
Citation: Li, H.; Dang, R.; Yao, Y.;

Wang, H. A Review of Approaches for

Detecting Vulnerabilities in Smart

Contracts within Web 3.0 Applications.

Blockchains 2023, 1, 3–18. https://

doi.org/10.3390/blockchains1010002

Academic Editors: Keke Gai

and Liehuang Zhu

Received: 30 June 2023

Revised: 22 August 2023

Accepted: 22 August 2023

Published: 23 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

A Review of Approaches for Detecting Vulnerabilities in Smart
Contracts within Web 3.0 Applications
Hui Li *, Ranran Dang, Yao Yao and Han Wang *

Shenzhen Graduate School, Peking University, Shenzhen 518055, China
* Correspondence: lih64@pkusz.edu.cn (H.L.); wanghan2017@pku.edu.cn (H.W.)

Abstract: Smart contracts, programs running on a blockchain, play a crucial role in driving Web 3.0
across a variety of domains, such as digital finance and future networks. However, they currently
face significant security vulnerabilities that could result in potential risks and losses. This paper
outlines the inherent vulnerabilities of smart contracts, both those typical of their applications and
those unique to Web 3.0 applications. We then systematically classify the techniques based on
their core approach to detecting vulnerabilities in smart contracts. Using these approaches, we
conduct a comparative analysis of existing tools in terms of their vulnerability coverage, detection
effectiveness, open-source availability, and integration capabilities. Finally, we present the Co-
Governed Sovereignty Multi-Identifier Network (CoG-MIN) as a case study to demonstrate the
significance of smart contract application security in establishing a community with a shared future
in cyberspace during the Web 3.0 era and anticipate future research directions with challenges.
To conclude, this study addresses the gap in integrating existing smart contract security research
with the advancement of Web 3.0 development, while also providing recommendations for future
research directions.

Keywords: smart contract; vulnerability detection; Web 3.0; Co-Governed Sovereignty Multi-Identifier
Network; community with a shared future in cyberspace

1. Introduction

The concept of blockchain technology was initially introduced by Satoshi Nakamoto
in Bitcoin [1], a cryptocurrency system. Decentralized transaction records are stored in the
blockchain via cryptography to resist tampering. In December 2013, Vitalik Buterin pre-
sented the Ethereum white paper, introducing smart contract and enabling the development
of a blockchain system capable of handling general value and functioning as a distributed
transaction-based state machine [2]. Due to their decentralization and programmability,
smart contracts have found extensive applications in various domains, including digital
finance and future networks [3,4]. For example, the flash loan uses the execution principle
of smart contracts, allowing users to take advantage of arbitrage opportunities in the mar-
ket to achieve low-cost, high-yield operations [5]. In the context of future networks, the
Multi-Identifier System (MIS) [6], operating as the management layer for co-management
and Co-Governed Sovereignty Multi-Identifier Network (CoG-MIN) [7,8], utilizes identifier
management contracts to enable flexible identifier functions and rule formulation.

Smart contracts come in two main forms: high-level language code and Ethereum
Virtual Machine (EVM) bytecode. There are currently many high-level languages that can
be used to write smart contracts, the most popular of which is Solidity. The smart contract
written by Solidity will first be compiled into EVM bytecode that can be directly accepted
by the virtual machine and then sent to Ethereum by the user in the form of a Transac-
tion for smart contract deployment. Additionally, developers have defined mnemonics
called opcodes to map the meaning of the bytecode, making it easier to understand. The
relationship between these three elements is shown in Figure 1.

Blockchains 2023, 1, 3–18. https://doi.org/10.3390/blockchains1010002 https://www.mdpi.com/journal/blockchains

https://doi.org/10.3390/blockchains1010002
https://doi.org/10.3390/blockchains1010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/blockchains
https://www.mdpi.com
https://doi.org/10.3390/blockchains1010002
https://www.mdpi.com/journal/blockchains
https://www.mdpi.com/article/10.3390/blockchains1010002?type=check_update&version=1

Blockchains 2023, 1 4

Blockchains 2023, 1, FOR PEER REVIEW 2

opcodes to map the meaning of the bytecode, making it easier to understand. The rela-
tionship between these three elements is shown in Figure 1.

Figure 1. The relationship between the three forms of Ethereum smart contracts.

As the adoption of smart contracts on blockchains has increased, numerous security
challenges have emerged. Among them, the most notable incident was “The DAO” [9] in
June 2016. In 2022, there were 116 security incidents related to smart contract vulnerabili-
ties, accounting for 27% of all blockchain security incidents, whose losses exceeded $1.7
billion [10]. In fact, due to the transparency of blockchain, the consequences of vulnerabil-
ities in smart contracts are more severe than those in traditional programs. Anyone can
access deployed contracts on the chain, allowing attackers to analyze contract bytecode
and attempt to exploit any discovered vulnerabilities [11]. Moreover, once a contract is
deployed, its owner faces limitations in making repairs unless he implements an upgrade-
able write mode.

Considering the difficulty in expecting developers to create completely secure con-
tracts, extensive research efforts have been dedicated to vulnerability detection techniques
for smart contracts. After the DAO attack in 2016, the research on smart contract security
has witnessed significant growth year by year. Yamashita et al. [12] collected and individ-
ually classified a variety of common vulnerability patterns that could compromise the se-
curity of smart contracts. Praitheeshan et al. [13] investigated the vulnerability detection
technology of smart contracts, introduced and compared the various characteristics of
some smart contract vulnerability detection technologies. By conducting a systematic re-
view and an analysis of the research progress in smart contract vulnerability detection
technology, it was observed that, during 2019 and 2020, there was rapid development in
this field. Various vulnerability detection methods were proposed, such as fuzz testing,
taint analysis, formal verification, and machine learning, specifically applied to smart con-
tract vulnerability detection. These vulnerability detection technologies have garnered ex-
tensive attention and research within the realm of smart contract security.

The aforementioned studies concerning smart contract vulnerability detection tech-
niques have not comprehensively encompassed the diverse range of security vulnerabili-
ties in smart contracts emerging within the Web 3.0 era [14]. Additionally, an issue of the
inadequate comprehensive analysis of detection technology information exists [15]. Our
investigation encompasses the progress and countermeasures of smart contract vulnera-
bilities in the current context of Web 3.0 development. We extensively analyze the dispar-
ities of existing technologies in terms of vulnerability coverage, detection effectiveness,
open-source availability, and integration capabilities. We firmly believe that this endeavor
contributes to a more comprehensive understanding, from the Web 3.0 perspective, of the
existing smart contract vulnerability detection technologies among researchers.

The rest of this paper is organized as follows. Section 2 introduces traditional smart
contract vulnerabilities at the levels of Solidity, EVM, and the block, and further explores
vulnerabilities in the context of Web 3.0 advancements. Section 3 discusses common meth-
ods for smart contract vulnerability detection. Section 4 presents an overview of

Figure 1. The relationship between the three forms of Ethereum smart contracts.

As the adoption of smart contracts on blockchains has increased, numerous security
challenges have emerged. Among them, the most notable incident was “The DAO” [9] in
June 2016. In 2022, there were 116 security incidents related to smart contract vulnera-
bilities, accounting for 27% of all blockchain security incidents, whose losses exceeded
$1.7 billion [10]. In fact, due to the transparency of blockchain, the consequences of vulner-
abilities in smart contracts are more severe than those in traditional programs. Anyone can
access deployed contracts on the chain, allowing attackers to analyze contract bytecode
and attempt to exploit any discovered vulnerabilities [11]. Moreover, once a contract is de-
ployed, its owner faces limitations in making repairs unless he implements an upgradeable
write mode.

Considering the difficulty in expecting developers to create completely secure con-
tracts, extensive research efforts have been dedicated to vulnerability detection techniques
for smart contracts. After the DAO attack in 2016, the research on smart contract security
has witnessed significant growth year by year. Yamashita et al. [12] collected and indi-
vidually classified a variety of common vulnerability patterns that could compromise the
security of smart contracts. Praitheeshan et al. [13] investigated the vulnerability detection
technology of smart contracts, introduced and compared the various characteristics of some
smart contract vulnerability detection technologies. By conducting a systematic review and
an analysis of the research progress in smart contract vulnerability detection technology, it
was observed that, during 2019 and 2020, there was rapid development in this field. Various
vulnerability detection methods were proposed, such as fuzz testing, taint analysis, formal
verification, and machine learning, specifically applied to smart contract vulnerability
detection. These vulnerability detection technologies have garnered extensive attention
and research within the realm of smart contract security.

The aforementioned studies concerning smart contract vulnerability detection tech-
niques have not comprehensively encompassed the diverse range of security vulnerabilities
in smart contracts emerging within the Web 3.0 era [14]. Additionally, an issue of the
inadequate comprehensive analysis of detection technology information exists [15]. Our in-
vestigation encompasses the progress and countermeasures of smart contract vulnerabilities
in the current context of Web 3.0 development. We extensively analyze the disparities of ex-
isting technologies in terms of vulnerability coverage, detection effectiveness, open-source
availability, and integration capabilities. We firmly believe that this endeavor contributes to
a more comprehensive understanding, from the Web 3.0 perspective, of the existing smart
contract vulnerability detection technologies among researchers.

The rest of this paper is organized as follows. Section 2 introduces traditional smart
contract vulnerabilities at the levels of Solidity, EVM, and the block, and further explores
vulnerabilities in the context of Web 3.0 advancements. Section 3 discusses common
methods for smart contract vulnerability detection. Section 4 presents an overview of
mainstream vulnerability detection tools, followed by a comparison. Section 4 takes CoG-
MIN as an example to demonstrate the necessity of smart contract application security in
the Web 3.0 era for building a community with a shared future in cyberspace. Finally, the

Blockchains 2023, 1 5

paper concludes by summarizing the findings, discussing limitations in existing research,
and providing suggestions for future investigation in Section 6.

2. Vulnerability in Smart Contracts

In this section, we present an overview of traditional smart contract vulnerabilities,
focusing on three distinct layers: the Solidity layer, the EVM layer, and the block layer, as
observed in Ethereum [16]. Additionally, we discuss unique vulnerabilities that arise in the
context of Web 3.0 applications, taking into account their respective characteristics.

2.1. Solidity Layer

• Reentrancy

The Reentrancy Attack, a type of security vulnerability targeting smart contracts, ex-
ploits the properties of reentrant functions within the contract [17]. This attack manipulates
the execution sequence of the contract by repeatedly invoking the function of another
contract or external address during its execution. Through improper means, the attacker
can gain unauthorized access to additional assets or execute malicious operations.

• Integer Error

Integer errors in smart contracts encompass arithmetic errors, truncation errors, and
sign errors [18]. Arithmetic errors encompass situations such as integer overflow, division
by zero, and modulus by zero. Similar to other programming languages, Solidity defines
fixed-length representations for integers within a specified range. When the result of an
integer operation exceeds this range, an integer overflow occurs.

• Exception Handling

Exception handling vulnerabilities in smart contracts pertain to flaws or inadequate
design in contract implementations when dealing with abnormal or erroneous conditions,
leading to security risks or unexpected outcomes [19]. When a smart contract encounters
exceptional circumstances, if the error handling mechanism is inadequate or contains
vulnerabilities, attackers can exploit these vulnerabilities to execute malicious activities or
disrupt the normal operation of the contract [20].

• Logical Error

The logical error in a smart contract pertains to design or implementation errors
that result in the contract exhibiting unexpected or undesired behavior under specific
conditions [21]. These bugs arise from flaws in the logical structure or reasoning within the
contract, leading to inconsistencies or unexpected outcomes during contract execution.

2.2. EVM Layer

• Short Address

Short Address Attack [22,23] is a vulnerability where attackers exploit the characteristic
of address encoding algorithms to ignore the trailing characters of the encoded string. By
constructing a specific encoded string that completely matches the prefix portion of a
legitimate address, attackers deceive users into using the address controlled by the attacker
when sending funds or performing operations. This malicious action results in economic
losses or abnormal contract functionalities.

• Tx.origin

Tx.origin [24] is a global variable utilized to retain the address of the external account
responsible for triggering the ongoing transaction. It signifies the genuine initiator of the
transaction, specifically the account address that initiated the contract call. Exploiting the
Tx.origin vulnerability, an attacker can simulate the intended contract caller by leveraging
Tx.origin and establishing an intermediary contract. Through this manipulation, the
attacker can execute a Tx.origin vulnerability attack.

Blockchains 2023, 1 6

• Call-Stack Overflow

Call-Stack Overflow occurs when recursive calls or improper utilization of local vari-
ables lead to the exhaustion of the available call stack [25]. Attackers can exploit this
vulnerability to launch attacks or manipulate contracts.

2.3. Block Layer

• Timestamp Dependency

Timestamps are frequently employed to capture the creation and execution time of
transactions or contracts [26]. Attackers take advantage of a contract’s reliance on future
timestamps to disrupt the execution sequence or alter the outcome by manipulating the
system time or exerting control over the generation of future blocks.

• Transaction Order Dependency

Transaction order dependency vulnerabilities, commonly referred to as transaction
ordering attacks, pertain to security vulnerabilities within blockchain systems. These
vulnerabilities arise from the inherent uncertainty in the processing order of transactions,
which attackers exploit to gain undue advantages or execute malicious operations [27].

2.4. Web 3.0 Vulnerabilities

Web 3.0 aims to establish a network ecosystem grounded in blockchain technology,
user-centricity, shared data, and decentralization. However, network security risks have
also become more pronounced within this context. The subsequent section outlines several
vulnerabilities that are distinctive to Web 3.0 applications.

• Identifier Verification

The identifier management [28] contract primarily performs write operations related to
identifiers, such as registration, update, renewal, revocation, restoration, and deletion. Each
write operation necessitates verification of the source’s identity within the multi-identity
management system or registration of a username. However, an attacker can exploit
this system by utilizing a non-identifying owner’s address as the destination address for
transfers, thereby facilitating fund theft.

• Rent Tampering

During the registration and renewal process of the identifier, users are required to pay
rent, while deleting the identifier results in a return of the remaining rent to the owning
address [29]. The rent value is directly proportional to the lease duration. Exploiting the
ability to tamper with the lease time, an attacker can extend the token’s validity period
without paying rent, thereby profiting from a rent amount surpassing the intrinsic value of
the token.

• Single Oracle

DeFi (Decentralized Finance) encompasses a collection of financial applications devel-
oped on an open, decentralized platform, where the entire business process is conducted
through on-chain interactions. Flash loans represent a relatively new form of unsecured
lending in the DeFi ecosystem, allowing users to borrow funds from on-chain liquidity
pools on the condition that they repay the borrowed amount along with a small transaction
fee within the same transaction [30]. However, the vulnerability of flash loan products lies
in their dependence on a single oracle, which exposes them to price manipulation risks.
Attackers exploit this vulnerability by employing substantial funds to purchase specific
tokens and artificially inflate their prices within a short period [31]. By manipulating the
token market, attackers secure arbitrage opportunities for their own gain.

• Sandwich Attack

The attacker in a Sandwich Attack exploits price or status fluctuations to interpose
their own transaction between two trades, thus obtaining undue economic gains. This

Blockchains 2023, 1 7

form of attack is commonly observed in decentralized exchanges (DEX) and other smart
contract platforms [32]. Sandwich Attacks may lead to traders executing transactions under
unfavorable prices or conditions, resulting in financial losses. This attack leverages the
delay in transaction execution and the inherent uncertainty in the order of transactions
within the transaction pool, enabling attackers to swiftly gain profits [33].

3. Taxonomy of Approaches to Detecting Vulnerabilities

In this section, we conduct a comprehensive review and analysis of the pertinent
literature on smart contract vulnerability detection technology with a careful selection of
representative detection approaches. Based on their core methodologies, these approaches
can be classified into four categories: formal verification, symbolic execution, fuzzing, and
taint analysis.

3.1. Formal Verification

Formal Verification is a mathematical and logic-based method employed to rigorously
verify the correctness of computing systems, software, or hardware [34]. As shown in
Figure 2, the formal verification method is an effective means of deterministic verification
for smart contracts. By using formal languages, the concepts, judgments, and reasoning in
smart contracts can be transformed into smart contract models, eliminating the ambiguity
and lack of generality in natural language. Formal tools are then employed to model,
analyze, and verify smart contracts, conduct semantic consistency testing, and ultimately
generate verified contract codes. This method offers a comprehensive analysis of all
potential states and execution paths within the system.

Blockchains 2023, 1, FOR PEER REVIEW 5

The attacker in a Sandwich Attack exploits price or status fluctuations to interpose
their own transaction between two trades, thus obtaining undue economic gains. This
form of attack is commonly observed in decentralized exchanges (DEX) and other smart
contract platforms [32]. Sandwich Attacks may lead to traders executing transactions un-
der unfavorable prices or conditions, resulting in financial losses. This attack leverages
the delay in transaction execution and the inherent uncertainty in the order of transactions
within the transaction pool, enabling attackers to swiftly gain profits [33].

3. Taxonomy of Approaches to Detecting Vulnerabilities
In this section, we conduct a comprehensive review and analysis of the pertinent lit-

erature on smart contract vulnerability detection technology with a careful selection of
representative detection approaches. Based on their core methodologies, these approaches
can be classified into four categories: formal verification, symbolic execution, fuzzing, and
taint analysis.

3.1. Formal Verification
Formal Verification is a mathematical and logic-based method employed to rigor-

ously verify the correctness of computing systems, software, or hardware [34]. As shown
in Figure 2, the formal verification method is an effective means of deterministic verifica-
tion for smart contracts. By using formal languages, the concepts, judgments, and reason-
ing in smart contracts can be transformed into smart contract models, eliminating the am-
biguity and lack of generality in natural language. Formal tools are then employed to
model, analyze, and verify smart contracts, conduct semantic consistency testing, and ul-
timately generate verified contract codes. This method offers a comprehensive analysis of
all potential states and execution paths within the system.

Figure 2. The conversion process of solidity code and EVM bytecode in formal verification.

• F* Framework
Bhargavan et al. made significant contributions by endeavoring to formalize

Ethereum instructions using the functional programming language F* [35]. They em-
ployed interactive proof functions to conduct program verification within this language.

Figure 2. The conversion process of solidity code and EVM bytecode in formal verification.

• F* Framework

Bhargavan et al. made significant contributions by endeavoring to formalize Ethereum
instructions using the functional programming language F* [35]. They employed interactive
proof functions to conduct program verification within this language.

• EthIR

Albert et al. presented EthIR [36], an Ethereum bytecode analysis framework. They de-
vised a process to decompile the bytecode into a rule-based representation (RBR), enabling
the construction of a control flow graph for the smart contract.

3.2. Symbolic Execution

The symbolic execution method executes the bytecode instructions of the smart con-
tract in a symbolic form, constructs a symbolic execution path, and analyzes the symbolic

Blockchains 2023, 1 8

constraints on the path to find potential vulnerabilities [37]. As shown in Figure 3 below,
using symbolic execution technology for vulnerability analysis, the program code is first
analyzed to obtain an intermediate representation of the program code. Next, the control
flow graph and call graph that describe the program path are constructed. Finally, the vul-
nerability analysis is carried out. The analysis process mainly includes two parts: symbolic
execution and constraint solving, which are executed alternately.

Blockchains 2023, 1, FOR PEER REVIEW 6

• EthIR
Albert et al. presented EthIR [36], an Ethereum bytecode analysis framework. They

devised a process to decompile the bytecode into a rule-based representation (RBR), ena-
bling the construction of a control flow graph for the smart contract.

3.2. Symbolic Execution
The symbolic execution method executes the bytecode instructions of the smart con-

tract in a symbolic form, constructs a symbolic execution path, and analyzes the symbolic
constraints on the path to find potential vulnerabilities [37]. As shown in Figure 3 below,
using symbolic execution technology for vulnerability analysis, the program code is first
analyzed to obtain an intermediate representation of the program code. Next, the control
flow graph and call graph that describe the program path are constructed. Finally, the
vulnerability analysis is carried out. The analysis process mainly includes two parts: sym-
bolic execution and constraint solving, which are executed alternately.

Figure 3. The process of symbolic execution technology for vulnerability analysis.

• Oyente
Oyente [38], proposed by Luu et al., was the first technology for detecting vulnera-

bilities in smart contracts and the first to utilize symbolic execution for smart contract
vulnerability detection. It analyzes the symbolic state and symbolic paths based on a set
of predefined attributes for the four types of vulnerabilities. By doing so, it detects security
vulnerabilities in smart contracts and conducts reachability inspection using the obtained
constraints to reduce false positive rates.
• teEther

Krupp et al. proposed teEther [39], a vulnerability detection and exploitation tech-
nology based on symbolic execution. The tool identifies the critical paths leading to four
specific sensitive instructions from the control flow graph constructed from bytecode. It
then performs symbolic execution starting from the root node of the control flow graph to
obtain path constraints for these critical paths. Finally, teEther utilizes the Z3 constraint
solver to solve the combined constraints of the critical paths and state change paths, gen-
erating exploit samples and detecting vulnerabilities in the contract.

3.3. Fuzzing
Fuzzing is a dynamic analysis technique that explores the contract’s response to ab-

normal or malicious input by performing random or semi-random mutation operations
on smart contract inputs, thereby discovering possible vulnerabilities [40]. Figure 4 de-
picts the main processes of traditional fuzzing tests. The working process is composed of
four main stages, the test case generation stage, test case running stage, program execution
state monitoring, and analysis of exceptions. Fuzzing does not depend on the source code

Figure 3. The process of symbolic execution technology for vulnerability analysis.

• Oyente

Oyente [38], proposed by Luu et al., was the first technology for detecting vulner-
abilities in smart contracts and the first to utilize symbolic execution for smart contract
vulnerability detection. It analyzes the symbolic state and symbolic paths based on a set of
predefined attributes for the four types of vulnerabilities. By doing so, it detects security
vulnerabilities in smart contracts and conducts reachability inspection using the obtained
constraints to reduce false positive rates.

• teEther

Krupp et al. proposed teEther [39], a vulnerability detection and exploitation tech-
nology based on symbolic execution. The tool identifies the critical paths leading to four
specific sensitive instructions from the control flow graph constructed from bytecode. It
then performs symbolic execution starting from the root node of the control flow graph
to obtain path constraints for these critical paths. Finally, teEther utilizes the Z3 con-
straint solver to solve the combined constraints of the critical paths and state change paths,
generating exploit samples and detecting vulnerabilities in the contract.

3.3. Fuzzing

Fuzzing is a dynamic analysis technique that explores the contract’s response to
abnormal or malicious input by performing random or semi-random mutation operations
on smart contract inputs, thereby discovering possible vulnerabilities [40]. Figure 4 depicts
the main processes of traditional fuzzing tests. The working process is composed of four
main stages, the test case generation stage, test case running stage, program execution state
monitoring, and analysis of exceptions. Fuzzing does not depend on the source code of
the contract, but analyzes the execution results based on the input, so it can be applied to
smart contracts without source code or binary files of contracts [41].

• ContractFuzzer

ContractFuzzer [42] proposed by Jiang et al. is the first smart contract vulnerability
detection technology using the fuzzing method. It first performs static analysis on the
application binary interface (ABI), the bytecode of the smart contract, and then conducts a
test and analyzes the information recorded by the EVM during the execution of the contract
to detect vulnerabilities.

Blockchains 2023, 1 9

• sFuzz

Nguyen et al. proposed sFuzz [43], an adaptive fuzzing technology based on feedback
guidance, for the problem of generating efficient test cases for smart contracts. The sFuzz
first initializes the test input from the existing contract transaction information, then
monitors the execution process of the initial test, and combines the adaptive function of AFL
with a lightweight multi-objective search strategy according to the feedback information to
optimize the test.

Blockchains 2023, 1, FOR PEER REVIEW 7

of the contract, but analyzes the execution results based on the input, so it can be applied
to smart contracts without source code or binary files of contracts [41].

Figure 4. The main processes of traditional fuzzing.

• ContractFuzzer
ContractFuzzer [42] proposed by Jiang et al. is the first smart contract vulnerability

detection technology using the fuzzing method. It first performs static analysis on the ap-
plication binary interface (ABI), the bytecode of the smart contract, and then conducts a
test and analyzes the information recorded by the EVM during the execution of the con-
tract to detect vulnerabilities.
• sFuzz

Nguyen et al. proposed sFuzz [43], an adaptive fuzzing technology based on feed-
back guidance, for the problem of generating efficient test cases for smart contracts. The
sFuzz first initializes the test input from the existing contract transaction information, then
monitors the execution process of the initial test, and combines the adaptive function of
AFL with a lightweight multi-objective search strategy according to the feedback infor-
mation to optimize the test.

3.4. Taint Analysis
Taint Analysis is a static analysis technique that identifies potential sources of vul-

nerabilities and code paths that may be affected by tracking and analyzing the propaga-
tion of taints in data streams [44]. The process of taint analysis can be divided into three
stages, as shown in Figure 5. Firstly, it is necessary to identify the sources of tainted data
and the points of taint convergence. Then, the propagation paths of tainted data in the
program are analyzed. Finally, the data is sanitized to reduce the number of taint marks
in the system. However, the coverage of taint analysis is limited, and it may fail to detect
certain specific vulnerabilities [45]. Therefore, its primary role lies in achieving more pre-
cise data flow analysis, often requiring integration with other techniques.

Figure 4. The main processes of traditional fuzzing.

3.4. Taint Analysis

Taint Analysis is a static analysis technique that identifies potential sources of vulnera-
bilities and code paths that may be affected by tracking and analyzing the propagation of
taints in data streams [44]. The process of taint analysis can be divided into three stages,
as shown in Figure 5. Firstly, it is necessary to identify the sources of tainted data and the
points of taint convergence. Then, the propagation paths of tainted data in the program are
analyzed. Finally, the data is sanitized to reduce the number of taint marks in the system.
However, the coverage of taint analysis is limited, and it may fail to detect certain specific
vulnerabilities [45]. Therefore, its primary role lies in achieving more precise data flow
analysis, often requiring integration with other techniques.

• Sereum

The earliest application of taint analysis methods for smart contract vulnerability
detection was introduced by Rodler et al., known as Sereum [46]. Sereum is a technology
aimed at safeguarding contracts from reentrancy attacks on the extended EVM client.
It leverages the K-framework as a symbolic execution engine and deduces vulnerability
conditions on the execution path by collecting and constraining symbolic values throughout
the execution process.

• Ethainter

Brent et al. proposed Ethainter [47], a harmless handling technique for capturing
compound vulnerability data using taint analysis. Ethainter leverages taint analysis to
abstract the transfer, loading, and storing of variables between operations in an abstract
language onto persistent storage. It then captures the compound vulnerability data by
applying predefined information flow rules.

Blockchains 2023, 1 10
Blockchains 2023, 1, FOR PEER REVIEW 8

Figure 5. Schematic diagram of three steps in the taint analysis process.

• Sereum
The earliest application of taint analysis methods for smart contract vulnerability de-

tection was introduced by Rodler et al., known as Sereum [46]. Sereum is a technology
aimed at safeguarding contracts from reentrancy attacks on the extended EVM client. It
leverages the K-framework as a symbolic execution engine and deduces vulnerability con-
ditions on the execution path by collecting and constraining symbolic values throughout
the execution process.
• Ethainter

Brent et al. proposed Ethainter [47], a harmless handling technique for capturing
compound vulnerability data using taint analysis. Ethainter leverages taint analysis to ab-
stract the transfer, loading, and storing of variables between operations in an abstract lan-
guage onto persistent storage. It then captures the compound vulnerability data by apply-
ing predefined information flow rules.

4. Smart Contract Vulnerability Detection Tools and Comparison
Drawing upon the classification of existing smart contract vulnerability detection

methods outlined in Section 3, this chapter introduces several relevant tools. Moreover, a
comprehensive comparison is conducted among these tools, taking into consideration fac-
tors such as vulnerability coverage, detection accuracy, availability of open-source infor-
mation, and integration capabilities. Furthermore, an analysis is performed to examine
the variations in efficiency observed in smart contract vulnerability detection across these
tools.

4.1. Enumeration of Smart Contract Vulnerability Detection Tools
We conducted an extensive survey of the current smart contract vulnerability detec-

tion tools and selected the following five most representative tools for a detailed introduc-
tion.

Figure 5. Schematic diagram of three steps in the taint analysis process.

4. Smart Contract Vulnerability Detection Tools and Comparison

Drawing upon the classification of existing smart contract vulnerability detection
methods outlined in Section 3, this chapter introduces several relevant tools. Moreover,
a comprehensive comparison is conducted among these tools, taking into consideration
factors such as vulnerability coverage, detection accuracy, availability of open-source infor-
mation, and integration capabilities. Furthermore, an analysis is performed to examine the
variations in efficiency observed in smart contract vulnerability detection across these tools.

4.1. Enumeration of Smart Contract Vulnerability Detection Tools

We conducted an extensive survey of the current smart contract vulnerability detection
tools and selected the following five most representative tools for a detailed introduction.

• Vaas

Vulnerability as a Service (Vaas) [48] is a cloud-based service model for smart con-
tract vulnerability scanning and analysis. Users can submit their own developed smart
contracts to the Vaas platform, which performs static code analysis to examine the presence
of known vulnerability patterns, coding errors, or potential security issues within the con-
tracts. Additionally, dynamic execution is conducted on the contracts, simulating different
execution paths and inputs to observe their behavior and state changes, aiming to detect
any vulnerabilities or abnormal behavior that may exist.

• Mythril

Mythril [49] is an intelligent contract security tool based on EVM bytecode developed
by ConSensys. It is designed to analyze smart contracts on EVM-compatible blockchains,
such as Ethereum, Hedera, Quorum, Vechain, Roostock, and Tron. Mythril employs a
combination of taint analysis, SMT solving, and symbolic execution techniques to identify
vulnerabilities in smart contract code. Over time, Mythril has emerged as one of the most
popular Ethereum smart contract security analysis tools.

• Securify

Securify [50] is a tool used for the secure analysis of Ethereum contracts, capable of
verifying the security of contracts for given properties. It examines the compliance and

Blockchains 2023, 1 11

security vulnerabilities of contracts by analyzing the contract’s dependency graph and
extracting precise semantic information from the code. The security analysis process of
Securify involves two main steps. Firstly, it performs a symbolic analysis of the contract’s
dependency graph and extracts semantic information from the code. Secondly, it checks
for compliance and violation patterns to obtain sufficient conditions, thereby proving
the validity of the given properties. Securify offers advantages such as scalability, full
automation, and high accuracy.

• Manticore

Manticore [51] is an open-source framework for dynamic symbolic execution, specif-
ically designed for analyzing binary files and Ethereum smart contracts. Its core engine
component makes certain assumptions about the underlying execution model. The native
binary symbolic execution module implements the high-level execution interface expected
by the core engine.

• Slither

Slither [52] is a static analysis framework for smart contracts that encompasses over
30 vulnerability detection models. It is capable of detecting code optimization issues that
might have been overlooked by compilers and provides optimization recommendations.
Additionally, Slither has the ability to generate visual representations such as inheritance
topology diagrams and method invocation graphs, which help developers comprehend the
code structure and relationships.

4.2. Comparison of Existing Tools

The following provides a comparative analysis of the aforementioned smart contract de-
tection tools. Table 1 presents 16 popular tools and compares their properties of vulnerability
coverage, detection effectiveness, open-source availability, and integration capabilities.

Table 1. Comparison of smart contract vulnerability detection tools.

Detection
Tool

Detection
Approach

Supported Type of Vulnerabilities

Open-Source
Language

Detection
Accuracy

Solidity Layer EVM Layer Block Layer

Reentrancy Integer
Error

Exception
Handling

Logical
Error

Short Address
Attack Tx.origin Call-Stack

Overflow
Timestamp

Dependency
Transaction Order

Dependency

F* framework

Formal
Verification

√ √ √
- 1 - - -

√ √
- Medium

EthIR
√ √ √

- - - -
√ √

Python Medium

EthBMC
√

- - - - - -
√ √

Python High

Oyente

Symbolic
Execution

√ √ √
-

√
-

√ √ √
Python Low

teEther
√ √ √ √ √

- - - - Python Medium

Slither
√

-
√

- -
√ √ √

- Python High

Manticore
√ √

- -
√

- - - - Python Medium

ContractFuzzer

Fuzzing

√ √
- -

√
- -

√
- Go Medium

sFuzz
√ √

-
√ √

- -
√

- C++ Medium

Harvey
√ √

-
√ √

- -
√

- Solidity Medium

Sereum Taint
Analysis

√ √ √
- - - -

√ √
Java High

Ethainter
√ √

- - - - -
√

- Solidity High

Vaas

Integrated

√ √ √
- -

√
-

√
- Solidity High

Mythril
√ √

- - -
√

-
√

- Python High

Securify
√

-
√ √ √ √ √ √ √

Solidity Medium

Mythx
√ √

- - -
√

-
√

- python High

1 “-” indicates that the method cannot detect the corresponding vulnerability, or is not open source.

The detection status presented in Table 1 is derived from the detection experimental
results provided by the respective original authors of each tool in their respective papers,
and these findings have been collated and synthesized. Additionally, certain papers include
comparisons among various tools. For instance, the paper discusses comparisons of
vulnerability coverage and accuracy between “oyente” and other tools that build upon its
improvements. This article utilizes these comparative analyses as references to supplement
the table.

Blockchains 2023, 1 12

4.2.1. Vulnerability Coverage

Vulnerability coverage pertains to the tool’s ability to detect and identify various types
of smart contract vulnerabilities, including, but not limited to, integer overflows, uninitial-
ized variables, permission control issues, and reentrancy attacks. An excellent vulnerability
detection tool should offer a broad coverage of vulnerabilities, thereby comprehensively
identifying potential security issues and enhancing the overall security of smart contracts.

From the perspective of vulnerability types, most detection tools support the detection
of vulnerabilities that have caused significant contract attack incidents, including reentrancy
vulnerabilities, integer error vulnerabilities, Ethereum freeze vulnerabilities, and others.
However, for less frequent and easily preventable vulnerabilities such as permission control,
denial of service, and short address vulnerabilities, there are relatively fewer tools available
for their detection. Among the commonly detected and easily detectable vulnerabilities,
most detection tools support the detection of short address vulnerabilities.

4.2.2. Detection Effectiveness

Detection effectiveness refers to the tool’s accuracy and precision in identifying vul-
nerabilities. An effective vulnerability detection tool should minimize false positives and
false negatives, providing specific and accurate vulnerability reports. Such tools enable
developers to swiftly identify and address potential security issues, thereby bolstering the
security of smart contracts.

Oyente was the first tool to utilize symbolic execution for identifying potential security
vulnerabilities. Among 19,366 Ethereum contracts analyzed, it classified 8833 contracts
as vulnerable. However, the tool exhibited a relatively high rate of false positives in its
detection results. MAIAN [53], a dynamic symbolic executor, was specifically designed
to detect self-destructing contracts. It employed inter-procedural symbolic analysis and
concrete validation to uncover real vulnerabilities. Analyzing nearly one million contracts,
MAIAN successfully reproduced real vulnerabilities with an 89% true positive rate on a
subset of 3759 contracts, resulting in the identification of vulnerabilities in 3686 contracts.

The teEther tool combined binary slicing and symbolic execution to examine execution
paths containing vulnerable instructions. It generated exploit samples and successfully
analyzed 85.65% of the 784,344 accounts, reporting 1532 vulnerable accounts. On the other
hand, ETHBMC [54] served as a symbolic execution-based automatic analysis framework
for smart contracts. In comparison to teEther, ETHBMC identified an additional 10.3%
of vulnerable accounts and 22.8% more vulnerabilities within a shorter time frame. Fur-
thermore, ETHBMC was capable of identifying false positives in teEther and revealed
additional vulnerabilities when compared to MAIAN.

4.2.3. Open-Source Availability

Open-source availability concerns whether the tool is open source and widely used by
smart contract developers and auditors. Open-source tools offer higher transparency and
credibility, allowing more individuals to contribute to their improvement and maintenance.

In the discussed section regarding smart contract vulnerability detection techniques,
some of the detection tools provide the technical source code, while others do not. However,
they offer web interfaces for utilizing the respective techniques. Smart contract developers
can assess the security performance of their smart contracts on these web pages.

In the selection of development languages, the main application is Python, while
some tools utilize Go, C++, and Solidity. The primary reasons for choosing a development
language include language compatibility, ease of use, performance requirements, and
developers’ familiarity. Different languages can provide different functionalities and
features. For instance, Python offers a rich library and tool ecosystem, facilitating tasks such
as formal verification, symbolic execution, and vulnerability detection in smart contracts.
Solidity, designed specifically for writing Ethereum smart contracts, possesses the capability
to directly analyze the code structure and logic of smart contracts.

Blockchains 2023, 1 13

4.2.4. Integration Capabilities

Based on the above discussions, it is evident that integrated tools exhibit more promi-
nent performance in terms of vulnerability coverage and detection accuracy. Detection
tools that rely on a single detection method have certain limitations, such as the low path
coverage in fuzzing [55], the path explosion in symbolic execution [56], and the challenges
of over-tainting and under-tainting in taint analysis [57]. Integrated tools effectively inte-
grate each method’s strengths, address their deficiencies, and enhance the overall detection
performance. For instance, EthPloit [58] integrates taint analysis and fuzz testing tech-
niques. By establishing the dependency relationship between variable data and variable
control flow in the source code through taint analysis, EthPloit further enhances the fuzzing
test cases based on this dependency relationship. As a result, the path coverage of fuzzing
and the efficiency of vulnerability discovery are improved.

5. Future Directions and Challenges in Web 3.0

Although blockchain technology possesses tremendous potential, security remains
an unavoidable concern for such an automated, decentralized, and constantly evolving
system [59]. Furthermore, as the exploration of the Web 3.0 ecosystem deepens, the de-
velopmental trend of the Internet will be a future network centered around individuals,
supporting diverse identities, and featuring multi-party governance [60]. In the following,
we use the future network domain as an example to elucidate the application of vulnerabil-
ity detection in Web 3.0. Lastly, we delve into the challenges of vulnerability detection as
one of the primary protective measures for constructing the underlying blockchain technol-
ogy of the Web 3.0 era, focusing on aspects such as accuracy, efficiency, and adaptability to
emerging vulnerabilities.

5.1. Community with a Shared Future in Cyberspace

With the development of blockchain technology in the future internet domain, the
establishment of a co-governed network space community has become an inevitable trend
in the era of Web 3.0. The CoG-MIN is proposed as a novel future network that centers on
identity and supports the coexistence of multiple identifiers, including content, service, ge-
ographic location, and IP address, etc. The MIS is responsible for generating and managing
various identifiers, storing the operation logs of users, issuing translation tables to MIR,
and managing blockchain nodes [61]. The management functionality of multiple identifiers,
such as identity, content, IP, and domain name in CoG-MIN, is implemented in the EMIS
contract and various identifier space contracts. These functionalities include binding user
identifiers to their real identities, verifying the publication of user identifiers, managing
user public keys and certificates, as well as registering, modifying, revoking, resolving, and
translating various identifiers.

Currently, a smart contract vulnerability detection system has been deployed within
the MIS. It supports the simultaneous detection of specific vulnerabilities in the identi-
fier management contracts as well as common vulnerabilities in general contracts, thus
providing a reliable security guarantee for cyberspace constructed in CoG-MIN.

Considering the diverse characteristics of future network scenarios, CoG-MIN is
proposed to achieve flexible and unified management of multiple identifiers, and its smart
contract security is ensured through a smart contract vulnerability detection system, which
supports simultaneous detection of special vulnerabilities in identity management contracts
and six common vulnerabilities in general contracts, so as to provide reliable and efficient
security for identity management contracts before the chaining review. Combining the
advantages of symbolic execution and machine learning methods, not only reduces the
contract detection time but also improves the accuracy and interpretability of vulnerability
detection results.

Smart contracts, as the infrastructure of cyberspace, directly influence the security
and trustworthiness of the network environment. By ensuring the security of smart con-
tracts, malicious attacks, data breaches, and contract vulnerabilities can be prevented, thus

Blockchains 2023, 1 14

maintaining the stability and reliability of cyberspace [62]. The security of smart contracts
also involves protecting user rights, ensuring the fairness and traceability of transactions,
and contract execution [63]. Only by establishing a secure and trusted environment for
smart contracts can all parties be encouraged to participate and collaborate, achieving
interconnectedness and common development in cyberspace, and building a community
with a shared future in cyberspace.

5.2. Challenges and Discussions

The application of smart contract vulnerability detection technologies reveals that their
development is still in the early exploration stage, with certain limitations and challenges
to address.

1. Evolution of vulnerabilities: With the development of Web 3.0, the number and com-
plexity of smart contract platforms and protocols will continue to increase, leading to
more potential vulnerabilities and security risks. Therefore, smart contract security
detection techniques need to constantly evolve and adapt to the characteristics and
functionalities of emerging platforms and protocols. For instance, Ethereum intro-
duced a new token standard, ERC777, which allows fallback functions to be invoked
during token transfers. Due to developers’ misunderstandings regarding the new
features of ERC777, a new form of reentrancy vulnerability emerged, resulting in
substantial financial losses for smart contracts.

2. Dynamic nature of smart contracts: Smart contracts often involve interactions and
data flows among multiple contracts, including receiving external data and invoking
external contracts. This dynamic nature adds complexity to the analysis and increases
the number and types of potential vulnerabilities, since the behavior of external
interactions is unknown and can lead to security loopholes. Therefore, vulnerability
detection techniques need to be able to analyze and understand complex relationships
among contracts and accurately identify potential security issues.

3. Interoperability of smart contracts: Integration and interoperability of smart con-
tracts with other technologies will also pose challenges. The Web 3.0 ecosystem will
include multiple smart contract platforms and blockchain protocols, which may have
incompatibilities and security vulnerabilities. Therefore, smart contract security vul-
nerability detection techniques need to have the capability to work across platforms
and protocols to ensure comprehensive security.

4. Limitations of detection methods: Most of the current techniques rely on vulnerabil-
ity detection methods such as fuzz testing, symbolic execution, and formal verification,
which themselves have limitations. For example, formal verification methods have
advantages in verifying the correctness of smart contracts but are limited by contract
size and complexity. Symbolic execution methods can explore different execution
paths of contracts but may suffer from path explosion issues, leading to insufficient
computational resources for complex contracts. Fuzz testing methods can uncover
some implicit vulnerabilities but may have limited effectiveness in complex contract
logic and data flow dependencies. Taint analysis methods can trace and analyze
potential vulnerability sources in data flows but may not accurately identify and
locate all vulnerabilities in complex data flows and interaction patterns.

5. Resource constraints: The rapid development of the Web 3.0 field has led to the
emergence of numerous small projects and start-ups. However, these entities may face
challenges in securing sufficient funds and professionals to conduct comprehensive
smart contract security audits.

Secure smart contracts are of utmost importance for establishing trust and reliability
in decentralized systems. Within such systems, smart contracts serve as core components
responsible for executing various functions and business logic. The presence of loopholes
or unsafe code in smart contracts can lead to severe consequences, including fund losses,
user information leaks, and service interruptions. Consequently, users’ trust in the system
may be severely undermined, potentially resulting in user churn and project failure. In the

Blockchains 2023, 1 15

face of these challenges, the development of smart contract vulnerability detection requires
several approaches.

For advancing smart contract vulnerability detection research, the following steps
should be taken. Firstly, establishing a unified and comprehensive experimental dataset that
covers vulnerability types and smart contract platforms is essential for providing reference
data for security testing tools and machine learning model training. Secondly, regularly
updating the vulnerability database is necessary, including collecting and organizing known
contract vulnerabilities and attack techniques, so that smart contract vulnerability detection
tools can identify and detect newly emerging vulnerabilities in a timely manner. Finally,
from a systematic perspective, the development and improvement of new smart contract
vulnerability detection techniques need to consider factors such as vulnerability detection
rate, false positive rate, the exploitability of vulnerabilities, detection time, coverage of
vulnerability types, and platform support.

For smart contract developers, the following recommendations can enhance the se-
curity posture of smart contracts and effectively mitigate potential vulnerabilities. Smart
contract developers and teams should prioritize their training in smart contract security to
recognize and prevent common vulnerabilities. Regularly auditing and reviewing smart
contract codes is essential to detect any security issues. Additionally, utilizing reputable
vulnerability detection tools can expedite issue identification. Collaborating to construct
diverse and large-scale smart contract datasets enables more robust vulnerability detec-
tion. Lastly, continuous learning and staying updated on the latest developments in smart
contract security are crucial for maintaining a secure environment.

6. Conclusions

Smart contracts are one of the most promising technologies, providing a rich, secure,
and trusted decentralized application landscape. They align with the practical significance
of digital finance and future network. However, the accompanying security issues have
severely hindered their development. Smart contract vulnerability detection technology
has emerged as a new research hotspot. This paper examines a series of smart contract
vulnerability detection techniques proposed by researchers. These techniques are catego-
rized as follows: formal verification, symbolic execution, fuzzing, and taint analysis. The
paper also introduces smart contract vulnerability detection tools within each of these five
categories. Furthermore, it presents a statistical analysis of the existing tools, covering
vulnerability types, open-source information, and integration methods. Finally, taking
the network community of the Web 3.0 era as an example, the limitations and potential
improvements of existing smart contract vulnerability detection methods are discussed
and analyzed.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakamoto, S.; Bitcoin, A. A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on

9 June 2023).
2. Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 1–2.
3. Wang, S.; Huang, C.; Li, J.; Yuan, Y.; Wang, F.-Y. Decentralized construction of knowledge graphs for deep recommender systems

based on blockchain-powered smart contracts. IEEE Access 2019, 7, 136951–136961. [CrossRef]
4. Gupta, B.B.; Li, K.-C.; Leung, V.C.; Psannis, K.E.; Yamaguchi, S. Blockchain-assisted secure fine-grained searchable encryption for

a cloud-based healthcare cyber-physical system. IEEE CAA J. Autom. Sin. 2021, 8, 1877–1890.
5. Wang, D.; Wu, S.; Lin, Z.; Wu, L.; Yuan, X.; Zhou, Y.; Wang, H.; Ren, K. Towards a first step to understand flash loan and

its applications in defi ecosystem. In Proceedings of the Ninth International Workshop on Security in Blockchain and Cloud
Computing, Matsue, Japan, 23–26 November 2021; pp. 23–28.

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/ACCESS.2019.2942338

Blockchains 2023, 1 16

6. Li, H.; Wu, J.; Xing, K.; Yi, P.; Lan, J.; Ji, X.; Liu, Q.; Chen, S.; Liang, W.; Wei, J. The Prototype of Decentralized Multilateral
Co-Governing Post-IP Internet Architecture and Its Testing on Operator Networks. arXiv 2019, arXiv:1906.06901.

7. Li, H.; Wu, J.; Yang, X.; Wang, H.; Lan, J.; Xu, K.; Tan, H.; Wei, J.; Liang, W.; Zhu, F. MIN: Co-governing multi-identifier network
architecture and its prototype on operator’s network. IEEE Access 2020, 8, 36569–36581. [CrossRef]

8. Li, H.; Yang, X. Co-Governed Sovereignty Network: Legal Basis and Its Prototype & Applications with MIN Architecture; Springer Nature:
Berlin/Heidelberg, Germany, 2021.

9. Mehar, M.I.; Shier, C.L.; Giambattista, A.; Gong, E.; Fletcher, G.; Sanayhie, R.; Kim, H.M.; Laskowski, M. Understanding a
revolutionary and flawed grand experiment in blockchain: The DAO attack. J. Cases Inf. Technol. 2019, 21, 19–32. [CrossRef]

10. Cao, X.; Zhang, J.; Wu, X.; Liu, B. A survey on security in consensus and smart contracts. Peer Peer Netw. Appl. 2022, 15, 1008–1028.
[CrossRef]

11. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.-N. Systematic review of security vulnerabilities in ethereum blockchain
smart contract. IEEE Access 2022, 10, 6605–6621. [CrossRef]

12. Yamashita, K.; Nomura, Y.; Zhou, E.; Pi, B.; Jun, S. Potential risks of hyperledger fabric smart contracts. In Proceedings of the 2019
IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE), Hangzhou, China, 24 February 2019;
pp. 1–10.

13. Praitheeshan, P.; Pan, L.; Yu, J.; Liu, J.; Doss, R. Security analysis methods on ethereum smart contract vulnerabilities: A survey.
arXiv 2019, arXiv:1908.08605.

14. Zuo, Z. Development, Application, And Regulation of Web3.0. Front. Bus. Econ. Manag. 2023, 9, 22–27. [CrossRef]
15. Gupta, N.A.; Bansal, M.; Sharma, S.; Mehrotra, D.; Kakkar, M. Detection of Vulnerabilities in Blockchain Smart Contracts: A

Review. In Proceedings of the 2023 International Conference on Computational Intelligence, Communication Technology and
Networking (CICTN), Ghaziabad, India, 20–21 April 2023; pp. 558–562.

16. Atzei, N.; Bartoletti, M.; Cimoli, T. A survey of attacks on ethereum smart contracts (sok). In Proceedings of the Principles of
Security and Trust: 6th International Conference, POST 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, 22–29 April 2017; pp. 164–186.

17. Grossman, S.; Abraham, I.; Golan-Gueta, G.; Michalevsky, Y.; Rinetzky, N.; Sagiv, M.; Zohar, Y. Online detection of effectively
callback free objects with applications to smart contracts. Proc. ACM Program. Lang. 2017, 2, 1–28. [CrossRef]

18. Lai, E.; Luo, W. Static analysis of integer overflow of smart contracts in ethereum. In Proceedings of the 2020 4th International
Conference on Cryptography, Security and Privacy, Nanjing, China, 10–12 January 2020; pp. 110–115.

19. Dwivedi, V.; Pattanaik, V.; Deval, V.; Dixit, A.; Norta, A.; Draheim, D. Legally enforceable smart-contract languages: A systematic
literature review. ACM Comput. Surv. 2021, 54, 1–34. [CrossRef]

20. Modi, R. Solidity Programming Essentials: A Beginner’s Guide to Build Smart Contracts for Ethereum and Blockchain; Packt Publishing
Ltd.: Birmingham, UK, 2018.

21. Zupan, N.; Kasinathan, P.; Cuellar, J.; Sauer, M. Secure smart contract generation based on petri nets. In Blockchain Technology
for Industry 4.0: Secure, Decentralized, Distributed and Trusted Industry Environment; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 73–98.

22. Chen, W.; Zheng, Z.; Ngai, E.C.-H.; Zheng, P.; Zhou, Y. Exploiting blockchain data to detect smart ponzi schemes on ethereum.
IEEE Access 2019, 7, 37575–37586. [CrossRef]

23. Ji, M.; Liang, G.; Li, M.; Zhang, H.; He, J. Security Analysis of Blockchain Smart Contract: Taking Reentrancy Vulnerability as
an Example. In Proceedings of the Advances in Artificial Intelligence and Security: 7th International Conference, ICAIS 2021,
Proceedings, Part III 7, Dublin, Ireland, 19–23 July 2021; pp. 492–501.

24. Samreen, N.F.; Alalfi, M.H. A survey of security vulnerabilities in ethereum smart contracts. arXiv 2021, arXiv:2105.06974.
25. Wang, C.; Jiang, H.; Wang, Y.; Huang, Q.; Zuo, Z. Research on smart contract vulnerability detection method based on domain

features of solidity contracts and attention mechanism. J. Intell. Fuzzy Syst. 2023, 45, 1513–1525. [CrossRef]
26. Tantikul, P.; Ngamsuriyaroj, S. Exploring Vulnerabilities in Solidity Smart Contract. In Proceedings of the ICISSP, Valletta, Malta,

25–27 February 2020; pp. 317–324.
27. Fu, M.; Wu, L.; Hong, Z.; Feng, W. Research on vulnerability mining technique for smart contracts. J. Comput. Appl. 2019, 39, 1959.
28. Wei, G.; Li, H.; Bai, Y.; Yang, X.; Zhang, H.; Que, J.; Li, W. Co-governed Space-Terrestrial Integrated Network Architecture and

Prototype Based on MIN. In Proceedings of the 2021 International Conference on Computer Communications and Networks
(ICCCN), Athens, Greece, 19–22 July 2021; pp. 1–6.

29. Wang, H.; Li, H.; Smahi, A.; Zhao, F.; Yao, Y.; Chan, C.C.; Wang, S.; Yang, W.; Li, S.-Y.R. MIS: A Multi-Identifier Management and
Resolution System in the Metaverse. ACM Trans. Multimedia Comput. Commun. Appl. 2023. [CrossRef]

30. Qin, K.; Zhou, L.; Livshits, B.; Gervais, A. Attacking the defi ecosystem with flash loans for fun and profit. In Proceedings of the
Financial Cryptography and Data Security: 25th International Conference, FC 2021, Virtual Event, 1–5 March 2021; pp. 3–32.

31. Cao, Y.; Zou, C.; Cheng, X. Flashot: A snapshot of flash loan attack on DeFi ecosystem. arXiv 2021, arXiv:2102.00626.
32. Wu, J.; Lin, K.; Lin, D.; Zheng, Z.; Huang, H.; Zheng, Z. Financial Crimes in Web3-empowered Metaverse: Taxonomy, Counter-

measures, and Opportunities. IEEE Open J. Comput. Soc. 2023, 4, 37–49. [CrossRef]
33. Chen, C.; Zhang, L.; Li, Y.; Liao, T.; Zhao, S.; Zheng, Z.; Huang, H.; Wu, J. When digital economy meets web 3.0: Applications and

challenges. IEEE Open J. Comput. Soc. 2022, 3, 233–245. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.2974327
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.1007/s12083-021-01268-2
https://doi.org/10.1109/ACCESS.2021.3140091
https://doi.org/10.54097/fbem.v9i3.9431
https://doi.org/10.1145/3158136
https://doi.org/10.1145/3453475
https://doi.org/10.1109/ACCESS.2019.2905769
https://doi.org/10.3233/JIFS-224489
https://doi.org/10.1145/3597641
https://doi.org/10.1109/OJCS.2023.3245801
https://doi.org/10.1109/OJCS.2022.3217565

Blockchains 2023, 1 17

34. O’Regan, G. Overview of Formal Methods. In Concise Guide to Formal Methods: Theory, Fundamentals and Industry Applications;
Springer: Newy York, NY, USA, 2017; pp. 41–63.

35. Vivar, A.L.; Orozco, A.L.S.; Villalba, L.J.G. A security framework for Ethereum smart contracts. Comput. Commun. 2021, 172,
119–129. [CrossRef]

36. Albert, E.; Gordillo, P.; Livshits, B.; Rubio, A.; Sergey, I. Ethir: A framework for high-level analysis of ethereum bytecode. In
Proceedings of the Automated Technology for Verification and Analysis: 16th International Symposium, ATVA 2018, Los Angeles,
CA, USA, 7–10 October 2018; pp. 513–520.

37. Coward, P.D. Symbolic execution systems—A review. Softw. Eng. J. 1988, 3, 229–239. [CrossRef]
38. Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, Vienna, Austria, 24 October 2016; pp. 254–269.
39. Krupp, J.; Rossow, C. teether: Gnawing at ethereum to automatically exploit smart contracts. In Proceedings of the 27th {USENIX}

Security Symposium ({USENIX} Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 1317–1333.
40. He, J.; Balunović, M.; Ambroladze, N.; Tsankov, P.; Vechev, M. Learning to fuzz from symbolic execution with application to

smart contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK,
11–15 November 2019; pp. 531–548.

41. Li, J.; Zhao, B.; Zhang, C. Fuzzing: A survey. Cybersecurity 2018, 1, 1–13. [CrossRef]
42. Jiang, B.; Liu, Y.; Chan, W.K. Contractfuzzer: Fuzzing smart contracts for vulnerability detection. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018; pp. 259–269.
43. Nguyen, T.D.; Pham, L.H.; Sun, J.; Lin, Y.; Minh, Q.T. sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June–19 July 2020;
pp. 778–788.

44. Medeiros, I.; Neves, N.; Correia, M. Detecting and removing web application vulnerabilities with static analysis and data mining.
IEEE Trans. Reliab. 2015, 65, 54–69. [CrossRef]

45. Ji, S.; Dong, J.; Qiu, J.; Gu, B.; Wang, Y.; Wang, T. Increasing fuzz testing coverage for smart contracts with dynamic taint analysis.
In Proceedings of the 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS), Hainan Island,
China, 6–10 December 2021; pp. 243–247.

46. Rodler, M.; Li, W.; Karame, G.O.; Davi, L. Sereum: Protecting existing smart contracts against re-entrancy attacks. arXiv 2018,
arXiv:1812.05934.

47. Brent, L.; Grech, N.; Lagouvardos, S.; Scholz, B.; Smaragdakis, Y. Ethainter: A smart contract security analyzer for composite
vulnerabilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation,
London, UK, 15–20 June 2020; pp. 454–469.

48. Beosin. Automated Formal Verification Platform for Smart Contract. Available online: https://beosin.com/ (accessed on 9 June 2023).
49. Mythril. A Framework for Bug Hunting on the Ethereum Blockchain. Available online: https://mythx.io/ (accessed on 9 June 2023).
50. Tsankov, P.; Dan, A.; Drachsler-Cohen, D.; Gervais, A.; Buenzli, F.; Vechev, M. Securify: Practical security analysis of smart

contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON,
Canada, 15–19 October 2018; pp. 67–82.

51. Mossberg, M.; Manzano, F.; Hennenfent, E.; Groce, A.; Grieco, G.; Feist, J.; Brunson, T.; Dinaburg, A. Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts. In Proceedings of the 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), San Diego, CA, USA, 10–15 November 2019; pp. 1186–1189.

52. Feist, J.; Grieco, G.; Groce, A. Slither: A static analysis framework for smart contracts. In Proceedings of the 2019 IEEE/ACM
2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada,
27 May 2019; pp. 8–15.

53. Nikolić, I.; Kolluri, A.; Sergey, I.; Saxena, P.; Hobor, A. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th Annual Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018; pp. 653–663.

54. Frank, J.; Aschermann, C.; Holz, T. ETHBMC: A bounded model checker for smart contracts. In Proceedings of the 29th USENIX
Conference on Security Symposium, Boston, MA, USA, 12–14 August 2020; pp. 2757–2774.

55. Godefroid, P. Fuzzing: Hack, art, and science. Commun. ACM 2020, 63, 70–76. [CrossRef]
56. Cadar, C.; Godefroid, P.; Khurshid, S.; Păsăreanu, C.S.; Sen, K.; Tillmann, N.; Visser, W. Symbolic execution for software testing in

practice: Preliminary assessment. In Proceedings of the 33rd International Conference on Software Engineering, Honolulu, HI,
USA, 21–28 May 2011; pp. 1066–1071.

57. Dai, P.; Pan, Z.; Li, Y. A Review of Researching on Dynamic Taint Analysis Technique. In Proceedings of the 2018 3rd Joint
International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2018), Chongqing, China,
15–16 December 2018; pp. 118–123.

58. Zhang, Q.; Wang, Y.; Li, J.; Ma, S. Ethploit: From fuzzing to efficient exploit generation against smart contracts. In Proceedings of
the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), London, ON, Canada,
21–28 February 2020; pp. 116–126.

59. Atzori, M. Blockchain Technology and Decentralized Governance: Is the State Still Necessary? Available online: https://ssrn.
com/abstract=2709713 (accessed on 9 June 2023).

https://doi.org/10.1016/j.comcom.2021.03.008
https://doi.org/10.1049/sej.1988.0029
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/TR.2015.2457411
https://beosin.com/
https://mythx.io/
https://doi.org/10.1145/3363824
https://ssrn.com/abstract=2709713
https://ssrn.com/abstract=2709713

Blockchains 2023, 1 18

60. Wang, Q.; Su, M. Integrating blockchain technology into the energy sector—From theory of blockchain to research and application
of energy blockchain. Comput. Sci. Rev. 2020, 37, 100275. [CrossRef]

61. Bai, H.; Li, H.; Que, J.; Zhang, M.; Chong, P.H.J. DSCCP: A Differentiated Service-based Congestion Control Protocol for
Information-Centric Networking. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference
(WCNC), Shanghai, China, 7–10 April 2022; pp. 1641–1646.

62. Litvinenko, V. Digital economy as a factor in the technological development of the mineral sector. Nat. Resour. Res. 2020, 29,
1521–1541. [CrossRef]

63. Xu, J.J. Are blockchains immune to all malicious attacks? Financ. Innov. 2016, 2, 25. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cosrev.2020.100275
https://doi.org/10.1007/s11053-019-09568-4
https://doi.org/10.1186/s40854-016-0046-5

	Introduction
	Vulnerability in Smart Contracts
	Solidity Layer
	EVM Layer
	Block Layer
	Web 3.0 Vulnerabilities

	Taxonomy of Approaches to Detecting Vulnerabilities
	Formal Verification
	Symbolic Execution
	Fuzzing
	Taint Analysis

	Smart Contract Vulnerability Detection Tools and Comparison
	Enumeration of Smart Contract Vulnerability Detection Tools
	Comparison of Existing Tools
	Vulnerability Coverage
	Detection Effectiveness
	Open-Source Availability
	Integration Capabilities

	Future Directions and Challenges in Web 3.0
	Community with a Shared Future in Cyberspace
	Challenges and Discussions

	Conclusions
	References

