materials-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 885 KiB  
Review
Effect of Thermal Treatments and Ion Substitution on Sintering and Crystallization of Bioactive Glasses: A Review
by Francesco Gerardo Mecca, Devis Bellucci and Valeria Cannillo
Materials 2023, 16(13), 4651; https://doi.org/10.3390/ma16134651 - 28 Jun 2023
Cited by 6 | Viewed by 1309
Abstract
Bioactive glasses (BGs) are promising materials for bone regeneration due to their ability to bond with living bone tissue. However, thermal stability and mechanical properties of BGs need improvement for better clinical performance. In this paper, we present an overview of the influence [...] Read more.
Bioactive glasses (BGs) are promising materials for bone regeneration due to their ability to bond with living bone tissue. However, thermal stability and mechanical properties of BGs need improvement for better clinical performance. In this paper, we present an overview of the influence of different ions on the sintering and crystallization of BGs. Specifically, this review focuses on the impact of thermal treatments on the crystallization of 45S5 and other significant BG compositions. Potential applications of these thermally treated BGs, such as scaffolds, BG-based composites, and thermally sprayed coatings, are explored. Moreover, the substitution of ions has been investigated as a method to enhance the thermal properties of BGs. Notably, zinc, potassium, and strontium have been studied extensively and have demonstrated promising effects on both the thermal and the mechanical properties of BGs. However, it is important to note that research on ion inclusion in BGs is still in its early stages, and further investigation is necessary to fully comprehend the effects of different ions on sintering and crystallization. Therefore, future studies should focus on optimizing the ion substitution method to improve the thermal, mechanical, and even biological properties of BGs, thereby enhancing their potential for various biomedical applications. Full article
(This article belongs to the Special Issue Preparation, Characteristics and Application of Bioactive Glass)
Show Figures

Figure 1

17 pages, 6550 KiB  
Article
Investigation of the Bonding Mechanism between Overlapping Textile Layers for FRP Repair Based on Dry Textile Patches
by David Rabe, Juan Daniel Ortega Arbulu, Eric Häntzsche and Chokri Cherif
Materials 2023, 16(13), 4680; https://doi.org/10.3390/ma16134680 - 28 Jun 2023
Viewed by 786
Abstract
Lots of damaged fiber-reinforced plastic (FRP) components are replaced by new components instead of repairing. Furthermore, only very labor-intensive repair methods are available on the market to fully restore the integrity of the structure. This requires a high level of experience or, alternatively, [...] Read more.
Lots of damaged fiber-reinforced plastic (FRP) components are replaced by new components instead of repairing. Furthermore, only very labor-intensive repair methods are available on the market to fully restore the integrity of the structure. This requires a high level of experience or, alternatively, very cost-intensive technology, such as the use of computer tomography and robotics. The high costs and CO2 emissions caused by the manufacture of FRP components then bear no relation to their service life. The research project IGF-21985 BR “FRP-Repair” aims to solve the named challenges. Using semiconductor oxide catalysts, the matrix can be locally depolymerized by ultraviolet (UV) radiation, and thus removed from the damaged area of the FRP component. Subsequently, the damaged fibers in this area can be detached. By using customized textile repair patches and local thermoset reinfiltration, the repair area is restored. With this process, the fiber structure can be repaired locally with new fibers on the textile level. The repair is similar to the original production of a fiber composite in an infusion process. No additional adhesive material is used. As a result, repaired FRP structures with restored mechanics and a near-original surface can be realized. This article provides an insight into the actual steps of the development of the FRP component repair process using dry textile patches. The empirical investigation of overlapped rovings and UD material showed the expected results. Residual fracture forces of up to 86% could be achieved. The most interesting approach on the roving level was splicing the overlapping fibers. The free ends of the fibers of the patch and part are mechanically bonded. This bond at the textile level is further strengthened by infusion with matrix. Full article
Show Figures

Figure 1

21 pages, 6359 KiB  
Article
Thermal Decomposition Path—Studied by the Simultaneous Thermogravimetry Coupled with Fourier Transform Infrared Spectroscopy and Quadrupole Mass Spectrometry—Of Imidazoline/Dimethyl Succinate Hybrids and Their Biological Characterization
by Marta Worzakowska, Małgorzata Sztanke, Jolanta Rzymowska and Krzysztof Sztanke
Materials 2023, 16(13), 4638; https://doi.org/10.3390/ma16134638 - 27 Jun 2023
Cited by 1 | Viewed by 841
Abstract
The thermal decomposition path of synthetically and pharmacologically useful hybrid materials was analyzed in inert and oxidizing conditions for the first time and presented in this article. All the imidazoline/dimethyl succinate hybrids (15) were studied using the simultaneous thermogravimetry [...] Read more.
The thermal decomposition path of synthetically and pharmacologically useful hybrid materials was analyzed in inert and oxidizing conditions for the first time and presented in this article. All the imidazoline/dimethyl succinate hybrids (15) were studied using the simultaneous thermogravimetry (TG) coupled with Fourier transform infrared spectroscopy (FTIR) and quadrupole mass spectrometry (QMS). It was found that the tested compounds were thermally stable up to 200–208 °C (inert conditions) and up to 191–197 °C (oxidizing conditions). In both furnace atmospheres, their decomposition paths were multi-step processes. At least two major stages (inert conditions) and three major stages (oxidizing conditions) of their decomposition were observed. The first decomposition stage occurred between T5% and 230–237 °C. It was connected with the breaking of one ester bond. This led to the emission of one methanol molecule and the formation of radicals capable of further radical reactions in both used atmospheres. At the second decomposition stage (Tmax2) between 230–237 °C and 370 °C (inert conditions), or at about 360 °C (oxidizing conditions), the cleavage of the second ester bond and N-N and C-C bonds led to the emission of CH3OH, HCN, N2, and CO2 and other radical fragments that reacted with each other to form clusters and large clusters. Heating the tested compounds to a temperature of about 490 °C resulted in the emission of NH3, HCN, HNCO, aromatic amines, carbonyl fragments, and the residue (Tmax2a) in both atmospheres. In oxidizing conditions, the oxidation of the formed residues (Tmax3) was related to the production of CO2, CO, and H2O. These studies confirmed the same radical decomposition mechanism of the tested compounds both in inert and oxidizing conditions. The antitumor activities and toxicities to normal cells of the imidazoline/dimethyl succinate hybrids were also evaluated. As a result, the two hybrid materials (3 and 5) proved to be the most selective in biological studies, and therefore, they should be utilized in further, more extended in vivo investigations. Full article
(This article belongs to the Special Issue Thermal Behavior of Polymeric and Other Advanced Materials)
Show Figures

Figure 1

19 pages, 15245 KiB  
Article
Cleaning Strategies of Synthesized Bioactive Coatings by PEO on Ti-6Al-4V Alloys of Organic Contaminations
by Avital Schwartz, Alexey Kossenko, Michael Zinigrad, Viktor Danchuk and Alexander Sobolev
Materials 2023, 16(13), 4624; https://doi.org/10.3390/ma16134624 - 27 Jun 2023
Cited by 22 | Viewed by 1969
Abstract
The effect of various cleaning methods on coating morphology and their effectiveness in removing organic contaminants has been studied in this research. Bioactive coatings containing titanium oxides and hydroxyapatite (HAP) were obtained through plasma electrolytic oxidation in aqueous electrolytes and molten salts. The [...] Read more.
The effect of various cleaning methods on coating morphology and their effectiveness in removing organic contaminants has been studied in this research. Bioactive coatings containing titanium oxides and hydroxyapatite (HAP) were obtained through plasma electrolytic oxidation in aqueous electrolytes and molten salts. The cleaning procedure for the coated surface was performed using autoclave (A), ultraviolet light (UV), radio frequency (RF), air plasma (P), and UV-ozone cleaner (O). The samples were characterized using scanning electron microscopy (SEM) with an EDS detector, X-ray photoelectron spectroscopy (XPS), X-ray phase analysis (XRD), and contact angle (CA) measurements. The conducted studies revealed that the samples obtained from molten salt exhibited a finer crystalline structure morphology (275 nm) compared to those obtained from aqueous electrolytes (350 nm). After applying surface cleaning methods, the carbon content decreased from 5.21 at.% to 0.11 at.% (XPS), which directly corresponds to a reduction in organic contaminations and a decrease in the contact angle as follows: A > UV > P > O. This holds true for both coatings obtained in molten salt (25.3° > 19.5° > 10.5° > 7.5°) and coatings obtained in aqueous electrolytes (35.2° > 28.3° > 26.1° > 16.6°). The most effective and moderate cleaning method is ozone treatment. Full article
(This article belongs to the Special Issue Plasma Electrolytic Oxidation: Technologies and Applications)
Show Figures

Figure 1

11 pages, 8375 KiB  
Article
Abruptly Autofocusing Vortex Beams for Rapid Controllable Femtosecond Two-Photon Polymerization
by Erse Jia, Chen Xie, Yue Yang, Na Xiao and Minglie Hu
Materials 2023, 16(13), 4625; https://doi.org/10.3390/ma16134625 - 27 Jun 2023
Cited by 1 | Viewed by 1126
Abstract
Micro-fabrication based on structured-beam-assisted Two-Photon Polymerization (2 PP) provides a rapid and flexible method for the manufacture of microstructures with complex morphologies. The tunable Abruptly Autofocusing Vortex (AAFV) beams were designed theoretically and generated experimentally based on a single-phase-only Spatial Light Modulator (SLM). [...] Read more.
Micro-fabrication based on structured-beam-assisted Two-Photon Polymerization (2 PP) provides a rapid and flexible method for the manufacture of microstructures with complex morphologies. The tunable Abruptly Autofocusing Vortex (AAFV) beams were designed theoretically and generated experimentally based on a single-phase-only Spatial Light Modulator (SLM). Their specific spatial intensity distributions were further utilized to assist the fabrication of a bowl-shaped Three-Dimensional (3D) micro-trap array via 2 PP with a one-step exposure technique. Finally, the fabricated microstructures act as a novel tool for the trapping and spatial positioning of micro-particles with different diameters, which shows potential applications in fiber optics and cell study. Full article
Show Figures

Figure 1

12 pages, 1341 KiB  
Article
Ultrasensitive Detection of Malachite Green Isothiocyanate Using Nanoporous Gold as SERS Substrate
by Deepti Raj, Noor Tayyaba, Ginevra De Vita, Federico Scaglione and Paola Rizzi
Materials 2023, 16(13), 4620; https://doi.org/10.3390/ma16134620 - 27 Jun 2023
Cited by 2 | Viewed by 1096
Abstract
In this article, a high-performance nanostructured substrate has been fabricated for the ultrasensitive detection of the organic pollutant, Malachite green isothiocyanate (MGITC), in aquatic systems via the Surface Enhanced Raman Spectroscopy (SERS) technique. The chemical dealloying approach has been used to synthesize a [...] Read more.
In this article, a high-performance nanostructured substrate has been fabricated for the ultrasensitive detection of the organic pollutant, Malachite green isothiocyanate (MGITC), in aquatic systems via the Surface Enhanced Raman Spectroscopy (SERS) technique. The chemical dealloying approach has been used to synthesize a three-dimensional nanoporous gold substrate (NPG) consisting of pores and multigrained ligament structures along thickness. The formation of the framework in NPG-5h has been confirmed by SEM with an average ligament size of 65 nm at the narrower neck. Remarkable SERS performance has been achieved by utilizing the NPG-5h substrate for the detection of MGITC, showing a signal enhancement of 7.9 × 109. The SERS substrate also demonstrated an impressively low-detection limit of 10−16 M. The presence of numerous active sites, as well as plasmonic hotspots on the nanoporous surface, can be accredited to the signal amplification via the Localized Surface Plasmon Resonance (LSPR) phenomenon. As a result, SERS detection technology with the fabricated-NPG substrate not only proves to be a simple and effective approach for detecting malachite green but also provides a basis for in situ detection approach of toxic chemicals in aquatic ecosystems. Full article
Show Figures

Figure 1

15 pages, 9876 KiB  
Article
The Effect of Process Conditions on Sulfuric Acid Leaching of Manganese Sludge
by Jafar Safarian, Ariel Skaug Eini, Markus Antonius Elinsønn Pedersen and Shokouh Haghdani
Materials 2023, 16(13), 4591; https://doi.org/10.3390/ma16134591 - 25 Jun 2023
Viewed by 1091
Abstract
Manganese sludge, an industrial waste product in the ferroalloy industry, contains various components and holds significant importance for sustainable development through its valorization. This study focuses on characterizing a manganese sludge and investigating its behavior during sulfuric acid leaching. The influence of process [...] Read more.
Manganese sludge, an industrial waste product in the ferroalloy industry, contains various components and holds significant importance for sustainable development through its valorization. This study focuses on characterizing a manganese sludge and investigating its behavior during sulfuric acid leaching. The influence of process conditions, including temperature, acid concentration, liquid to solid ratio, and leaching duration, was examined. The results revealed that Mn, Zn, and K are the main leachable components, and their overall leaching rates increase with increasing temperature, liquid to solid ratio, and time. However, the acid concentration requires optimization. High leaching rates of 90% for Mn, 90% for Zn, and 100% for K were achieved. Moreover, it was found that Pb in the sludge is converted to sulfate during the leaching, which yields a sulfate concentrate rich in PbSO4. The leaching process for Mn and Zn species appears to follow a second or third order reaction, and the calculation of rate constants indicated that Mn leaching kinetics are two to five times higher than those for Zn. Thermodynamic calculations were employed to evaluate the main chemical reactions occurring during leaching. Full article
Show Figures

Figure 1

35 pages, 10639 KiB  
Review
A Review on Controlling Grain Boundary Character Distribution during Twinning-Related Grain Boundary Engineering of Face-Centered Cubic Materials
by Yu-Qing Zhang, Guo-Zheng Quan, Jiang Zhao, Yan-Ze Yu and Wei Xiong
Materials 2023, 16(13), 4562; https://doi.org/10.3390/ma16134562 - 24 Jun 2023
Cited by 2 | Viewed by 2027
Abstract
Grain boundary engineering (GBE) is considered to be an attractive approach to microstructure control, which significantly enhances the grain-boundary-related properties of face-centered cubic (FCC) metals. During the twinning-related GBE, the microstructures are characterized as abundant special twin boundaries that sufficiently disrupt the connectivity [...] Read more.
Grain boundary engineering (GBE) is considered to be an attractive approach to microstructure control, which significantly enhances the grain-boundary-related properties of face-centered cubic (FCC) metals. During the twinning-related GBE, the microstructures are characterized as abundant special twin boundaries that sufficiently disrupt the connectivity of the random boundary network. However, controlling the grain boundary character distribution (GBCD) is an extremely difficult issue, as it strongly depends on diverse processing parameters. This article provides a comprehensive review of controlling GBCD during the twinning-related GBE of FCC materials. To commence, this review elaborates on the theory of twinning-related GBE, the microscopic mechanisms used in the optimization of GBCD, and the optimization objectives of GBCD. Aiming to achieve control over the GBCD, the influence of the initial microstructure, thermo-mechanical processing (TMP) routes, and thermal deformation parameters on the twinning-related microstructures and associated evolution mechanisms are discussed thoroughly. Especially, the development of twinning-related kinetics models for predicting the evolution of twin density is highlighted. Furthermore, this review addresses the applications of twinning-related GBE in enhancing the mechanical properties and corrosion resistance of FCC materials. Finally, future prospects in terms of controlling the GBCD during twinning-related GBE are proposed. This study will contribute to optimizing the GBCD and designing GBE routes for better grain-boundary-related properties in terms of FCC materials. Full article
Show Figures

Figure 1

29 pages, 3044 KiB  
Review
Perspectives on Thermochemical Recycling of End-of-Life Plastic Wastes to Alternative Fuels
by Sonil Nanda, Tumpa R. Sarker, Kang Kang, Dongbing Li and Ajay K. Dalai
Materials 2023, 16(13), 4563; https://doi.org/10.3390/ma16134563 - 24 Jun 2023
Cited by 4 | Viewed by 3263
Abstract
Due to its resistance to natural degradation and decomposition, plastic debris perseveres in the environment for centuries. As a lucrative material for packing industries and consumer products, plastics have become one of the major components of municipal solid waste today. The recycling of [...] Read more.
Due to its resistance to natural degradation and decomposition, plastic debris perseveres in the environment for centuries. As a lucrative material for packing industries and consumer products, plastics have become one of the major components of municipal solid waste today. The recycling of plastics is becoming difficult due to a lack of resource recovery facilities and a lack of efficient technologies to separate plastics from mixed solid waste streams. This has made oceans the hotspot for the dispersion and accumulation of plastic residues beyond landfills. This article reviews the sources, geographical occurrence, characteristics and recyclability of different types of plastic waste. This article presents a comprehensive summary of promising thermochemical technologies, such as pyrolysis, liquefaction and gasification, for the conversion of single-use plastic wastes to clean fuels. The operating principles, drivers and barriers for plastic-to-fuel technologies via pyrolysis (non-catalytic, catalytic, microwave and plasma), as well as liquefaction and gasification, are thoroughly discussed. Thermochemical co-processing of plastics with other organic waste biomass to produce high-quality fuel and energy products is also elaborated upon. Through this state-of-the-art review, it is suggested that, by investing in the research and development of thermochemical recycling technologies, one of the most pragmatic issues today, i.e., plastics waste management, can be sustainably addressed with a greater worldwide impact. Full article
(This article belongs to the Special Issue Plastic Waste Management for Environmental Protection)
Show Figures

Figure 1

27 pages, 16391 KiB  
Article
Manufacturing Process, Microstructure and Physico-Mechanical Properties of W-Cr Coatings Reinforced by Cr3C2 Phase Produced on Tool Steel through Laser Processing
by Dariusz Bartkowski and Aneta Bartkowska
Materials 2023, 16(13), 4542; https://doi.org/10.3390/ma16134542 - 23 Jun 2023
Viewed by 1125
Abstract
This paper presents study results of laser processing of W-Cr, WCr/Cr3C2 and Cr3C2 pre-coats applied on steel substrate in the form of paste. For this study, production parameters were selected to obtain the greatest possible durability of [...] Read more.
This paper presents study results of laser processing of W-Cr, WCr/Cr3C2 and Cr3C2 pre-coats applied on steel substrate in the form of paste. For this study, production parameters were selected to obtain the greatest possible durability of final coatings. Laser processing was carried out using a diode laser machine with a rated power of 3 kW. The laser beam scanning speed was constant at 3 m/min, but variable laser beam powers were used: 600 W, 900 W and 1200 W. Multiple laser tracks with 60% overlapping were used. After remelting the pre-coat with a steel substrate, new coatings were obtained. Following the experiment, microstructure, microhardness, wear, corrosion resistance and chemical composition were investigated. It was found that it is possible to produce W-Cr/Cr3C2 coatings through laser processing. These coatings do not have the characteristics of a composite coating; however, increasing the reinforcing phase in the pre-coat positively affects the wear resistance and microhardness. The addition of a reinforcing phase was found to lead to a microhardness of about 750–890 HV01 for 25% and 75% Cr3C2, respectively, in comparison to coating without Cr3C2. The wear resistance of coatings reinforced by chromium carbide improved more than twofold in reference to the W-Cr coating. Full article
Show Figures

Figure 1

9 pages, 739 KiB  
Article
Ion-Selective Scattering Studied Using the Variable-Energy Electron Irradiation in the Ba0.2K0.8Fe2As2 Superconductor
by Kyuil Cho, Marcin Kończykowski, Makariy A. Tanatar, Igor I. Mazin, Yong Liu, Thomas A. Lograsso and Ruslan Prozorov
Materials 2023, 16(13), 4520; https://doi.org/10.3390/ma16134520 - 22 Jun 2023
Cited by 1 | Viewed by 916
Abstract
Low-temperature variable-energy electron irradiation was used to induce non-magnetic disorder in a single crystal of a hole-doped iron-based superconductor, Ba1xKxFe2As2, x = 0.80. To avoid systematic errors, the beam energy was adjusted non-consequently [...] Read more.
Low-temperature variable-energy electron irradiation was used to induce non-magnetic disorder in a single crystal of a hole-doped iron-based superconductor, Ba1xKxFe2As2, x = 0.80. To avoid systematic errors, the beam energy was adjusted non-consequently for five values between 1.0 and 2.5 MeV when sample resistance was measured in situ at 22 K. For all energies, the resistivity raises linearly with the irradiation fluence suggesting the creation of uncorrelated dilute point-like disorder (confirmed by simulations). The rate of the resistivity increase peaks at energies below 1.5 MeV. Comparison with calculated partial cross-sections points to the predominant creation of defects in the iron sublattice. Simultaneously, superconducting Tc, measured separately between the irradiation runs, is monotonically suppressed as expected, since it depends on the total scattering rate, hence on the total cross-section, which is a monotonically increasing function of the energy. Our work experimentally confirms an often-made assumption of the dominant role of the iron sub-lattice in iron-based superconductors. Full article
(This article belongs to the Special Issue Novel Superconducting Materials and Applications of Superconductivity)
Show Figures

Figure 1

11 pages, 5930 KiB  
Article
The Constituent Phases and Micromechanical Properties of Steel Corrosion Layers Generated by Hyperbaric-Oxygen Accelerated Corrosion Test
by Baozhen Jiang, Kotaro Doi and Koichi Tsuchiya
Materials 2023, 16(13), 4521; https://doi.org/10.3390/ma16134521 - 22 Jun 2023
Cited by 1 | Viewed by 907
Abstract
Hyperbaric oxygen-accelerated corrosion testing (HOACT) is a newly developed method to study in the labor the corrosion behavior of steel bars in concrete. This work aimed to intensively investigate the mechanical properties and microstructures of HOACT-generated corrosion products by means of nano-indentation tests, [...] Read more.
Hyperbaric oxygen-accelerated corrosion testing (HOACT) is a newly developed method to study in the labor the corrosion behavior of steel bars in concrete. This work aimed to intensively investigate the mechanical properties and microstructures of HOACT-generated corrosion products by means of nano-indentation tests, Raman micro-spectrometry, and scanning electron microscopy. The local elastic modulus and nanohardness varied over wide ranges of 6.8–75.2 GPa and 0.38–4.44 GPa, respectively. Goethite, lepidocrocite, maghemite, magnetite, and akageneite phases were identified in the corrosion products. Most regions of the rust layer were composed of a complex and heterogeneous mix of different phases, while some regions were composed of maghemite or akageneite only. The relationship between the micromechanical properties and typical microstructural features is finally discussed at the micro-scale level. It was found that the porosity of corrosion products can significantly influence their micromechanical properties. Full article
Show Figures

Figure 1

31 pages, 45264 KiB  
Review
Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review
by Javid Hussain, Dae-Kyeom Kim, Sangmin Park, Muhammad-Waqas Khalid, Sayed-Sajid Hussain, Bin Lee, Myungsuk Song and Taek-Soo Kim
Materials 2023, 16(13), 4515; https://doi.org/10.3390/ma16134515 - 21 Jun 2023
Cited by 1 | Viewed by 2360
Abstract
Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which [...] Read more.
Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work. Full article
(This article belongs to the Special Issue Design, Synthesis and Characterization of Novel Porous Materials)
Show Figures

Figure 1

20 pages, 17638 KiB  
Article
Analysis of Pore Structure in Cement Pastes with Micronized Natural Zeolite
by Ionut-Ovidiu Toma, George Stoian, Mihai-Marius Rusu, Ioan Ardelean, Nicanor Cimpoeşu and Sergiu-Mihai Alexa-Stratulat
Materials 2023, 16(13), 4500; https://doi.org/10.3390/ma16134500 - 21 Jun 2023
Cited by 1 | Viewed by 1053
Abstract
The continuous development of urban areas around the world led to an increase in construction material use and demand, with concrete seeing significant market uptake. Although significant progress has been made to reduce the environmental impact of concrete, there is still a stringent [...] Read more.
The continuous development of urban areas around the world led to an increase in construction material use and demand, with concrete seeing significant market uptake. Although significant progress has been made to reduce the environmental impact of concrete, there is still a stringent need for improvement. One of the most widely used methods to reduce the environmental impact of the cement industry and the construction industry alike is the replacement of ordinary Portland cement (OPC) by supplementary cementitious materials (SCM). Aside from by-products of industry, SCMs could also come from natural sources. Taking into account the porous structure of zeolites and their contribution to the improvement of the mechanical and durability properties of cement-based materials, the analysis of pore structure in cement pastes incorporating micronized natural zeolite is deemed necessary. In this research, the OPC was replaced by zeolite in three different percentages: 10%, 20%, and 30% by mass. The evolution of pore structure was investigated by means of nuclear magnetic resonance relaxometry at the curing ages of 1, 7, and 28 days. The microstructure of cement pastes was assessed by scanning electron microscopy investigations at 1, 7, 14, 21, and 28 days. The obtained results show that smaller pore sizes are present in cement pastes containing zeolites during the first 7 days. However, at the age of 28 days, the reference mix exhibits a similar pore structure to the mix containing 10% micronized zeolite due to the presence of larger amounts of hydration products. Increasing the replacement percentage to 30% results in larger pores, as indicated by larger values of the relaxation time. Full article
(This article belongs to the Special Issue Durability Studies on the Concrete and Related Composites)
Show Figures

Figure 1

24 pages, 2090 KiB  
Review
Bioengineering Composite Aerogel-Based Scaffolds That Influence Porous Microstructure, Mechanical Properties and In Vivo Regeneration for Bone Tissue Application
by Mariana Souto-Lopes, Maria Helena Fernandes, Fernando Jorge Monteiro and Christiane Laranjo Salgado
Materials 2023, 16(12), 4483; https://doi.org/10.3390/ma16124483 - 20 Jun 2023
Cited by 5 | Viewed by 1376
Abstract
Tissue regeneration of large bone defects is still a clinical challenge. Bone tissue engineering employs biomimetic strategies to produce graft composite scaffolds that resemble the bone extracellular matrix to guide and promote osteogenic differentiation of the host precursor cells. Aerogel-based bone scaffold preparation [...] Read more.
Tissue regeneration of large bone defects is still a clinical challenge. Bone tissue engineering employs biomimetic strategies to produce graft composite scaffolds that resemble the bone extracellular matrix to guide and promote osteogenic differentiation of the host precursor cells. Aerogel-based bone scaffold preparation methods have been increasingly improved to overcome the difficulties in balancing the need for an open highly porous and hierarchically organized microstructure with compression resistance to withstand bone physiological loads, especially in wet conditions. Moreover, these improved aerogel scaffolds have been implanted in vivo in critical bone defects, in order to test their bone regeneration potential. This review addresses recently published studies on aerogel composite (organic/inorganic)-based scaffolds, having in mind the various cutting-edge technologies and raw biomaterials used, as well as the improvements that are still a challenge in terms of their relevant properties. Finally, the lack of 3D in vitro models of bone tissue for regeneration studies is emphasized, as well as the need for further developments to overcome and minimize the requirement for studies using in vivo animal models. Full article
(This article belongs to the Special Issue Advance in Biomaterials for Tissue Engineering)
Show Figures

Graphical abstract

15 pages, 3491 KiB  
Article
Influence of Process Parameter and Alloy Composition on Misoriented Eutectics in Single-Crystal Nickel-Based Superalloys
by Tobias Wittenzellner, Shieren Sumarli, Zijin Dai, Ocson Cocen, Helge Schaar, Fu Wang, Dexin Ma and Andreas Bührig-Polaczek
Materials 2023, 16(12), 4477; https://doi.org/10.3390/ma16124477 - 20 Jun 2023
Viewed by 1171
Abstract
The nucleation and the growth of misoriented micro-structure components in single crystals depend on various process parameters and alloy compositions. Therefore, in this study, the influence of different cooling rates on carbon-free, as well as carbon-containing, nickel-based superalloys was investigated. Castings were carried [...] Read more.
The nucleation and the growth of misoriented micro-structure components in single crystals depend on various process parameters and alloy compositions. Therefore, in this study, the influence of different cooling rates on carbon-free, as well as carbon-containing, nickel-based superalloys was investigated. Castings were carried out using the Bridgman and Bridgman–Stockbarger techniques under industrial and laboratory conditions, respectively, to analyze the impact of temperature gradients and withdrawing rates on six alloy compositions. Here, it was confirmed that eutectics could assume a random crystallographic orientation due to homogeneous nucleation in the residual melt. In carbon-containing alloys, eutectics also nucleated at low surface-to-volume ratio carbides due to the accumulation of eutectic-forming elements around the carbide. This mechanism occurred in alloys with high carbon contents and at low cooling rates. Furthermore, micro-stray grains were formed by the closure of residual melt in Chinese-script-shaped carbides. If the carbide structure was open in the growth direction, they could expand into the interdendritic region. Eutectics additionally nucleated on these micro-stray grains and consequently had a different crystallographic orientation compared with the single crystal. In conclusion, this study revealed the process parameters that induced the formation of misoriented micro-structures, which prevented the formation of these solidification defects by optimizing the cooling rate and the alloy composition. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

17 pages, 4878 KiB  
Article
Specularly-Reflected Wave Guidance of Terahertz Plasmonic Metamaterial Based on the Metal-Wire-Woven Hole Arrays: Functional Design and Application of Transmission Spectral Dips
by Borwen You, Ryuji Iwasa, Po-Lun Chen, Tun-Yao Hung, Chih-Feng Huang, Chin-Ping Yu and Hsin-Ying Lee
Materials 2023, 16(12), 4463; https://doi.org/10.3390/ma16124463 - 19 Jun 2023
Cited by 1 | Viewed by 934
Abstract
Terahertz (THz) plasmonic metamaterial, based on a metal-wire-woven hole array (MWW-HA), is investigated for the distinct power depletion in the transmittance spectrum of 0.1–2 THz, including the reflected waves from metal holes and woven metal wires. Woven metal wires have four orders of [...] Read more.
Terahertz (THz) plasmonic metamaterial, based on a metal-wire-woven hole array (MWW-HA), is investigated for the distinct power depletion in the transmittance spectrum of 0.1–2 THz, including the reflected waves from metal holes and woven metal wires. Woven metal wires have four orders of power depletion, which perform sharp dips in a transmittance spectrum. However, only the first-order dip at the metal–hole–reflection band dominates specular reflection with a phase retardation of approximately π. The optical path length and metal surface conductivity are modified to study MWW-HA specular reflection. This experimental modification shows that the first order of MWW-HA power depletion is sustainable and sensitively correlated with a bending angle of the woven metal wire. Specularly reflected THz waves are successfully presented in hollow-core pipe wave guidance specified from MWW-HA pipe wall reflectivity. Full article
(This article belongs to the Special Issue Design and Applications of Terahertz Metamaterials)
Show Figures

Figure 1

15 pages, 11416 KiB  
Article
A Micromechanical Analysis to the Viscoplastic Behavior of Sintered Silver Joints under Shear Loading
by Kun Ma, Xun Liu, Yameng Sun, Yifan Song, Zheng Feng, Yang Zhou and Sheng Liu
Materials 2023, 16(12), 4472; https://doi.org/10.3390/ma16124472 - 19 Jun 2023
Viewed by 1443
Abstract
Ag paste has been recognized as a promising substitute for Sn/Pb solder in SiC or GaN power electronic devices, owing to its ability to withstand high temperatures and facilitate low-temperature packing. The reliability of these high-power circuits is greatly influenced by the mechanical [...] Read more.
Ag paste has been recognized as a promising substitute for Sn/Pb solder in SiC or GaN power electronic devices, owing to its ability to withstand high temperatures and facilitate low-temperature packing. The reliability of these high-power circuits is greatly influenced by the mechanical properties of sintered Ag paste. However, there exist substantial voids inside the sintered silver layer after sintering, and the conventional macroscopic constitutive models have certain limitation to describe the shear stress–strain relationship of sintered silver materials. To analyze the void evolution and microstructure of sintered silver, Ag composite pastes composed of micron flake silver and nano-silver particles were prepared. The mechanical behaviors were studied at different temperatures (0–125 °C) and strain rates (1 × 10−4–1 × 10−2) for Ag composite pastes. The crystal plastic finite element method (CPFEM) was developed to describe the microstructure evolution and shear behaviors of sintered silver at varied strain rates and ambient temperatures. The model parameters were obtained by fitting experimental shear test data to a representative volume element (RVE) model built on representative volume elements, also known as Voronoi tessellations. The numerical predictions were compared with the experimental data, which showed that the introduced crystal plasticity constitutive model can describe the shear constitutive behavior of a sintered silver specimen with reasonable accuracy. Full article
Show Figures

Figure 1

31 pages, 3411 KiB  
Review
Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries
by Zongle Huang, Wenting Sun, Zhipeng Sun, Rui Ding and Xuebin Wang
Materials 2023, 16(12), 4449; https://doi.org/10.3390/ma16124449 - 18 Jun 2023
Cited by 2 | Viewed by 2014
Abstract
With the escalating demand for electrochemical energy storage, commercial lithium-ion and metal battery systems have been increasingly developed. As an indispensable component of batteries, the separator plays a crucial role in determining their electrochemical performance. Conventional polymer separators have been extensively investigated over [...] Read more.
With the escalating demand for electrochemical energy storage, commercial lithium-ion and metal battery systems have been increasingly developed. As an indispensable component of batteries, the separator plays a crucial role in determining their electrochemical performance. Conventional polymer separators have been extensively investigated over the past few decades. Nevertheless, their inadequate mechanical strength, deficient thermal stability, and constrained porosity constitute serious impediments to the development of electric vehicle power batteries and the progress of energy storage devices. Advanced graphene-based materials have emerged as an adaptable solution to these challenges, owing to their exceptional electrical conductivity, large specific surface area, and outstanding mechanical properties. Incorporating advanced graphene-based materials into the separator of lithium-ion and metal batteries has been identified as an effective strategy to overcome the aforementioned issues and enhance the specific capacity, cycle stability, and safety of batteries. This review paper provides an overview of the preparation of advanced graphene-based materials and their applications in lithium-ion, lithium-metal, and lithium-sulfur batteries. It systematically elaborates on the advantages of advanced graphene-based materials as novel separator materials and outlines future research directions in this field. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

17 pages, 8827 KiB  
Article
Study on the Overmolding Process of Carbon-Fiber-Reinforced Poly (Aryl Ether Ketone) (PAEK)/Poly (Ether Ether Ketone) (PEEK) Thermoplastic Composites
by Ziyue Zhao, Jindong Zhang, Ran Bi, Chunhai Chen, Jianan Yao and Gang Liu
Materials 2023, 16(12), 4456; https://doi.org/10.3390/ma16124456 - 18 Jun 2023
Cited by 2 | Viewed by 1575
Abstract
This paper used poly (aryl ether ketone) (PAEK) resin with a low melting temperature to prepare laminate via the compression-molding process for continuous-carbon-fiber-reinforced composites (CCF-PAEK). Then, poly (ether ether ketone) (PEEK), or a short-carbon-fiber-reinforced poly (ether ether ketone) (SCF-PEEK) with a high melting [...] Read more.
This paper used poly (aryl ether ketone) (PAEK) resin with a low melting temperature to prepare laminate via the compression-molding process for continuous-carbon-fiber-reinforced composites (CCF-PAEK). Then, poly (ether ether ketone) (PEEK), or a short-carbon-fiber-reinforced poly (ether ether ketone) (SCF-PEEK) with a high melting temperature, was injected to prepare the overmolding composites. The shear strength of short beams was used to characterize the interface bonding strength of composites. The results showed that the interface properties of the composite were affected by the interface temperature, which was adjusted by mold temperature. PAEK and PEEK formed a better interfacial bonding at higher interface temperatures. The shear strength of the SCF-PEEK/CCF-PAEK short beam was 77 MPa when the mold temperature was 220 °C and 85 MPa when the mold temperature was raised to 260 °C. The melting temperature did not significantly affect the shear strength of SCF-PEEK/CCF-PAEK short beams. For the melting temperature increasing from 380 °C to 420 °C, the shear strength of the SCF-PEEK/CCF-PAEK short beam ranged from 83 MPa to 87 MPa. The microstructure and failure morphology of the composite was observed using an optical microscope. A molecular dynamics model was established to simulate the adhesion of PAEK and PEEK at different mold temperatures. The interfacial bonding energy and diffusion coefficient agreed with the experimental results. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Graphical abstract

16 pages, 9825 KiB  
Article
Hydrothermal Synthesis of MoS2/SnS2 Photocatalysts with Heterogeneous Structures Enhances Photocatalytic Activity
by Guansheng Ma, Zhigang Pan, Yunfei Liu, Yinong Lu and Yaqiu Tao
Materials 2023, 16(12), 4436; https://doi.org/10.3390/ma16124436 - 16 Jun 2023
Cited by 8 | Viewed by 1552
Abstract
The use of solar photocatalysts to degrade organic pollutants is not only the most promising and efficient strategy to solve pollution problems today but also helps to alleviate the energy crisis. In this work, MoS2/SnS2 heterogeneous structure catalysts were prepared [...] Read more.
The use of solar photocatalysts to degrade organic pollutants is not only the most promising and efficient strategy to solve pollution problems today but also helps to alleviate the energy crisis. In this work, MoS2/SnS2 heterogeneous structure catalysts were prepared by a facile hydrothermal method, and the microstructures and morphologies of these catalysts were investigated using XRD, SEM, TEM, BET, XPS and EIS. Eventually, the optimal synthesis conditions of the catalysts were obtained as 180 °C for 14 h, with the molar ratio of molybdenum to tin atoms being 2:1 and the acidity and alkalinity of the solution adjusted by hydrochloric acid. TEM images of the composite catalysts synthesized under these conditions clearly show that the lamellar SnS2 grows on the surface of MoS2 at a smaller size; high-resolution TEM images show lattice stripe distances of 0.68 nm and 0.30 nm for the (002) plane of MoS2 and the (100) plane of SnS2, respectively. Thus, in terms of microstructure, it is confirmed that the MoS2 and SnS2 in the composite catalyst form a tight heterogeneous structure. The degradation efficiency of the best composite catalyst for methylene blue (MB) was 83.0%, which was 8.3 times higher than that of pure MoS2 and 16.6 times higher than that of pure SnS2. After four cycles, the degradation efficiency of the catalyst was 74.7%, indicating a relatively stable catalytic performance. The increase in activity could be attributed to the improved visible light absorption, the increase in active sites introduced at the exposed edges of MoS2 nanoparticles and the construction of heterojunctions opening up photogenerated carrier transfer pathways and effective charge separation and transfer. This unique heterostructure photocatalyst not only has excellent photocatalytic performance but also has good cycling stability, which provides a simple, convenient and low-cost method for the photocatalytic degradation of organic pollutants. Full article
Show Figures

Figure 1

14 pages, 1284 KiB  
Review
Natural Plant-Derived Compounds in Food and Cosmetics: A Paradigm of Shikonin and Its Derivatives
by Sonia Malik, Patrycja Brudzyńska, Muhammad Rehan Khan, Oksana Sytar, Abdullah Makhzoum and Alina Sionkowska
Materials 2023, 16(12), 4377; https://doi.org/10.3390/ma16124377 - 14 Jun 2023
Cited by 10 | Viewed by 2456
Abstract
Shikonin and its derivatives are the natural naphthoquinone compounds produced in the roots of the Boraginaceae family. These red pigments have been used for a long time in coloring silk, as food colorants, and in the Chinese traditional system of medicines The resurgence [...] Read more.
Shikonin and its derivatives are the natural naphthoquinone compounds produced in the roots of the Boraginaceae family. These red pigments have been used for a long time in coloring silk, as food colorants, and in the Chinese traditional system of medicines The resurgence of public interest in natural and plant-based products has led to this category of compounds being in high demand due to their wide range of biological activities including antioxidant, antitumor, antifungal, anti-inflammatory ones. Different researchers worldwide have reported various applications of shikonin derivatives in the area of pharmacology. Nevertheless, the use of these compounds in the food and cosmetics fields needs to be explored more in order to make them available for commercial utilization in various food industries as a packaging material and to enhance their shelf life without any side effects. Similarly, the antioxidant properties and skin whitening effects of these bioactive molecules may be used successfully in various cosmetic formulations. The present review delves into the updated knowledge on the various properties of shikonin derivatives in relation to food and cosmetics. The pharmacological effects of these bioactive compounds are also highlighted. Based on various studies, it can be concluded that these natural bioactive molecules have potential to be used in different sectors, including functional food, food additives, skin, health care, and to cure various diseases. Further research is required for the sustainable production of these compounds with minimum disturbances to the environment and in order to make them available in the market at an economic price. Simultaneous studies utilizing recent techniques in computational biology, bioinformatics, molecular docking, and artificial intelligence in laboratory and clinical trials would further help in making these potential candidates promising alternative natural bioactive therapeutics with multiple uses. Full article
(This article belongs to the Special Issue Trends in Materials for Cosmetic Formulations)
Show Figures

Figure 1

14 pages, 7656 KiB  
Article
Investigating the Influence of Mg Content Variations on Microstructures, Heat-Treatment, and Mechanical Properties of Al-Cu-Mg Alloys
by Abdul Wahid Shah, Seong-Ho Ha, Jabir Ali Siddique, Bong-Hwan Kim, Young-Ok Yoon, Hyun-Kyu Lim and Shae K. Kim
Materials 2023, 16(12), 4384; https://doi.org/10.3390/ma16124384 - 14 Jun 2023
Cited by 2 | Viewed by 1003
Abstract
The objective of this study was to examine the impact of varying magnesium levels in the α-Al + S + T region of the Al-Cu-Mg ternary phase diagram on the solidification process, microstructure development, tensile properties, and precipitation hardening of Al-Cu-Mg-Ti alloys. The [...] Read more.
The objective of this study was to examine the impact of varying magnesium levels in the α-Al + S + T region of the Al-Cu-Mg ternary phase diagram on the solidification process, microstructure development, tensile properties, and precipitation hardening of Al-Cu-Mg-Ti alloys. The outcomes indicate that alloys with 3% and 5% Mg solidified with the formation of binary eutectic α-Al-Al2CuMg (S) phases, whereas in the alloy with 7% Mg, the solidification process ended with the formation of eutectic α-Al-Mg32(Al, Cu)49 (T) phases. Additionally, a significant number of T precipitates were noticed inside the granular α-Al grains in all alloys. In the as-cast condition, the 5% Mg-added alloy showed the best combination of yield strength (153 MPa) and elongation (2.5%). Upon T6 heat treatment, both tensile strength and elongation increased. The 7% Mg-added alloy had the best results, with a yield strength of 193 MPa and an elongation of 3.4%. DSC analysis revealed that the increased tensile strength observed after the aging treatment was associated with the formation of solute clusters and S″/S′ phases. Full article
Show Figures

Figure 1

12 pages, 3811 KiB  
Article
High-Temperature Liquid–Liquid Phase Transition in Glass-Forming Liquid Pd43Ni20Cu27P10
by Huanyi Zhou, Pengfei Yu, Xiaoyu Miao, Cunjin Peng, Lulu Fu, Conghui Si, Qifang Lu, Shunwei Chen and Xiujun Han
Materials 2023, 16(12), 4353; https://doi.org/10.3390/ma16124353 - 13 Jun 2023
Viewed by 1108
Abstract
Liquid–liquid phase transition (LLPT) is a transition from one liquid state to another with the same composition but distinct structural change, which provides an opportunity to explore the relationships between structural transformation and thermodynamic/kinetic anomalies. Herein the abnormal endothermic LLPT in Pd43 [...] Read more.
Liquid–liquid phase transition (LLPT) is a transition from one liquid state to another with the same composition but distinct structural change, which provides an opportunity to explore the relationships between structural transformation and thermodynamic/kinetic anomalies. Herein the abnormal endothermic LLPT in Pd43Ni20Cu27P10 glass-forming liquid was verified and studied by flash differential scanning calorimetry (FDSC) and ab initio molecular dynamics (AIMD) simulations. The results show that the change of the atomic local structure of the atoms around the Cu-P bond leads to the change in the number of specific clusters <0 2 8 0> and <1 2 5 3>, which leads to the change in the liquid structure. Our findings reveal the structural mechanisms that induce unusual heat-trapping phenomena in liquids and advance the understanding of LLPT. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 8907 KiB  
Article
Mesoporous Silica Modified with Polydopamine and Zinc Ions as a Potential Carrier in the Controlled Release of Mercaptopurine
by Mariusz Sandomierski, Martyna Chojnacka, Maria Długosz, Monika Pokora, Joanna Zwolińska, Łukasz Majchrzycki and Adam Voelkel
Materials 2023, 16(12), 4358; https://doi.org/10.3390/ma16124358 - 13 Jun 2023
Cited by 3 | Viewed by 1175
Abstract
Mercaptopurine is one of the drugs used in the treatment of acute lymphoblastic leukemia. A problem with mercaptopurine therapy is its low bioavailability. This problem can be solved by preparing the carrier that releases the drug in lower doses but over a longer [...] Read more.
Mercaptopurine is one of the drugs used in the treatment of acute lymphoblastic leukemia. A problem with mercaptopurine therapy is its low bioavailability. This problem can be solved by preparing the carrier that releases the drug in lower doses but over a longer period of time. In this work, polydopamine-modified mesoporous silica with adsorbed zinc ions was used as a drug carrier. SEM images confirm the synthesis of spherical carrier particles. The particle size is close to 200 nm, allowing for its use in intravenous delivery. The zeta potential values for the drug carrier indicate that it is not prone to agglomeration. The effectiveness of drug sorption is indicated by a decrease in the zeta potential and new bands in the FT-IR spectra. The drug was released from the carrier for 15 h, so all of the drug can be released during circulation in the bloodstream. The release of the drug from the carrier was sustained, and no ‘burst release’ was observed. The material also released small amounts of zinc, which are important in the treatment of the disease because these ions can prevent some of the adverse effects of chemotherapy. The results obtained are promising and have great application potential. Full article
(This article belongs to the Special Issue Porous Materials for Biomedical Applications)
Show Figures

Figure 1

13 pages, 6973 KiB  
Article
Efficient Lithium-Based Upconversion Nanoparticles for Single-Particle Imaging and Temperature Sensing
by Yahya A. Alzahrani, Abdulaziz Alromaeh and Masfer Alkahtani
Materials 2023, 16(12), 4354; https://doi.org/10.3390/ma16124354 - 13 Jun 2023
Cited by 2 | Viewed by 1069
Abstract
Upconversion Nanoparticles (UCNPs) have attracted exceptional attention due to their great potential in high-contrast, free-background biofluorescence deep tissue imaging and quantum sensing. Most of these interesting studies have been performed using an ensemble of UCNPs as fluorescent probes in bioapplications. Here, we report [...] Read more.
Upconversion Nanoparticles (UCNPs) have attracted exceptional attention due to their great potential in high-contrast, free-background biofluorescence deep tissue imaging and quantum sensing. Most of these interesting studies have been performed using an ensemble of UCNPs as fluorescent probes in bioapplications. Here, we report a synthesis of small and efficient YLiF4:Yb,Er UCNPs for single-particle imaging as well as sensitive optical temperature sensing. The reported particles demonstrated a bright and photostable upconversion emission at a single particle level under a low laser intensity excitation of 20 W/cm2. Furthermore, the synthesized UCNPs were tested and compared to the commonly used two-photon excitation QDs and organic dyes and showed a nine times better performance at a single particle level under the same experimental conditions. In addition, the synthesized UCNPs demonstrated sensitive optical temperature sensing at a single particle level within the biological temperature range. The good optical properties of single YLiF4:Yb,Er UCNPs open an avenue for small and efficient fluorescent markers in imaging and sensing applications. Full article
Show Figures

Figure 1

21 pages, 5983 KiB  
Article
Luminescence Properties of Epitaxial Cu2O Thin Films Electrodeposited on Metallic Substrates and Cu2O Single Crystals
by Laima Trinkler, Dajin Dai, Liuwen Chang, Mitch Ming-Chi Chou, Tzu-Ying Wu, Jevgenijs Gabrusenoks, Dace Nilova, Rihards Ruska, Baiba Berzina and Ramunas Nedzinskas
Materials 2023, 16(12), 4349; https://doi.org/10.3390/ma16124349 - 13 Jun 2023
Cited by 2 | Viewed by 1303
Abstract
The luminescent properties of epitaxial Cu2O thin films were studied in 10–300 K temperature range and compared with the luminescent properties of Cu2O single crystals. Cu2O thin films were deposited epitaxially via the electrodeposition method on either [...] Read more.
The luminescent properties of epitaxial Cu2O thin films were studied in 10–300 K temperature range and compared with the luminescent properties of Cu2O single crystals. Cu2O thin films were deposited epitaxially via the electrodeposition method on either Cu or Ag substrates at different processing parameters, which determined the epitaxial orientation relationships. Cu2O (100) and (111) single crystal samples were cut from a crystal rod grown using the floating zone method. Luminescence spectra of thin films contain the same emission bands as single crystals around 720, 810 and 910 nm, characterizing VO2+, VO+ and VCu defects, correspondingly. Additional emission bands, whose origin is under discussion, are observed around 650–680 nm, while the exciton features are negligibly small. The relative mutual contribution of the emission bands varies depending on the thin film sample. The existence of the domains of crystallites with different orientations determines the polarization of luminescence. The PL of both Cu2O thin films and single crystals is characterized by negative thermal quenching in the low-temperature region; the reason of this phenomenon is discussed. Full article
(This article belongs to the Special Issue Growth and Applications of Oxide Thin Films and Heterostructures)
Show Figures

Figure 1

24 pages, 6781 KiB  
Article
Effect of Carbon Nanofibers on the Strain Rate and Interlaminar Shear Strength of Carbon/Epoxy Composites
by Paulo Santos, Abílio P. Silva and Paulo N. B. Reis
Materials 2023, 16(12), 4332; https://doi.org/10.3390/ma16124332 - 12 Jun 2023
Cited by 3 | Viewed by 1012
Abstract
The static bending properties, different strain rates and interlaminar shear strength (ILSS) of carbon-fiber-reinforced polymers (CFRP) with two epoxy resins nano-enhanced with carbon nanofibers (CNFs) are studied. The effect on ILSS behavior from aggressive environments, such as hydrochloric acid (HCl), sodium hydroxide (NaOH), [...] Read more.
The static bending properties, different strain rates and interlaminar shear strength (ILSS) of carbon-fiber-reinforced polymers (CFRP) with two epoxy resins nano-enhanced with carbon nanofibers (CNFs) are studied. The effect on ILSS behavior from aggressive environments, such as hydrochloric acid (HCl), sodium hydroxide (NaOH), water and temperature, are also analyzed. The laminates with Sicomin resin and 0.75 wt.% CNFs and with Ebalta resin with 0.5 wt.% CNFs show significant improvements in terms of bending stress and bending stiffness, up to 10%. The values of ILLS increase for higher values of strain rate, and in both resins, the nano-enhanced laminates with CNFs show better results to strain-rate sensitivity. A linear relationship between the logarithm of the strain rate was determined to predict the bending stress, bending stiffness, bending strain and ILSS for all laminates. The aggressive solutions significantly affect the ILSS, and their effects are strongly dependent on the concentration. Nevertheless, the alkaline solution promotes higher decreases in ILSS and the addition of CNFs is not beneficial. Regardless of the immersion in water or exposure to high temperatures a decrease in ILSS is observed, but, in this case, CNF content reduces the degradation of the laminates. Full article
(This article belongs to the Special Issue Fatigue and Fracture Behavior of Composite Materials)
Show Figures

Figure 1

27 pages, 2997 KiB  
Review
Optical Second Harmonic Generation on LaAlO3/SrTiO3 Interfaces: A Review
by Andrea Rubano and Domenico Paparo
Materials 2023, 16(12), 4337; https://doi.org/10.3390/ma16124337 - 12 Jun 2023
Cited by 2 | Viewed by 1571
Abstract
As we approach the limits of semiconductor technology, the development of new materials and technologies for the new era in electronics is compelling. Among others, perovskite oxide hetero-structures are anticipated to be the best candidates. As in the case of semiconductors, the interface [...] Read more.
As we approach the limits of semiconductor technology, the development of new materials and technologies for the new era in electronics is compelling. Among others, perovskite oxide hetero-structures are anticipated to be the best candidates. As in the case of semiconductors, the interface between two given materials can have, and often has, very different properties, compared to the corresponding bulk compounds. Perovskite oxides show spectacular interfacial properties due to the the rearrangement of charges, spins, orbitals and the lattice structure itself, at the interface. Lanthanum aluminate and Strontium titanate hetero-structures (LaAlO3/SrTiO3) can be regarded as a prototype of this wider class of interfaces. Both bulk compounds are plain and (relatively) simple wide-bandgap insulators. Despite this, a conductive two-dimensional electron gas (2DEG) is formed right at the interface when a LaAlO3 thickness of n4 unit cells is deposited on a SrTiO3 substrate. The 2DEG is quite thin, being confined in only one or at least very few mono-layers at the interface, on the SrTiO3 side. A very intense and long-lasting study was triggered by this surprising discovery. Many questions regarding the origin and characteristics of the two-dimensional electron gas have been (partially) addressed, others are still open. In particular, this includes the interfacial electronic band structure, the transverse plane spatial homogeneity of the samples and the ultrafast dynamics of the confined carriers. Among a very long list of experimental techniques which have been exploited to study these types of interfaces (ARPES, XPS, AFM, PFM, …and many others), optical Second Harmonic Generation (SHG) was found to be suitable for investigating these types of buried interfaces, thanks to its extreme and selective interface-only sensitivity. The SHG technique has made its contribution to the research in this field in a variety of different and important aspects. In this work we will give a bird’s eye view of the currently available research on this topic and try to sketch out its future perspectives. Full article
Show Figures

Graphical abstract

11 pages, 2063 KiB  
Article
CH3NH3PbI3/Au/Mg0.2Zn0.8O Heterojunction Self-Powered Photodetectors with Suppressed Dark Current and Enhanced Detectivity
by Meijiao Wang, Man Zhao and Dayong Jiang
Materials 2023, 16(12), 4330; https://doi.org/10.3390/ma16124330 - 12 Jun 2023
Cited by 1 | Viewed by 908
Abstract
Interface engineering of the hole transport layer in CH3NH3PbI3 photodetectors has resulted in significantly increased carrier accumulation and dark current as well as energy band mismatch, thus achieving the goal of high-power conversion efficiency. However, the reported heterojunction [...] Read more.
Interface engineering of the hole transport layer in CH3NH3PbI3 photodetectors has resulted in significantly increased carrier accumulation and dark current as well as energy band mismatch, thus achieving the goal of high-power conversion efficiency. However, the reported heterojunction perovskite photodetectors exhibit high dark currents and low responsivities. Herein, heterojunction self-powered photodetectors, composed of p-type CH3NH3PbI3 and n-type Mg0.2Zn0.8O, are prepared through the spin coating and magnetron sputtering. The obtained heterojunctions exhibit a high responsivity of 0.58 A/W, and the EQE of the CH3NH3PbI3/Au/Mg0.2Zn0.8O heterojunction self-powered photodetectors is 10.23 times that of the CH3NH3PbI3/Au photodetectors and 84.51 times that of the Mg0.2ZnO0.8/Au photodetectors. The built-in electric field of the p-n heterojunction significantly suppresses the dark current and improves the responsivity. Remarkably, in the self-supply voltage detection mode, the heterojunction achieves a high responsivity of up to 1.1 mA/W. The dark current of the CH3NH3PbI3/Au/Mg0.2Zn0.8O heterojunction self-powered photodetectors is less than 1.4 × 10−1 pA at 0 V, which is more than 10 times lower than that of the CH3NH3PbI3 photodetectors. The best value of the detectivity is as high as 4.7 × 1012 Jones. Furthermore, the heterojunction self-powered photodetectors exhibit a uniform photodetection response over a wide spectral range from 200 to 850 nm. This work provides guidance for achieving a low dark current and high detectivity for perovskite photodetectors. Full article
(This article belongs to the Special Issue Colloidal Quantum Dots for Nanophotonic Devices)
Show Figures

Figure 1

14 pages, 5168 KiB  
Article
Study on the Compressive Properties of an Elastomeric Porous Cylinder Using 360° Three-Dimensional Digital Image Correlation System
by Wei Sun, Jie Zhao, Xin Li, Zhongda Xu and Zhenning Chen
Materials 2023, 16(12), 4301; https://doi.org/10.3390/ma16124301 - 10 Jun 2023
Cited by 1 | Viewed by 850
Abstract
To study the compressive properties of an elastomeric porous cylinder, a 360° 3D digital image correlation (DIC) system is proposed. This compact vibration isolation table system captures different segments of the object from four different angles and fields of view, enabling a comprehensive [...] Read more.
To study the compressive properties of an elastomeric porous cylinder, a 360° 3D digital image correlation (DIC) system is proposed. This compact vibration isolation table system captures different segments of the object from four different angles and fields of view, enabling a comprehensive measurement of the full surface of the object. To increase the stitching quality, a coarse–fine coordinate matching method is presented. First, a three-dimensional rigid body calibration auxiliary block is employed to track motion trajectory, which enables preliminary matching of four 3D DIC sub-systems. Subsequently, scattered speckle information characteristics guide fine matching. The accuracy of the 360° 3D DIC system is verified through a three-dimensional shape measurement conducted on a cylindrical shell, and the maximum relative error of the shell’s diameter is 0.52%. A thorough investigation of the 3D compressive displacements and strains exerted on the full surface of an elastomeric porous cylinder are investigated. The results demonstrate the robustness of the proposed 360° measuring system on calculating images with voids and indicate a negative Poisson’s ratio of periodically cylindrical porous structures. Full article
Show Figures

Figure 1

26 pages, 3004 KiB  
Article
Quantum Graph Neural Network Models for Materials Search
by Ju-Young Ryu, Eyuel Elala and June-Koo Kevin Rhee
Materials 2023, 16(12), 4300; https://doi.org/10.3390/ma16124300 - 10 Jun 2023
Cited by 1 | Viewed by 2463
Abstract
Inspired by classical graph neural networks, we discuss a novel quantum graph neural network (QGNN) model to predict the chemical and physical properties of molecules and materials. QGNNs were investigated to predict the energy gap between the highest occupied and lowest unoccupied molecular [...] Read more.
Inspired by classical graph neural networks, we discuss a novel quantum graph neural network (QGNN) model to predict the chemical and physical properties of molecules and materials. QGNNs were investigated to predict the energy gap between the highest occupied and lowest unoccupied molecular orbitals of small organic molecules. The models utilize the equivariantly diagonalizable unitary quantum graph circuit (EDU-QGC) framework to allow discrete link features and minimize quantum circuit embedding. The results show QGNNs can achieve lower test loss compared to classical models if a similar number of trainable variables are used, and converge faster in training. This paper also provides a review of classical graph neural network models for materials research and various QGNNs. Full article
Show Figures

Figure 1

9 pages, 3414 KiB  
Article
Achieving Photonic Spin Hall Effect, Spin-Selective Absorption, and Beam Deflection with a Vanadium Dioxide Metasurface
by Pengfei Zhao, Xinyi Ding, Chuang Li and Shiwei Tang
Materials 2023, 16(12), 4259; https://doi.org/10.3390/ma16124259 - 8 Jun 2023
Viewed by 1210
Abstract
Metasurface-based research with phase-change materials has been a prominent and rapidly developing research field that has drawn considerable attention in recent years. In this paper, we proposed a kind of tunable metasurface based on the simplest metal–insulator–metal structure, which can be realized by [...] Read more.
Metasurface-based research with phase-change materials has been a prominent and rapidly developing research field that has drawn considerable attention in recent years. In this paper, we proposed a kind of tunable metasurface based on the simplest metal–insulator–metal structure, which can be realized by the mutual transformation of insulating and metallic states of vanadium dioxide (VO2) and can realize the functional switching of photonic spin Hall effect (PSHE), absorption and beam deflection at the same terahertz frequency. When VO2 is insulating, combined with the geometric phase, the metasurface can realize PSHE. A normal incident linear polarized wave will be split into two spin-polarized reflection beams traveling in two off-normal directions. When VO2 is in the metal state, the designed metasurface can be used as a wave absorber and a deflector, which will completely absorb LCP waves, while the reflected amplitude of RCP waves is 0.828 and deflects. Our design only consists of one layer of artificial structure with two materials and is easy to realize in the experiment compared with the metasurface of a multi-layer structure, which can provide new ideas for the research of tunable multifunctional metasurface. Full article
(This article belongs to the Special Issue Advances in Metamaterials: Structure, Properties and Applications)
Show Figures

Figure 1

15 pages, 8132 KiB  
Article
Polarization-Multiplexed High-Throughput AOTF-Based Spectral Imaging System
by Hao Zhang, Huijie Zhao, Qi Guo, Dong Xu and Wenjie Teng
Materials 2023, 16(12), 4243; https://doi.org/10.3390/ma16124243 - 8 Jun 2023
Cited by 2 | Viewed by 1268
Abstract
Spectral imaging detection using acousto-optical tunable filters (AOTFs) faces a significant challenge of low throughput due to the traditional design that only receives a single polarization light. To overcome this issue, we propose a novel polarization multiplexing design and eliminate the need for [...] Read more.
Spectral imaging detection using acousto-optical tunable filters (AOTFs) faces a significant challenge of low throughput due to the traditional design that only receives a single polarization light. To overcome this issue, we propose a novel polarization multiplexing design and eliminate the need for crossed polarizers in the system. Our design allows for simultaneous collection of ±1 order light from the AOTF device, resulting in a more than two-fold increase in system throughput. Our analysis and experimental results validate the effectiveness of our design in improving system throughput and enhancing the imaging signal-to-noise ratio (SNR) by approximately 8 dB. In addition, AOTF devices used in polarization multiplexing applications require optimized crystal geometry parameter design that does not follow the parallel tangent principle. This paper proposes an optimization strategy for arbitrary AOTF devices which can achieve similar spectral effects. The implications of this work are significant for target detection applications. Full article
(This article belongs to the Special Issue Acousto-Optical Spectral Technologies)
Show Figures

Figure 1

17 pages, 3686 KiB  
Article
Adaptation of a Standard Method for Water Absorption Testing of Stone Materials: The Case of a Hydrophilic Protective Coating
by Gabriel Búrdalo-Salcedo, Indira Rodríguez, María Fernández-Raga, Sagrario Fernández-Raga, Carlos Rodríguez-Fernández and José Miguel González-Domínguez
Materials 2023, 16(12), 4228; https://doi.org/10.3390/ma16124228 - 7 Jun 2023
Cited by 1 | Viewed by 1199
Abstract
The historical stone heritage that we inherit must be passed on to future generations, not only in the same conditions that we found it but, if possible, in better ones. Construction also demands better and more durable materials, often stone. The protection of [...] Read more.
The historical stone heritage that we inherit must be passed on to future generations, not only in the same conditions that we found it but, if possible, in better ones. Construction also demands better and more durable materials, often stone. The protection of these materials requires knowledge of the types of rocks and their physical properties. The characterization of these properties is often standardized to ensure the quality and reproducibility of the protocols. These must be approved by entities whose purpose is to improve the quality and competitiveness of companies and to protect the environment. Standardized water absorption tests could be envisaged to test the effectiveness of certain coatings in protecting natural stone against water penetration, but we found that some steps of these protocols neglect any surface modification of the stones, and hence may not be completely effective when a hydrophilic protective coating (i.e., graphene oxide) is present. In this work, we analyze the UNE 13755/2008 standard for water absorption and propose alternative steps to adapt the norm for use with coated stones. The properties of coated stones may invalidate the interpretation of the results if the standard protocol is applied as is, so here we pay special attention to the characteristics of the coating applied, the type of water used for the test, the materials used, and the intrinsic heterogeneity of the specimens. Full article
(This article belongs to the Special Issue Stone Building Materials: Characterization, Decay, and Conservation)
Show Figures

Figure 1

14 pages, 6647 KiB  
Article
Microstructure and Texture Evolution of the Magnesium Alloy ZMX210 during Rolling and Annealing
by Gerrit Kurz, Ketan Ganne, Maria Nienaber and Jan Bohlen
Materials 2023, 16(12), 4227; https://doi.org/10.3390/ma16124227 - 7 Jun 2023
Viewed by 965
Abstract
The processability during massive deformation of magnesium-wrought products is hampered by the low formability of magnesium alloys. The research results of recent years demonstrate that rare earth elements as alloying elements improve the properties of magnesium sheets, such as formability, strength and corrosion [...] Read more.
The processability during massive deformation of magnesium-wrought products is hampered by the low formability of magnesium alloys. The research results of recent years demonstrate that rare earth elements as alloying elements improve the properties of magnesium sheets, such as formability, strength and corrosion resistance. The substitution of rare earth elements by Ca in Mg-Zn-based alloys results in a similar texture evolution and mechanical behaviour as RE-containing alloys. This work is an approach to understanding the influence of Mn as an alloying element to increase the strength of a Mg-Zn-Ca alloy. For this aim, a Mg-Zn-Mn-Ca alloy is used to investigate how Mn affects the process parameters during rolling and the subsequent heat treatment. The microstructure, texture and mechanical properties of rolled sheets and heat treatment at different temperatures are compared. The outcome of casting and the thermo-mechanical treatment are used to discuss how to adapt the mechanical properties of magnesium alloy ZMX210. The alloy ZMX210 behaves very similarly to the ternary Mg-Zn-Ca alloys. The influence of the process parameter rolling temperature on the properties of the ZMX210 sheets was investigated. The rolling experiments show that the ZMX210 alloy has a relatively narrow process window. Full article
Show Figures

Figure 1

12 pages, 1873 KiB  
Article
High-Entropy Perovskite Thin Film in the Gd-Nd-Sm-La-Y-Co System: Deposition, Structure and Optoelectronic Properties
by Pawel A. Krawczyk, Wojciech Salamon, Mateusz Marzec, Michał Szuwarzyński, Jakub Pawlak, Jarosław Kanak, Małgorzata Dziubaniuk, Władyslaw W. Kubiak and Antoni Żywczak
Materials 2023, 16(12), 4210; https://doi.org/10.3390/ma16124210 - 6 Jun 2023
Cited by 2 | Viewed by 4758
Abstract
Multicomponent equimolar perovskite oxides (ME-POs) have recently emerged as a highly promising class of materials with unique synergistic effects, making them well-suited for applications in such areas as photovoltaics and micro- and nanoelectronics. High-entropy perovskite oxide thin film in the (Gd0.2Nd [...] Read more.
Multicomponent equimolar perovskite oxides (ME-POs) have recently emerged as a highly promising class of materials with unique synergistic effects, making them well-suited for applications in such areas as photovoltaics and micro- and nanoelectronics. High-entropy perovskite oxide thin film in the (Gd0.2Nd0.2La0.2Sm0.2Y0.2)CoO3 (RECO, where RE = Gd0.2Nd0.2La0.2Sm0.2Y0.2, C = Co, and O = O3) system was synthesized via pulsed laser deposition. The crystalline growth in an amorphous fused quartz substrate and single-phase composition of the synthesized film was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Surface conductivity and activation energy were determined using a novel technique implementing atomic force microscopy (AFM) in combination with current mapping. The optoelectronic properties of the deposited RECO thin film were characterized using UV/VIS spectroscopy. The energy gap and nature of optical transitions were calculated using the Inverse Logarithmic Derivative (ILD) and four-point resistance method, suggesting direct allowed transitions with altered dispersions. The narrow energy gap of RECO, along with its relatively high absorption properties in the visible spectrum, positions it as a promising candidate for further exploration in the domains of low-energy infrared optics and electrocatalysis. Full article
Show Figures

Graphical abstract

19 pages, 8738 KiB  
Article
Optimized Gingiva Cell Behavior on Dental Zirconia as a Result of Atmospheric Argon Plasma Activation
by Susanne Staehlke, Jakob Brief, Volkmar Senz, Thomas Eickner and J. Barbara Nebe
Materials 2023, 16(12), 4203; https://doi.org/10.3390/ma16124203 - 6 Jun 2023
Cited by 2 | Viewed by 1097
Abstract
Several physico-chemical modifications have been developed to improve cell contact with prosthetic oral implant surfaces. The activation with non-thermal plasmas was one option. Previous studies found that gingiva fibroblasts on laser-microstructured ceramics were hindered in their migration into cavities. However, after argon (Ar) [...] Read more.
Several physico-chemical modifications have been developed to improve cell contact with prosthetic oral implant surfaces. The activation with non-thermal plasmas was one option. Previous studies found that gingiva fibroblasts on laser-microstructured ceramics were hindered in their migration into cavities. However, after argon (Ar) plasma activation, the cells concentrated in and around the niches. The change in surface properties of zirconia and, subsequently, the effect on cell behavior is unclear. In this study, polished zirconia discs were activated by atmospheric pressure Ar plasma using the kINPen®09 jet for 1 min. Surfaces were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and water contact angle. In vitro studies with human gingival fibroblasts (HGF-1) focused on spreading, actin cytoskeleton organization, and calcium ion signaling within 24 h. After Ar plasma activation, surfaces were more hydrophilic. XPS revealed decreased carbon and increased oxygen, zirconia, and yttrium content after Ar plasma. The Ar plasma activation boosted the spreading (2 h), and HGF-1 cells formed strong actin filaments with pronounced lamellipodia. Interestingly, the cells’ calcium ion signaling was also promoted. Therefore, argon plasma activation of zirconia seems to be a valuable tool to bioactivate the surface for optimal surface occupation by cells and active cell signaling. Full article
(This article belongs to the Special Issue From Conventional towards Modern Biomaterials in Dentistry)
Show Figures

Graphical abstract

15 pages, 4146 KiB  
Article
Energy Equivalence Based Estimation of Hybrid Composites Mechanical Properties
by Anna Jerzyńska and Halina Egner
Materials 2023, 16(12), 4215; https://doi.org/10.3390/ma16124215 - 6 Jun 2023
Viewed by 1087
Abstract
Hybrid composites, usually combining natural and synthetic reinforcing filaments, have gained a lot of attention due to their better properties than traditional two-component materials. For structural applications of hybrid composites, there is a need to precisely determine their mechanical properties on the basis [...] Read more.
Hybrid composites, usually combining natural and synthetic reinforcing filaments, have gained a lot of attention due to their better properties than traditional two-component materials. For structural applications of hybrid composites, there is a need to precisely determine their mechanical properties on the basis of the mechanical properties, volume fractions, and geometrical distributions of constituent materials. The most common methods, such as the rule of mixture, are inaccurate. More advanced methods, giving better results in the case of classic composites, are difficult to apply in the case of several types of reinforcement. In the present research, a new estimation method is considered, which is simple and accurate. The approach is based on the definition of two configurations: the real, heterogeneous, multi-phase hybrid composite configuration, and the fictitious, quasi-homogeneous one, in which the inclusions are “smeared out” over a representative volume. A hypothesis of the internal strain energy equivalence between the two configurations is formulated. The effect of reinforcing inclusions on the mechanical properties of a matrix material is expressed by functions of constituent properties, their volume fractions, and geometrical distribution. The analytical formulas are derived for an isotropic case of a hybrid composite reinforced with randomly distributed particles. The validation of the proposed approach is performed by comparing the estimated hybrid composite properties with the results of other methods, and with experimental data available in the literature. It is shown that a very good agreement is obtained between experimentally measured hybrid composite properties and their predictions resulting from the proposed estimation method. The estimation errors are much lower than the errors of other methods. Full article
(This article belongs to the Special Issue Research on Material Durability and Mechanical Properties)
Show Figures

Figure 1

15 pages, 6503 KiB  
Article
Structural Evolution of Polyaluminocarbosilane during the Polymer–Ceramic Conversion Process
by Fucheng Xie, Yangpeng Duan, Gaoming Mo, Qing Huang and Zhengren Huang
Materials 2023, 16(11), 4172; https://doi.org/10.3390/ma16114172 - 3 Jun 2023
Cited by 2 | Viewed by 1119
Abstract
Polyaluminocarbosilane (PACS) is an important precursor for silicon carbide (SiC) fibers and ceramics. The structure of PACS and the oxidative curing, thermal pyrolysis, and sintering effect of Al have already been substantially studied. However, the structural evolution of polyaluminocarbosilane itself during the polymer–ceramic [...] Read more.
Polyaluminocarbosilane (PACS) is an important precursor for silicon carbide (SiC) fibers and ceramics. The structure of PACS and the oxidative curing, thermal pyrolysis, and sintering effect of Al have already been substantially studied. However, the structural evolution of polyaluminocarbosilane itself during the polymer–ceramic conversion process, especially the changes in the structure forms of Al, are still pending questions. In this study, PACS with a higher Al content is synthesized and the above questions are elaborately investigated by FTIR, NMR, Raman, XPS, XRD, and TEM analyses. It is found that up to 800–900 °C the amorphous SiOxCy, AlOxSiy, and free carbon phases are initially formed. With increasing temperature, the SiOxCy phase partially separates into SiO2 then reacts with free carbon. The AlOxSiy phase changes into Al3C4 and Al2O3 by reaction with free carbon at around 1100 °C. The complicated reactions between Al3C4, Al2O3, and free carbon occur, leading to the formation of the Al4O4C and Al2OC phases at around 1600 °C, which then react with the SiC and free carbon, resulting in the formation of the Al4SiC4 phase at 1800 °C. The amorphous carbon phase grows with the increasing temperature, which then turns into a crystalline graphitic structure at around 1600 °C. The growth of β-SiC is inhibited by the existence of the Al4O4C, Al2OC, and Al4SiC4 phases, which also favor the formation of α-SiC at 1600–1800 °C. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

22 pages, 9006 KiB  
Article
Modelling of Fatigue Microfracture in Porous Sintered Steel Using a Phase-Field Method
by Zoran Tomić, Tomislav Jarak, Tomislav Lesičar, Nenad Gubeljak and Zdenko Tonković
Materials 2023, 16(11), 4174; https://doi.org/10.3390/ma16114174 - 3 Jun 2023
Cited by 2 | Viewed by 1364
Abstract
Porosity in sintered materials negatively affects its fatigue properties. In investigating its influence, the application of numerical simulations reduces experimental testing, but they are computationally very expensive. In this work, the application of a relatively simple numerical phase-field (PF) model for fatigue fracture [...] Read more.
Porosity in sintered materials negatively affects its fatigue properties. In investigating its influence, the application of numerical simulations reduces experimental testing, but they are computationally very expensive. In this work, the application of a relatively simple numerical phase-field (PF) model for fatigue fracture is proposed for estimation of the fatigue life of sintered steels by analysis of microcrack evolution. A model for brittle fracture and a new cycle skipping algorithm are used to reduce computational costs. A multiphase sintered steel, consisting of bainite and ferrite, is examined. Detailed finite element models of the microstructure are generated from high-resolution metallography images. Microstructural elastic material parameters are obtained using instrumented indentation, while fracture model parameters are estimated from experimental S–N curves. Numerical results obtained for monotonous and fatigue fracture are compared with data from experimental measurements. The proposed methodology is able to capture some important fracture phenomena in the considered material, such as the initiation of the first damage in the microstructure, the forming of larger cracks at the macroscopic level, and the total life in a high cycle fatigue regime. However, due to the adopted simplifications, the model is not suitable for predicting accurate and realistic crack patterns of microcracks. Full article
Show Figures

Figure 1

13 pages, 4293 KiB  
Article
The Effect of Preconditioning Temperature on Gas Permeability of Alkali-Activated Concretes
by Patrycja Duży, Marta Choinska Colombel, Izabela Hager and Ouali Amiri
Materials 2023, 16(11), 4143; https://doi.org/10.3390/ma16114143 - 2 Jun 2023
Viewed by 927
Abstract
Alkali-activated materials (AAM) are binders that are considered an eco-friendly alternative to conventional binders based on Portland cement. The utilization of industrial wastes such as fly ash (FA) and ground granulated blast furnace slag (GGBFS) instead of cement enables a reduction of the [...] Read more.
Alkali-activated materials (AAM) are binders that are considered an eco-friendly alternative to conventional binders based on Portland cement. The utilization of industrial wastes such as fly ash (FA) and ground granulated blast furnace slag (GGBFS) instead of cement enables a reduction of the CO2 emissions caused by clinker production. Although researchers are highly interested in the use of alkali-activated concrete (AAC) in construction, its application remains very restricted. As many standards for hydraulic concrete’s gas permeability evaluation require a specific drying temperature, we would like to emphasize the sensitivity of AAM to such preconditioning. Therefore, this paper presents the impact of different drying temperatures on gas permeability and pore structure for AAC5, AAC20, and AAC35, which contain alkali-activated (AA) binders made from blends of FA and GGBFS in slag proportions of 5%, 20%, and 35% by the mass of FA, respectively. The preconditioning of samples was performed at 20, 40, 80, and 105 °C, up to the obtainment of constant mass, and then gas permeability was evaluated, as well as porosity and pore size distribution (mercury intrusion porosity (MIP) for 20 and 105 °C). The experimental results demonstrate up to a three-percentage-point rise in the total porosity of low-slag concrete after 105 °C in comparison to 20 °C, as well as a significant increase in gas permeability, reaching up to 30-fold amplification, contingent upon the matrix composition. Notably, the alteration in pore size distribution, influenced by the preconditioning temperature, exhibits a substantial impact. The results highlight an important sensitivity of permeability to thermal preconditioning. Full article
(This article belongs to the Special Issue Building Materials Engineering and Innovative Sustainable Materials)
Show Figures

Figure 1

14 pages, 2395 KiB  
Article
Structure, Antiferroelectricity and Energy-Storage Performance of Lead Hafnate in a Wide Temperature Range
by Vidhi Chauhan, Bi-Xia Wang and Zuo-Guang Ye
Materials 2023, 16(11), 4144; https://doi.org/10.3390/ma16114144 - 2 Jun 2023
Cited by 4 | Viewed by 1202
Abstract
Lead hafnate (PbHfO3) has attracted a lot of renewed interest due to its potential as antiferroelectric (AFE) material for energy storage. However, its room temperature (RT) energy-storage performance has not been well established and no reports on the energy-storage feature of [...] Read more.
Lead hafnate (PbHfO3) has attracted a lot of renewed interest due to its potential as antiferroelectric (AFE) material for energy storage. However, its room temperature (RT) energy-storage performance has not been well established and no reports on the energy-storage feature of its high-temperature intermediate phase (IM) are available. In this work, high-quality PbHfO3 ceramics were prepared via the solid-state synthesis route. Based on high-temperature X-ray diffraction data, the IM of PbHfO3 was found to be orthorhombic, Imma space group, with antiparallel alignment of Pb2+ ions along the [001]cubic directions. The polarization–electric field (P–E) relation of PbHfO3 is displayed at RT as well as in the temperature range of the IM. A typical AFE loop revealed an optimal recoverable energy-storage density (Wrec) of 2.7 J/cm3, which is 286% higher than the reported data with an efficiency (η) of 65% at 235 kV/cm at RT. A relatively high Wrec value of 0.7 J/cm3 was found at 190 °C with an η of 89% at 65 kV/cm. These results demonstrate that PbHfO3 is a prototypical AFE from RT up to 200 °C, making it a suitable material for energy-storage applications in a wide temperature range. Full article
(This article belongs to the Special Issue Locally Ordered Materials)
Show Figures

Figure 1

16 pages, 10300 KiB  
Article
Investigation of Pre-Aged Hardening Single-Point Incremental Forming Process and Mechanical Properties of AA6061 Aluminum Alloy
by Yao Zhang, Zhichao Zhang, Yan Li, Lan Hu, Qiu Pang and Zhili Hu
Materials 2023, 16(11), 4154; https://doi.org/10.3390/ma16114154 - 2 Jun 2023
Cited by 1 | Viewed by 1325
Abstract
Currently, the single-point incremental forming process often faces issues such as insufficient formability of the sheet metal and low strength of the formed parts. To address this problem, this study proposes a pre-aged hardening single-point incremental forming (PH-SPIF) process that offers several notable [...] Read more.
Currently, the single-point incremental forming process often faces issues such as insufficient formability of the sheet metal and low strength of the formed parts. To address this problem, this study proposes a pre-aged hardening single-point incremental forming (PH-SPIF) process that offers several notable benefits, including shortened procedures, reduced energy consumption, and increased sheet forming limits while maintaining high mechanical properties and geometric accuracy in formed components. To investigate forming limits, an Al-Mg-Si alloy was used to form different wall angles during the PH-SPIF process. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) analyses were conducted to characterize microstructure evolution during the PH-SPIF process. The results demonstrate that the PH-SPIF process can achieve a forming limit angle of up to 62°, with excellent geometric accuracy, and hardened component hardness reaching up to 128.5 HV, surpassing the strength of the AA6061-T6 alloy. The DSC and TEM analyses reveal numerous pre-existing thermostable GP zones in the pre-aged hardening alloys, which undergo transformation into dispersed β” phases during the forming procedure, leading to the entanglement of numerous dislocations. The dual effects of phase transformation and plastic deformation during the PH-SPIF process significantly contribute to the desirable mechanical properties of the formed components. Full article
Show Figures

Figure 1

24 pages, 9973 KiB  
Article
Prediction Model Based on DoE and FTIR Data to Control Fast Setting and Early Shrinkage of Alkaline-Activated Slag/Silica Fume Blended Cementitious Material
by Tim Schade and Bernhard Middendorf
Materials 2023, 16(11), 4104; https://doi.org/10.3390/ma16114104 - 31 May 2023
Viewed by 948
Abstract
This study aims to develop a material-saving performance prediction model for fast-hardening alkali-activated slag/silica fume blended pastes. The hydration process in the early stage and the microstructural properties after 24 h were analyzed using design of experiments (DoE). The experimental results show that [...] Read more.
This study aims to develop a material-saving performance prediction model for fast-hardening alkali-activated slag/silica fume blended pastes. The hydration process in the early stage and the microstructural properties after 24 h were analyzed using design of experiments (DoE). The experimental results show that the curing time and the FTIR wavenumber of the Si-O-T (T = Al, Si) bond in the band range of 900–1000 cm−1 after 24 h can be predicted accurately. In detailed investigations, low wavenumbers from FTIR analysis were found to correlate with reduced shrinkage. The activator exerts a quadratic and not a silica modulus-related conditioned linear influence on the performance properties. Consequently, the prediction model based on FTIR measurements proved to be suitable in evaluation tests for predicting the material properties of those binders in the building chemistry sector. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 43738 KiB  
Article
Atomic Layer Deposition of HfO2 Films Using TDMAH and Water or Ammonia Water
by Sylwia Gieraltowska, Lukasz Wachnicki, Piotr Dluzewski, Bartlomiej S. Witkowski, Marek Godlewski and Elzbieta Guziewicz
Materials 2023, 16(11), 4077; https://doi.org/10.3390/ma16114077 - 30 May 2023
Viewed by 1547
Abstract
Atomic layer deposition of HfO2 from TDMAH and water or ammonia water at different temperatures below 400 °C is studied. Growth per cycle (GPC) has been recorded in the range of 1.2–1.6 Å. At low temperatures (≤100 °C), the films grew faster [...] Read more.
Atomic layer deposition of HfO2 from TDMAH and water or ammonia water at different temperatures below 400 °C is studied. Growth per cycle (GPC) has been recorded in the range of 1.2–1.6 Å. At low temperatures (≤100 °C), the films grew faster and are structurally more disordered, amorphous and/or polycrystalline with crystal sizes up to 29 nm, compared to the films grown at higher temperatures. At high temperatures of 240 °C, the films are better crystallized with crystal sizes of 38–40 nm but grew slower. GPC, dielectric constant, and crystalline structure are improved by depositing at temperatures above 300 °C. The dielectric constant value and the roughness of the films have been determined for monoclinic HfO2, a mixture of orthorhombic and monoclinic, as well as for amorphous HfO2. Moreover, the present study shows that the increase in the dielectric constant of the films can be achieved by using ammonia water as an oxygen precursor in the ALD growth. The detailed investigations of the relationship between HfO2 properties and growth parameters presented here have not been reported so far, and the possibilities of fine-tuning and controlling the structure and performance of these layers are still being sought. Full article
(This article belongs to the Special Issue Atomic Layer Deposition: From Fundamentals to Applications)
Show Figures

Figure 1

20 pages, 6382 KiB  
Article
Accelerated Direct Carbonation of Steel Slag and Cement Kiln Dust: An Industrial Symbiosis Strategy Applied in the Bergamo–Brescia Area
by Giada Biava, Annalisa Zacco, Alessandra Zanoletti, Giampiero Pasquale Sorrentino, Claudia Capone, Antonio Princigallo, Laura Eleonora Depero and Elza Bontempi
Materials 2023, 16(11), 4055; https://doi.org/10.3390/ma16114055 - 29 May 2023
Cited by 3 | Viewed by 1939
Abstract
The carbonation of alkaline industrial wastes is a pressing issue that is aimed at reducing CO2 emissions while promoting a circular economy. In this study, we explored the direct aqueous carbonation of steel slag and cement kiln dust in a newly developed [...] Read more.
The carbonation of alkaline industrial wastes is a pressing issue that is aimed at reducing CO2 emissions while promoting a circular economy. In this study, we explored the direct aqueous carbonation of steel slag and cement kiln dust in a newly developed pressurized reactor that operated at 15 bar. The goal was to identify the optimal reaction conditions and the most promising by-products that can be reused in their carbonated form, particularly in the construction industry. We proposed a novel, synergistic strategy for managing industrial waste and reducing the use of virgin raw materials among industries located in Lombardy, Italy, specifically Bergamo–Brescia. Our initial findings are highly promising, with argon oxygen decarburization (AOD) slag and black slag (sample 3) producing the best results (70 g CO2/kg slag and 76 g CO2/kg slag, respectively) compared with the other samples. Cement kiln dust (CKD) yielded 48 g CO2/kg CKD. We showed that the high concentration of CaO in the waste facilitated carbonation, while the presence of Fe compounds in large amounts caused the material to be less soluble in water, affecting the homogeneity of the slurry. Full article
(This article belongs to the Special Issue Sustainable Advanced Composite Materials for the Built Environment)
Show Figures

Graphical abstract

13 pages, 2969 KiB  
Article
Highly Efficient ITO-Free Quantum-Dot Light Emitting Diodes via Solution-Processed PEDOT:PSS Semitransparent Electrode
by Jin Hyun Ma, Min Gye Kim, Jun Hyung Jeong, Min Ho Park, Hyoun Ji Ha, Seong Jae Kang and Seong Jun Kang
Materials 2023, 16(11), 4053; https://doi.org/10.3390/ma16114053 - 29 May 2023
Cited by 2 | Viewed by 1667
Abstract
We present a study on the potential use of sulfuric acid-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a viable alternative to indium tin oxide (ITO) electrodes in quantum dot light-emitting diodes (QLEDs). ITO, despite its high conductivity and transparency, is known for its disadvantages of [...] Read more.
We present a study on the potential use of sulfuric acid-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a viable alternative to indium tin oxide (ITO) electrodes in quantum dot light-emitting diodes (QLEDs). ITO, despite its high conductivity and transparency, is known for its disadvantages of being brittle, fragile, and expensive. Furthermore, due to the high hole injection barrier of quantum dots, the need for electrodes with a higher work function is becoming more significant. In this report, we present solution-processed, sulfuric acid-treated PEDOT:PSS electrodes for highly efficient QLEDs. The high work function of the PEDOT:PSS electrodes improved the performance of the QLEDs by facilitating hole injection. We demonstrated the recrystallization and conductivity enhancement of PEDOT:PSS upon sulfuric acid treatment using X-ray photoelectron spectroscopy and Hall measurement. Ultraviolet photoelectron spectroscopy (UPS) analysis of QLEDs showed that sulfuric acid-treated PEDOT:PSS exhibited a higher work function than ITO. The maximum current efficiency and external quantum efficiency based on the PEDOT:PSS electrode QLEDs were measured as 46.53 cd/A and 11.01%, which were three times greater than ITO electrode QLEDs. These findings suggest that PEDOT:PSS can serve as a promising replacement for ITO electrodes in the development of ITO-free QLED devices. Full article
(This article belongs to the Special Issue Quantum Dots for Optoelectronic Devices)
Show Figures

Figure 1

13 pages, 2510 KiB  
Article
Properties of Accelerating Edge Dislocations in Arbitrary Slip Systems with Reflection Symmetry
by Daniel N. Blaschke, Khanh Dang, Saryu J. Fensin and Darby J. Luscher
Materials 2023, 16(11), 4019; https://doi.org/10.3390/ma16114019 - 27 May 2023
Viewed by 1043
Abstract
We discuss the theoretical solution to the differential equations governing accelerating edge dislocations in anisotropic crystals. This is an important prerequisite to understanding high-speed dislocation motion, including an open question about the existence of transonic dislocation speeds, and subsequently high-rate plastic deformation in [...] Read more.
We discuss the theoretical solution to the differential equations governing accelerating edge dislocations in anisotropic crystals. This is an important prerequisite to understanding high-speed dislocation motion, including an open question about the existence of transonic dislocation speeds, and subsequently high-rate plastic deformation in metals and other crystals. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

14 pages, 5467 KiB  
Article
Interfacial Modification and Bending Performance of 3D Orthogonal Woven Composites with Basalt Filament Yarns
by Lihua Lyu, Fangfang Wen, Tingting Lyu, Xinghai Zhou and Yuan Gao
Materials 2023, 16(11), 4015; https://doi.org/10.3390/ma16114015 - 27 May 2023
Viewed by 850
Abstract
To improve their interfacial properties, 3D orthogonal woven fabrics with basalt filament yarns were modified with functionalized carboxylated carbon nanotubes (KH570-MWCNTs) and polydopamine (PDA). Fourier infrared spectroscopy (FT-IR) analysis and scanning electron microscopy (SEM) testing were used. It was demonstrated that both methods [...] Read more.
To improve their interfacial properties, 3D orthogonal woven fabrics with basalt filament yarns were modified with functionalized carboxylated carbon nanotubes (KH570-MWCNTs) and polydopamine (PDA). Fourier infrared spectroscopy (FT-IR) analysis and scanning electron microscopy (SEM) testing were used. It was demonstrated that both methods could successfully modify basalt fiber (BF) 3D woven fabrics. The 3D orthogonal woven composites (3DOWC) were produced with epoxy resin and 3D orthogonal woven fabrics as raw material by the VARTM molding process. The bending properties of the 3DOWC were tested and analyzed by experimental and finite element analysis methods. The results showed that the bending properties of the 3DOWC modified by KH570-MWCNTs and PDA were significantly improved, and the maximum bending loads were increased by 31.5% and 31.0%. The findings of the finite element simulation and the experiment results were in good agreement, and the simulation error value was 3.37%. The correctness of the finite element simulation results and the model’s validity further reveal the material’s damage situation and damage mechanism in the bending process. Full article
(This article belongs to the Special Issue Advances in the Textile for Fashion and Biomedical Industry)
Show Figures

Figure 1

Back to TopTop