculated by convolving the systems instrument response function
(IRF) and the weighted sum of a number of fluorescence decays, typically modeled via
simple first-order exponential functions, as shown in Equation (1).

I(t) = IRF ∗∑n
i aie

−t
τi (1)

To utilize FLIM data, the lifetimes (τi) and abundances (ai) need to be extracted,
where the lifetimes represent the different types of molecules and abundances highlight
the molecular concentration. For this purpose, it is important to know the exact lifetimes
and abundances from the measured decay traces. There are a few traditional methods:
curve-fitting techniques, such as the phasor approach, and deconvolution methods [4,13].
The curve-fitting method tries to fit the photon histograms by applying Equation (1)
with algorithms like the Levenberg–Marquardt algorithm [14] or maximum likelihood
estimation [15–17]. These algorithms afford ‘optimal’ (according to the utilized error
function) parameters (lifetimes, abundances and offset, etc.) to describe the measured
results but require prior knowledge of the source background fluorescence, the number
of fluorophores, and the offset for convergence to the correct values. The method of
curve fitting strongly depends on the number of photons, as it is highly sensitive to the
signal-to-noise ratio, which increases with higher photon counts. This means that a higher
photon number usually increases the fitting accuracy. There are two strategies for curve
fitting—local fitting and global fitting. In local curve fitting, each pixel is fitted with
different lifetime parameters. In the global fitting, all pixel decay traces are fitted at once,
so all fluorophores are present in each pixel and show the same lifetime [18]. Here, each
pixel represents a decay trace. The low implementation complexity is one of the main
advantages of all fitting methods.

Another popular approach for analyzing lifetimes without fitting is the Phasor ap-
proach [6,19]. It provides a 2D graphical view of lifetime distributions. A phasor diagram
is derived from the TCSPC data using a Fourier transform, and each pixel in the image
corresponds to a point in the phasor diagram, as shown in Figure 2. The phasor space is
constructed by two phasor vectors (G, S).

The time domain phasor plot is defined by Equations (2) and (3).

gi =
∫ ∞

0
I(t) cos(ωt)dt/

∫ ∞

0
I(t)dt (2)

si =
∫ ∞

0
I(t) sin(ωt)dt/

∫ ∞

0
I(t)dt (3)

In these equations, gi and si are the coordinates along the horizontal (G) and vertical
(S) axis, ω is the modulation frequency, I(t) is the TCSPC data at the ith pixel.
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Figure 2. This figure shows the relationship between FLIM image and phasor plot. The phasor
distributions are calculated by Fourier transform after data acquisition from TCSPC. Each intensity
pixel value in the image was converted as a point in the phasor plot. Adopted with permission
from [6] © Leica Microsystems GmbH.

In the frequency domain FLIM measurement, the phasor plot is defined by the follow-
ing equations:

gx,y(ω) = mx,y cos
(

ϕx,y
)

(4)

sx,y(ω) = mx,y cos
(

ϕx,y
)

(5)

Here, mx,y and ϕ are the modulation ratio and the phase delay given a particular
frequency (ω) at a pixel location (x, y). The average lifetime at the ith pixel is defined as
the ratio of si and gi.

The deconvolution-based method is another common form of decay trace analysis
technique [4,20]. Deconvolution-based methods recover the lifetime decay from the mea-
sured fluorescence signal by deconvolution of the system response function (IRF). The
Laguerre polynomial method is the most popular deconvolution method. In this method,
the decay traces are represented by a Laguerre polynomial, which consists of the series
expansion of decay and IRF. The main advantage of the Laguerre polynomial is that it is
more precise than the phasor approach.

These techniques (or combinations of them) are implemented in various software
packages, both commercial and freely available (cf. Figure 3). The commercial software
SPCImage (all versions) [12,21] (Becker & Hickl) is widely used to estimate the lifetime
parameters and is considered the standard method. It implements all of the above men-
tioned methods and defaults to using iterative decay fitting by applying first-, second-, and
triple-order exponential decays to fit the data. Also, some free software packages can be
used for lifetime extraction. For example, the Python package FLIMview [22] is based on
the principle of curve fitting. FLIMJ, which is based on Fiji, allows for visualizing images
and analyzing the fit using various methods [23]. Another MATLAB-based package is
FLIMfit [24]. See Table 2 for an comparison of these software packages.

Table 2. Comparison between different FLIM data analysis software packages.

FLIMview [22] FLIMJ [23] FLIMfit [24]

Based on Python ImageJ Plugin Based on MATLAB

Support for file formats .std
and .ptu. Curve-fitting

routines are implemented

Fitting routines for lifetime
data based on

Levenberg–Marquardt curve
fitting, Bayesian and phasor
analysis, and rapid lifetime

determination methods

Omero client: It can load some
specific data formats, like .std,

.txt, .tif, .raw. Fitted
parameters can be

exported as .csv
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Figure 3. Illustration showing different software packages for lifetime estimation: (a) Python-based
FLIMview where fitted curve, residue, and pixel coordinates can be visualized together [22]. (b) Fiji
FLIMJ package [23]. (c) FLIMfit package is connected with Omero for image analysis [24].

Despite their many advantages, curve fitting, phasor method, and deconvolution
have several disadvantages. All methods are time-consuming and error-prone. Recently,
machine learning (ML), especially deep learning, has received a considerable boost in
popularity due to its outstanding performance in this area. This review focuses on the
application of ML and DL methods for FLIM data analysis. For this, the review is divided
into four sections. The first section discusses the preprocessing of FLIM data. The second
section deals with data modeling, followed by inverse modeling in the third section. The
last part consists of a summary and an outlook.

2. Preprocessing

The primary objective of preprocessing is to enhance the quality of images or data to
enable proper analysis. In fluorescence microscopy, image preprocessing is necessary due to
the limited number of photons captured by the detector, resulting in a weak signal [25,26].
This weak signal leads to fluorescence images exhibiting a significant contribution of
Poisson–Gaussian noise [25]. To experimentally obtain improved images, two approaches
can be employed: First, increasing the power of the excitation laser increases the emitted
photon flux (albeit only up to a certain limit); second, increasing the exposure time increases
the total number of captured photons emitted with a constant photon flux. However,
both methods tend to cause photodamage and can thus not be utilized for all samples
or unlimited signal increases [25,26]. Therefore, developing algorithms that effectively
denoise fluorescence spectroscopy data and give high-quality images is necessary to analyze
complex datasets.

A wide variety of denoising and image reconstruction algorithms for fluorescence
images are known from the literature. Some recent approaches are listed in Table 3. In the
next paragraph, we review several denoising algorithms.
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Table 3. Different denoising methods and their examples are shown.

Different Types of Denoising Methods Examples

Designed mainly for Gaussian noise
BM3D [27]
NLM [28]
KSVD [29]

Design mainly for Poisson noise and
Poisson–Gaussian noise PURE-LET [30]

Deep-learning-based denoiser DnCNN [31]
CARE [32]

First, a general problem in training and evaluating denoising methods was addressed
by Zhang et al. [25]. They addressed the issue of simulating artificial datasets that accurately
reflect the properties of real measured fluorescence datasets. They recognized that most
datasets are generated using Gaussian noise, which does not accurately represent the
Poisson noise typically present in fluorescence images. Therefore, their primary objective
was to bridge this gap by creating a Poisson–Gaussian denoising dataset.

To achieve this, the authors developed a dataset called “Fluorescence microscopy
denoising (FMD)”. The FMD dataset consists of 12,000 real noisy microscopic images
obtained from confocal, multiphoton, and wide-field microscopes. The ground truth
images were created through image averaging. By using this dataset, they compared
the performance of ten traditional denoising algorithms with deep learning methods,
demonstrating that deep learning approaches outperformed traditional methods on this
dataset with more realistic noise.

In their paper [26], the authors proposed a two-step generative adversarial network
(GAN)-based denoising model called the global noise modeling denoiser (GNMD). In the
first step, the GAN-based model was trained using a combination of binary masked images
and real images. This trained model could then generate synthetic images by taking a
binary mask as input, which combined a synthetic foreground signal (gamma distributed
intensities) with synthetic background noise (global noise generated by Pix2Pix). In the
second step, the output from the first step and a clean image were fed into the same network,
which was then trained using both clean and noisy images. This trained model aimed
to enhance the denoising capacity. To validate the denoising capabilities of their model,
the authors tested it using real fluorescence images of mitochondria acquired through a
wide-field fluorescence microscope. The performance of their model was also compared
to three traditional denoising models (PURE-LET, VST-BM3D, Noise2self [33]), and the
GNMD model outperformed the others. In summary, Zhong et al. [26] addressed the
need for realistic simulations by creating a Poisson–Gaussian denoising dataset (FMD) [25].
They introduced the GNMD model, a two-step GAN-based denoising approach, and
demonstrated its effectiveness using real fluorescence images. Their study highlighted the
superiority of deep learning methods over traditional denoising algorithms in the context
of fluorescence microscopy denoising.

Another deep-learning-based denoising technique was demonstrated by Mannam
et al. [34]. The authors [34] demonstrated a convolutional neural network (CNN) based
denoising techniques to achieve a high signal-to-ratio (SNR). This paper was divided into
two parts. Phasor-based denoising techniques were described in part 1, and in the second
part, the segmentation technique was mentioned. For denoising, they used the Noise2Noise
and DnCNN [31] models, which were pretrained with 12,000 fluorescence intensity images.
The authors used this denoising technique as an ImageJ plugin. Additionally, they compare
their results with traditional denoising methods (mean or median filter). To prove their
network efficiency, they claimed that traditional denoising filters should be used several
times to obtain a clear image, whereas CNN can eliminate noise by using it one time.

Although the deep-learning-based denoising approach has gained huge popularity in
recent years, it still faces certain challenges [35]. For example, deep learning algorithms
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are data-driven and data-hungry processes. For training a deep network, thousands of
noisy and clean data pairs are needed, and this data acquisition process is laborious and
error-prone. On the other hand, supervised learning methods can easily be overfit to the
training dataset (“memorize the training data”). This can lead the model to predict clean
images similar to the training data independent from its input, a phenomenon known as
hallucination [36].

To handle the above two problems, Wang et al. [36] described a transfer learning-based
denoising technique. In the beginning, they trained the network by supervised learning
with a U-net architecture and used generic and synthetic noisy or clean images for training.
They then transferred the weights to another U-net model and trained this model with a
self-supervised training framework, Noise2self [33], where only noisy data are required
for training. Finally, they showed the results for only the self-supervised method and a
combination of the supervised and self-supervised methods. They used the same FMD [25]
dataset, and the comparison of the result is shown in Figure 4.
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Figure 4. Performance of transfer learning in denoising: (a) Schematic of the transfer learning
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images with transfer learning denoising from pre-training using FMD dataset and compared to
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Although all proposed methods successfully have removed noise from the fluorescence
image dataset, some improvements need to be made. For example, these methods need to
be tested with various datasets of different tissue samples or any other biomedical dataset.
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3. Data Modeling

Fluorescence lifetime imaging microscopy (FLIM) has gained significant recognition
in the biomedical field due to its label-free nature and high sensitivity. However, the
conventional approach to FLIM data analysis usually involves curve-fitting procedures
that require manually tuning parameters for the extraction of the lifetime values, which
becomes inefficient when dealing with large amounts of sample data. Moreover, when
there are subtle differences among different data points, the distribution of fluorescence
lifetime values can be wide or very small, making it challenging to manually differentiate
them into multiple classes. Fortunately, the recent popularity of ML or DL has greatly
contributed to the advancement of data classification and data analysis in FLIM as shown
in Figure 5.
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Figure 5. Schematic diagram of data modeling: First, true lifetime images were extracted from
raw data by conventional methods like maximum likelihood method and least-square fitting. The
machine learning model was then used to predict lifetime parameters. Afterward, machine learning
was used for classification and segmentation. By segmentation region of interest (ROI) has been
separated from background and in classification hyperplane divides data into different classes.

We divided data modeling into two sub parts: classification and segmentation (see
Figure 5). Classification and segmentation are two related concepts but are used for different
tasks and can complement each other in various applications. Classification involves
assigning a label or category to an entire input based on its characteristics. Segmentation,
on the other hand, involves dividing an image into meaningful regions or segments,
typically on a pixel basis. However, segmentation and classification can be used together to
provide a more comprehensive understanding of an image. In the next section, we discuss
the segmentation and classification methods used in FLIM data modeling.

3.1. Segmentation

Zhang et al. [37] used K-means clustering to segment lifetime images by using a
phasor plot (cf. Figure 6). In the phasor plot, pixels with similar decay phasors were
sorted into the same cluster. This feature is useful for segmenting pixels based on the
similarity of their fluorescence decays. Therefore, the lifetime segmentation technique is
simplified using phasors as the problem is transformed into a classical clustering problem
of points in a 2D plane. This method achieved success in segmentation with greater speed
than traditional methods. In reference [38], the authors applied Otsu’s thresholding-based
segmentation method to separate the background pixels from the foreground pixels [39].
They then used a morphological operation to remove the non-cellular region. This work is
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discussed in detail in the classification part. Here, the authors used segmentation as the
initial step for classification. Also, in reference [40], the authors used a simple thresholding-
based segmentation to remove background before training an ML model on the dataset.
This work is also discussed in detail in the next section.
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3.2. Classification
3.2.1. Lung Cancer Classification

Lung cancer ranks among the top causes of cancer-related deaths globally, and the
5-year survival rate after pneumonectomy is less than 14% [41]. Surgery can improve sur-
vival rates; however, the success is strongly dependent on the stage of detection. Currently,
the gold standard for assessing and diagnosing diseases is hematoxylin and eosin (H&E)
stained histopathology, which takes 20–30 min even under ideal conditions with expensive
and laborious interoperative cryosectioning [41].

Nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD)
play a significant role in cellular energy metabolism [41]. Cancer cells have higher rates of
glycolysis for rapid cell division compared to normal cells. These metabolic changes are
often accompanied by alterations in fluorophores, which can be detected using fluorescence
imaging and spectroscopy. Recent studies have demonstrated the potential of autofluo-
rescence imaging and spectroscopy as diagnostic methods for various cancers, including
oral, cervical, and breast cancers [41]. However, due to the irregular shape of the tissue,
as well as various concentrations of perturbing absorbers in the tissue, intensity-based
fluorescence techniques are challenging to apply. Here, FLIM, which is insensitive to these
perturbations, can be applied to clearly differentiate between cancerous and healthy tissue.

Wang et al. [40] aimed to classify healthy and cancerous lung tissue by four different
ML methods (K-nearest neighbor (KNN), support vector classifier (SVC), neural network
(NN), random forest (RF)). First, almost 20,000 fluorescence image frames (each frame
contains one intensity and corresponding lifetime images) with a dimension of 128×128 px
were collected from 10 patients (cancerous and non-cancerous). The measurements were
performed by a fiber-based fluorescence lifetime imaging endomicroscope. In the pre-
processing phase, the images went through several steps: thresholding, normalization,
and Gaussian smoothing. Afterward, a dimension reduction was performed by princi-
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pal component analysis (PCA) to remove zero values, boundary, and zero lifetime pixels.
Therefore, the number of features decreases from 16,384 (128 × 128) to 2100. These features
were then used to classify the data into two classes by four different ML methods. Among
these methods, RF performed the best. Though all these methods successfully distinguish
cancer and non-cancer images, there are still some points that need to be improved; e.g.,
this paper used PCA-based approaches that require flattening of the input from 2D to
1D, and the employed ML methods use single-pixel values. This means that correlations
between adjacent pixels were lost. To fill this gap, the authors from [40] extended their
work, which is mentioned in paper [42], and they used deep learning for classification. The
authors collected 70,000 images with a dimension of 128 × 128. These images then went
through many preprocessing steps, with an important step being a thresholding step that
removed all pixel values for which the measured intensity was smaller than the square
root of the mean intensity over the whole image. Thereafter, a normalization was applied.
For the CNN model, they used different architectures and compared their results. For the
performance evaluation, the authors created three types of combined image datasets—only
lifetime images, two-channel images, and three-channel images. Three channels mean a
pair of intensity and lifetime images were filled into two different channels of an RGB
image, leaving the remaining channel with zero values. On the other hand, a two-channel
image refers to a stack of images where intensity and lifetime images are merged. In this
paper, the authors compared the performance among different DL models with the said
three types of datasets, where DenseNet121′s accuracy is highest with approximately 86%.
Also, they compare their results with other ML methods and CNN results surpassed the
ML in almost every aspect. In conclusion, the authors conclude that using the three-channel
dataset gave the best performance. To improve this CNN performance another work was
performed by Wang et al. [43]. They replaced the bottleneck residual block of ResNet50
with a multiscale concatenated dilation (MSCD) block. The accuracy of MSCD was al-
most 87% among all other CNN methods. Though all these DL architectures, particularly
ResNet [44] and DenseNet [45], performed well in classification problems, there are still
some generalized problems. For example, ResNet produces some redundant features but
is unable to create new features. To handle such a problem, Wang et al. [46] proposed a
ResNetZ-based lung cancer classification method. Also, they compared the performance
and architecture of their proposed network with ResNet [44] and Res2Net [47]. During
the first stage, they collected 100,000 FLIM images from 18 patients. The preprocessing
step was the same as the paper [34], and they chose three-channel images for lung cancer
discrimination. The architecture of three different networks is shown in Figure 7. From
Figure 7, we can see that the authors replaced a 1D convolution splitting block with a 1D
convolution block. However, the Res2Net model outperforms, while the ResNetZ and the
Res2Net performances are quite similar.
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3.2.2. Skin Cancer Classification

The standard procedure for determining the stage and extent of skin cancer is biopsy [48].
However, due to its lack of specificity, this method’s accuracy is greatly reliant on the der-
matologists’ experience, which could result in misdiagnosis. Recent advancements in
biomedical studies could lead to rapid and proper diagnosis, but all these processes are
time-consuming. We already discussed how small changes in cell metabolism can be identi-
fied by FLIM in the previous section. In this section, we discuss the detection of skin cancer
by FLIM.

In paper [48], skin biopsies suspected to be skin cancer were classified into cancerous
and normal tissue by machine learning methods. The authors collected FLIM images
of 24 normal cases and 138 cancer cases for this study. Before classification, data were
partitioned into two samples: training and testing. Validation was performed by three
methods: (1) bootstrapping, (2) hold-out method, and (3) k-fold cross-validation. Then, four
classification methods (RF, KNN, support vector machine (SVM), and linear discriminant
analysis (LDA)) were used, and the results were compared. Using the bootstrapping sample
partitioning scheme, all tested ML methods achieved accuracies over 80%.

Chen et al. [49] presented a study on a linear-kernel support vector machine (LSVM)
model to distinguish basal cell carcinoma (BCC) from actinic keratosis (AK) and Bowen’s
disease (BD). The input parameters of the LSVM model consist of lifetime components and
lifetime entropies, which were extracted from two-photon fluorescence lifetime imaging
of H&E-stained biopsy sections. In constructing the SVM models, features obtained from
the lifetime (τ2) of the second component were found to be significantly more predictive
than the average fluorescence lifetime (τm) in terms of diagnostic accuracy, sensitivity, and
specificity. The above findings were confirmed based on the receiver operating characteristic
(ROC) curves of diagnostic models. Furthermore, the results showed that adding Shannon
entropy as an independent feature could further improve the diagnostic accuracy. The
establishment of the SVM training model involved the extraction of fluorescence lifetime
features and the calculation of the information entropy. The fluorescence lifetime data
were fitted with triple-exponential decays. The SVM model was optimized by leave-one-
out 5-fold cross-validation of the training datasets. Lifetime calculations and fitting were
performed using SPCImage software (Becker & Hickl GmbH, Berlin, Germany). From
this study, the authors conclude that using the τm feature, the LSVM model effectively
distinguished BCC from the precancerous lesions (AK and BD) with a prediction accuracy
of 90.4%. However, this model failed to distinguish between the AK and BD subcategories.
On the other hand, the LSVM model using the lifetime component of τ2 as a training
feature achieved better classification performance and was able to classify AK and BD. The
prediction accuracy was 95.6 % for BCC vs. (AK and BD) and 91.1 % for AK vs. BD. Also,
prediction accuracy increased by adding entropy as a feature.

3.2.3. Cervical Cancer Classification

Cervical cancer is the fourth most common cancer in women, leading to over
300,000 deaths a year [50]. Again, the prognosis of the diagnosis is highly dependent on the
stage of detection, with early-stage detection significantly improving the outcome. To detect
cancer, biopsies are currently performed, which are invasive, painful, and time-consuming
procedures. Consequently, there is a need for a non-invasive and highly sensitive screening
method. In contrast, it is known that cell metabolism changes during cancer, and it can be
detected by the activity of a co-enzyme, namely NAD(P)H [51]. We discuss cervical cancer
classification using FLIM in this section.

In paper [51], the authors showed cervical tissue classification using FLIM. Lifetime
information was extracted with a bi-exponential model using expectation–maximization
and the Bayesian information criterion algorithm (EM-BIC). Then, they applied the ex-
treme learning machine (ELM) method to classify cancerous and non-cancerous, and the
classification gave more than 80% specificity.
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In another work performed by the authors [52], tissue was classified into normal
and cervical intraepithelial neoplasia (CIN) based on the lifetime information [52]. In the
images, epithelium and stroma regions were annotated, then calculated lifetimes were
considered as the feature vector of the ELM method. Here, they used commercial SPCImage
for lifetime calculation. Before applying the ML method, they used manual segmentation
which was performed by pathologists. Their ELM method, which the authors say has better
generalizability than traditional ML methods like SVM and back-propagation (BP), was
able to differentiate between the tissue types with accuracies of up to 94%.

The authors of the paper [38] used an unsupervised machine learning method for
cancer classification. In total, FLIM images of 71 patient samples (cf. Figure 8) were taken
for this study. Some preprocessing steps were applied to increase the classification accuracy.
Before classification with k-means, they used a pretrained Alexnet [53] for feature extraction
and PCA for dimension reduction. This method gave 90.9% sensitivity and 100% specificity,
which is higher than the traditional liquid-based cytology (LBC) method. The authors used
three kinds of FLIM images as input mean lifetime (tm), second abundance component (a2),
and tm and a2 together. They also showed a case study on real diagnosis, where tm images
gave better accuracy than other image types. They also showed in the case study that FLIM
gave a promising result against conventional diagnosis.
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Figure 8. Each column shows the FLIM images of cervical cancer from four participants: One
row represents tm value from the NAD(P)H, and another row shows the a2 values from NAD(P)H.
Lifetime values are shorter in cancerous cells than in normal cells because cancer cells tend to undergo
glycolysis rather than oxidative phosphorylation. (a−d) samples are from cervical cancer patients
and (e−h) samples are from normal patient. Reprinted with permission from [38] under the terms of
the CC BY 4.0 license.

3.2.4. Microglia Classification

The authors from [54] studied a FLIM-based artificial neural network (ANN) approach
to identify microglia position. They divided their studies into two parts. In the first part
of the paper, they trained the ANN with lifetime parameters (lifetime values), and in
the second part of the paper, they trained the ANN directly with the exponential decay
traces. In the first case, lifetimes were extracted with SPCImage. The resulting lifetime
data were split into training/validation/testing sets in a 70/15/15 split regime. The
performance index was mean square error (MSE). In the second approach, they used
256 times bin histograms for ANN training. From the above two cases, lifetime-based
classification performed better (almost 40% better sensitivity for one test case), which the
authors attribute to the experimental setup used. They suggest that the direct classification
of the decay traces could be significantly improved with a more varied training dataset.
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3.2.5. Other Classification

Jo et al. [55] demonstrated FLIM-based early-stage detection of oral cancer and dys-
plasia. In this experiment, the authors collected tissue samples from 73 patients. They
developed a computer-aided multispectral FLIM endoscope. First, a deconvolution method
was applied to fluorescence decay traces for each pixel. From the deconvolved decay traces,
spectral intensities, normalized fluorescence intensity, and average lifetime were used
as features to design a quadratic discriminant analysis (QDA) classifier to discriminate
cancerous oral tissue and mild dysplasia. This statistical model achieved 95% accuracy and
87% specificity.

Walsh et al. used a random forest (RF) classifier to monitor the activation of T-cells
using NAD(P)H and FAD autofluorescence [56]. Uniform Manifold Approximation and
Projection (UMAP) was used for dimension reduction. The authors achieved a classification
accuracy of almost 98%. Additionally, the authors of [57] used a new technology to
distinguish the parathyroid gland from other glands using FLIM images. Twenty-one
patients underwent parathyroid surgery, and three ML models (NN, (RF), SVM) were used
to distinguish parathyroid glands from other glands in the pharynx. The RF model showed
the highest sensitivity and specificity. After classification, the Laguerre deconvolution
method was used to predict lifetime values. A significant difference was found in the
average lifetime of the parathyroid gland compared to other glands, such as thyroid,
adipose tissue, and lymphoid tissue, enabling discrimination among them.

4. Inverse Modeling

As laid out in the introduction, FLIM measurements are carried out by obtaining fluo-
rescence decay curves by means of TD or FD measurements. To use these data for further
analysis, the relevant parameters describing the observed system, i.e., the fluorescence
lifetimes, need to be extracted from these curves. However, this is an ill-posed problem [58].
Curve fitting, the traditional extraction technique, is a difficult procedure with numerous
software options offered by various businesses and research organizations (as shown in the
introduction).

Some authors suggested that lifetime extraction approaches based on machine learning
(ML), especially deep learning (DL), can solve this issue. This is based on the assumption
that extraction of lifetime parameters from decay curves is essential for an inverse modeling
problem of the measurement procedure (see Table 4 for examples).

There are several software packages to solve general inverse modeling problems.
However, the application of these programs to FLIM remains challenging. One challenge is
the multi-exponential nature of the decay curves: fluorescence decay in biological samples
is often characterized by contributions of multiple fluorophores, which means that multiple
lifetimes contribute to the overall fluorescence signal. Choosing an appropriate model or
number of decay constants for fitting is challenging. On the other hand, the low photon
counts in FLIM often cause high noise contributions in comparison with the signal of
interest, which can affect lifetime parameter estimation. This section focuses on inverse
modeling with ML/DL for lifetime feature extraction (see Figure 9) and their advantages
and disadvantages.

Wu et al. [59] employed an ANN approach based on a bi-exponential model to estimate
lifetime parameters from TCSPC raw data. The objective was to train an ANN model
to approximate the function that maps the TCSPC raw data into the unknown lifetime
parameters. The ANN model used in the study consisted of two hidden fully connected (FC)
layers using the time bins and their respective photon counts as input values and outputting
estimated lifetimes and abundance ratio. The results from the study demonstrated that
the ANN-based method enabled the estimation of a lifetime image (256 × 256 size) in just
0.9 s, which was 180 times faster compared to the curve-fitting technique based on the
least-squares method (LSM). The authors also observed that the LSM method struggled
to accurately estimate lifetime parameters due to its sensitivity to initial conditions. The
success rate for accurately estimating lifetime parameters from real experimental data using
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the ANN method was reported as 99.93%, while the LSM method achieved a success rate
of 95.93%. This indicates that the ANN method significantly improved the accuracy of
lifetime estimation compared to conventional curve-fitting tools.
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on the least-squares method (LSM). The authors also observed that the LSM method strug-
gled to accurately estimate lifetime parameters due to its sensitivity to initial conditions. 
The success rate for accurately estimating lifetime parameters from real experimental data 
using the ANN method was reported as 99.93%, while the LSM method achieved a success 
rate of 95.93%. This indicates that the ANN method significantly improved the accuracy 
of lifetime estimation compared to conventional curve-fitting tools. 

However, this ANN failed for low photon counts. To overcome this problem, Smith 
et al. [60] proposed an innovative approach for estimating lifetime parameters from a com-
plete three-dimensional TCSPC dataset using a CNN. Their architecture, called FLI-Net 
(Fluorescence Lifetime Imaging Network, cf. Figure 10), was trained with synthetic data 
produced from simulating biexponential decays and IRFs for each pixel in the popular 
MNIST handwritten digits dataset. FLI-Net consists of a shared branch for temporal fea-
ture extraction and separate branches for reconstructing lifetime images and fractional 
amplitudes of short lifetimes. To enable spatially independent feature extraction and 

Figure 9. This is the workflow of inverse modeling. First, a machine learning model was trained with
artificial FLIM data. Artificial data mimic the real experimental data. To generate the artificial data,
system response function (IRF) is convolved with an exponential function. Predicted parameters
were compared with original artificial data. Finally, the machine learning model is tested with real
data, measured data. Here, thick line represents the data generation and training method and dotted
line represents the evolution process.

However, this ANN failed for low photon counts. To overcome this problem, Smith
et al. [60] proposed an innovative approach for estimating lifetime parameters from a
complete three-dimensional TCSPC dataset using a CNN. Their architecture, called FLI-Net
(Fluorescence Lifetime Imaging Network, cf. Figure 10), was trained with synthetic data
produced from simulating biexponential decays and IRFs for each pixel in the popular
MNIST handwritten digits dataset. FLI-Net consists of a shared branch for temporal
feature extraction and separate branches for reconstructing lifetime images and fractional
amplitudes of short lifetimes. To enable spatially independent feature extraction and
capture of each temporal point spread function (TPSF), 3D convolutions (Conv3D) are
applied along the temporal dimension for each pixel location. By using a Conv3D layer
(with a kernel size 1 × 1 × 10), unwanted artifacts from neighboring pixels in the spatial
dimensions were minimized during both the training and testing phases. Additionally,
a residual block (ResBlock) with a reduced kernel length allows for further extraction of
temporal information. This network has three output branches. Each branch employs a
sequence of convolutions for down-sampling. By comparing the results obtained from FLI-
Net with those from the conventional least-squares fitting (LSF) method, Smith et al. [60]
found that FLI-Net gave high accuracy and was approximately 30 times faster than the
SPCImage. However, this method’s performance depends on spatial information of the
FLIM data, which means the model needs more datasets to train.

Guo et al. [20] described a new method where lifetimes and abundances were inverse
modeled from decay traces through ML. They trained a random forest (RF) model with
3000 artificial traces, which was tested with experimental data to estimate lifetimes and
abundances. The performances of the ML model were verified based on two things: First,
the predicted values were compared with their true values for artificial data, which showed
good prediction performance. Secondly, model performances are verified on real-world
data (SPCImage software for lifetime estimation), and results roughly match each other. In
summary, ML performed better than the traditional method. The authors also compared
their model with the FLI-Net [60]. Their RF-based model performs better than FLI-Net
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within three aspects: First, the RF model works on a pixel basis and thus does not need
retraining when spatial dimensions change. Second, the employed Laguerre polynomial
approach and a large span of training values make the model highly generalizable. Third,
compared to FLI-Net, decay traces with more than two components can be analyzed.
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Yao et al. [61] proposed a novel optical instrument for compressive macroscopic
fluorescence lifetime images (MFLI). They demonstrated a method to enhance the res-
olution of fluorescence lifetime images, which is mainly based on a CNN model called
Net-FLICS trained on a modified (with simulated decay traces in each pixel) EMNIST
dataset. One block aims to recover sparsity information from compressive data with a
1D CNN layer. The second segment is responsible for revealing the intensity of images
through a 2D convolution layer, and the third segment utilizes 1D convolution layers to
reconstruct lifetime images directly from raw data.

Another ANN technique to retrieve lifetimes from raw FLIM data was introduced
in [62]. The ANN takes the raw decay trace acquired from a SPAD (single photon avalanche
diode) pixel, and, using three hidden layers, it directly outputs the associated lifetime. The
model, trained with simulated data, was evaluated in comparison to results obtained from
least-squares (LSQ) deconvolution and also tested with real experimental data. The authors
showed that the ANN successfully estimates lifetime values from synthetic data as well as
real data and is 1000 times faster than LSQ.

In general, most convolutional neural networks are designed to handle 2-, 3-, or
multidimensional data. However, these high-dimensional CNNs have a higher number
of trainable parameters and thus increase the training and calculation complexity. To
overcome this problem, Xiao et al. [63] used fluorescence data in a 1D CNN instead of
2D or 3D CNNs. In this paper, the 1D CNN was mainly divided into two parts. In the first
part, the decay features were extracted, and in the second part, containing n + 1 branches
for an n-exponential decay fit, the lifetimes and abundancies for the components were
reconstructed. For training and testing, the authors simulated two different datasets, each
containing 40,000 decay samples, and performances were compared with the traditional
trust-region-reflective algorithm (TRRA) method, FLI-Net, and DenseNet architecture. This
model can resolve the multi-exponential decay model, and it is 8 and 300 times faster than
other CNN models and TRRA, respectively. These are some important advantages of using
1D CNN. Also, the authors showed that their network successfully estimated fluorescence
lifetime from experimental data.
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Xiao et al. [64] proposed a DL-based lifetime image estimation method for few-photon
fluorescence lifetime imaging (FPFLI). They showed that traditional methods, like LSF,
MLE, Bayesian analysis (BA), or phasor methods, need high photon counts for FLIM
analysis, while DL models can deal with this problem. Here, they increased the training
speed by training this model with large synthetic data. They showed that FPFLI performed
where MLE failed to estimate lifetimes in low photon counts. Ochoa et al. [65] proposed
NetFLICS-CR, where a compressed ratio (CR) block is added to the NetFLICS [61] model.
This CR block reduces the input dimension. They compared their model performance
with TVRecon. They trained the network with a modified (simulated decay traces for each
pixel) EMNIST dataset. Before training, they performed data augmentation by rotation
and combining two different datasets. Mean absolute error (MAE) was considered as
an evolution matrix between predicted and reconstructed. The trained Net-FLICS took
approximately 2.2 s in total to reconstruct 800 samples, whereas TVRecon took 15 s. In
conclusion, Net-FLICS performs better than TVRecon.

Table 4. Comparison between some different inverse modeling methods.

Network Used Dataset Used

Guo et al. [20] Random forest Cell sample

Wu et al. [59]

ANN with 4 layers.
1—input

1—output
2—hidden

Daisy pollens

FLI-Net [60]
10 layers (combination with

convolution and
ResNet block)

Mice liver and bladder sample

NetFLICS [61] ResNet Mice liver and bladder

Xiao et al. [63]
Mainly 4 layers.

In combination with CNN and
ResNetBlock

Human prostate cancer tissue

In conclusion, we can confirm that all DL or ML methods can estimate lifetimes from
experimental data, usually faster and more accurate than conventional methods.

5. Discussion and Conclusions

In our comprehensive review, we have summarized recent investigations on the
utilization of machine learning (ML) and deep learning (DL) techniques for fluorescence
lifetime imaging microscopy (FLIM) data analysis and modeling. Traditional methods for
extracting fluorescence lifetimes from FLIM data can be complex and time-consuming.
However, ML and DL methods have emerged as promising alternatives that offer faster and
more accurate extraction of fluorescence lifetimes. Combining different inverse modeling
approaches or combining inverse modeling with forward modeling to take advantage of
each process can be a new direction in the FLIM inverse modeling technique.

Among the ML and DL approaches, convolutional neural network (CNN)-based
techniques were found to be prevalent in the majority of the reviewed papers. These
techniques have demonstrated their effectiveness in various aspects of FLIM analysis. For
instance, CNNs have been successfully applied for denoising and enhancing fluorescence
microscopic images, thereby improving the quality of fluorescence data. Additionally,
novel DL techniques have been developed, such as the Net-FLICS network for fluorescence
lifetime imaging using compressive sensing data and the 3D CNN-based FLI-Net network
for lifetime extraction.

In this review, we highlighted several areas of further research and development. One
key aspect is addressing the challenge of limited data availability. Strategies to overcome
this limitation could involve data augmentation techniques or transfer learning approaches.
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Another important aspect is the generation of simplified and easily deployable models
for extracting lifetime images from FLIM data. Additionally, developing neural network
models capable of distinguishing overlapping fluorescence lifetimes would be valuable.

Furthermore, we provided a concise overview of different freely available software
tools for lifetime extraction, such as FLIMJ, FLIMview, and FLIMfit. These software options
can significantly reduce the cost, complexity, and time required for FLIM data analysis.

In conclusion, ML and DL-based techniques have demonstrated great potential in
the field of FLIM data modeling. They offer faster and more accurate lifetime extraction,
denoising capabilities, and improved image enhancement. Future research should focus on
addressing data limitations, simplifying model generation, handling overlapping lifetimes,
and exploring open-source software solutions for FLIM analysis.
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