Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3307 KiB  
Article
A Plant Biostimulant from Ascophyllum nodosum Potentiates Plant Growth Promotion and Stress Protection Activity of Pseudomonas protegens CHA0
by Jai Singh Patel, Vinodkumar Selvaraj, Prashant More, Ramin Bahmani, Tudor Borza and Balakrishnan Prithiviraj
Plants 2023, 12(6), 1208; https://doi.org/10.3390/plants12061208 - 7 Mar 2023
Cited by 7 | Viewed by 2243
Abstract
Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction, and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE), and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by inducing tolerance against [...] Read more.
Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction, and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE), and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by inducing tolerance against salt stress. However, the influence of ANE on P. protegens CHA0 secretion, and the combined effects of these two biostimulants on plant growth, are not known. Fucoidan, alginate, and mannitol are abundant components of brown algae and of ANE. Reported here are the effects of a commercial formulation of ANE, fucoidan, alginate, and mannitol, on pea (Pisum sativum), and on the plant growth-promoting activity of P. protegens CHA0. In most situations, ANE and fucoidan increased indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and hydrogen cyanide (HCN) production by P. protegens CHA0. Colonization of pea roots by P. protegens CHA0 was found to be increased mostly by ANE and fucoidan in normal conditions and under salt stress. Applications of P. protegens CHA0 combined with ANE, or with fucoidan, alginate, and mannitol, generally augmented root and shoot growth in normal and salinity stress conditions. Real-time quantitative PCR analyses of P. protegens revealed that, in many instances, ANE and fucoidan enhanced the expression of several genes involved in chemotaxis (cheW and WspR), pyoverdine production (pvdS), and HCN production (hcnA), but gene expression patterns overlapped only occasionally those of growth-promoting parameters. Overall, the increased colonization and the enhanced activities of P. protegens CHA0 in the presence of ANE and its components mitigated salinity stress in pea. Among treatments, ANE and fucoidan were found responsible for most of the increased activities of P. protegens CHA0 and the improved plant growth. Full article
(This article belongs to the Special Issue Salinity Stress Tolerance in Plants)
Show Figures

Figure 1

25 pages, 1647 KiB  
Article
Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal(loid)s and Rare Earth Elements
by Mitra Azizi, Angel Faz, Raul Zornoza, Silvia Martinez-Martinez and Jose A. Acosta
Plants 2023, 12(6), 1219; https://doi.org/10.3390/plants12061219 - 7 Mar 2023
Cited by 8 | Viewed by 2970
Abstract
Mining activity has an adverse impact on the surrounding ecosystem, especially via the release of potentially toxic elements (PTEs); therefore, there is an urgent need to develop efficient technologies to remediate these ecosystems, especially soils. Phytoremediation can be potentially used to remediate contaminated [...] Read more.
Mining activity has an adverse impact on the surrounding ecosystem, especially via the release of potentially toxic elements (PTEs); therefore, there is an urgent need to develop efficient technologies to remediate these ecosystems, especially soils. Phytoremediation can be potentially used to remediate contaminated areas by potentially toxic elements. However, in soils affected by polymetallic contamination, including metals, metalloids, and rare earth elements (REEs), it is necessary to evaluate the behavior of these toxic elements in the soil-plant system, which will allow the selection of the most appropriate native plants with phytoremediation potential to be used in phytoremediation programs. This study was conducted to evaluate the level of contamination of 29 metal(loid)s and REEs in two natural soils and four native plant species (Salsola oppositifolia, Stipa tenacissima, Piptatherum miliaceum, and Artemisia herba-alba) growing in the vicinity of a Pb-(Ag)-Zn mine and asses their phytoextraction and phytostabilization potential. The results indicated that very high soil contamination was found for Zn, Fe, Al, Pb, Cd, As, Se, and Th, considerable to moderate contamination for Cu, Sb, Cs, Ge Ni, Cr, and Co, and low contamination for Rb, V, Sr, Zr, Sn, Y, Bi and U in the study area, dependent of sampling place. Available fraction of PTEs and REEs in comparison to total concentration showed a wide range from 0% for Sn to more than 10% for Pb, Cd, and Mn. Soil properties such as pH, electrical conductivity, and clay content affect the total, available, and water-soluble concentrations of different PTEs and REEs. The results obtained from plant analysis showed that the concentration of PTEs in shoots could be at a toxicity level (Zn, Pb, and Cr), lower than toxic but more than sufficient or natural concentration accepted in plants (Cd, Ni, and Cu) or at an acceptable level (e.g., V, As, Co, and Mn). Accumulation of PTEs and REEs in plants and the translocation from root to shoot varied between plant species and sampling soils. A. herba-alba is the least efficient plant in the phytoremediation process; P. miliaceum was a good candidate for phytostabilization of Pb, Cd, Cu, V, and As, and S. oppositifolia for phytoextraction of Zn, Cd, Mn, and Mo. All plant species except A. herba-alba could be potential candidates for phytostabilization of REEs, while none of the plant species has the potential to be used in the phytoextraction of REEs. Full article
(This article belongs to the Special Issue Phytomonitoring and Phytoremediation of Environmental Pollutants)
Show Figures

Figure 1

18 pages, 698 KiB  
Review
Turning Garlic into a Modern Crop: State of the Art and Perspectives
by Ricardo Parreño, Eva Rodríguez-Alcocer, César Martínez-Guardiola, Lucía Carrasco, Purificación Castillo, Vicent Arbona, Sara Jover-Gil and Héctor Candela
Plants 2023, 12(6), 1212; https://doi.org/10.3390/plants12061212 - 7 Mar 2023
Cited by 8 | Viewed by 6301
Abstract
Garlic is cultivated worldwide for the value of its bulbs, but its cultivation is challenged by the infertility of commercial cultivars and the accumulation of pathogens over time, which occurs as a consequence of vegetative (clonal) propagation. In this review, we summarize the [...] Read more.
Garlic is cultivated worldwide for the value of its bulbs, but its cultivation is challenged by the infertility of commercial cultivars and the accumulation of pathogens over time, which occurs as a consequence of vegetative (clonal) propagation. In this review, we summarize the state of the art of garlic genetics and genomics, highlighting recent developments that will lead to its development as a modern crop, including the restoration of sexual reproduction in some garlic strains. The set of tools available to the breeder currently includes a chromosome-scale assembly of the garlic genome and multiple transcriptome assemblies that are furthering our understanding of the molecular processes underlying important traits like the infertility, the induction of flowering and bulbing, the organoleptic properties and resistance to various pathogens. Full article
Show Figures

Figure 1

14 pages, 8040 KiB  
Article
A High Performance Wheat Disease Detection Based on Position Information
by Siyu Cheng, Haolan Cheng, Ruining Yang, Junyu Zhou, Zongrui Li, Binqin Shi, Marshall Lee and Qin Ma
Plants 2023, 12(5), 1191; https://doi.org/10.3390/plants12051191 - 6 Mar 2023
Cited by 13 | Viewed by 2544
Abstract
Protecting wheat yield is a top priority in agricultural production, and one of the important measures to preserve yield is the control of wheat diseases. With the maturity of computer vision technology, more possibilities have been provided to achieve plant disease detection. In [...] Read more.
Protecting wheat yield is a top priority in agricultural production, and one of the important measures to preserve yield is the control of wheat diseases. With the maturity of computer vision technology, more possibilities have been provided to achieve plant disease detection. In this study, we propose the position attention block, which can effectively extract the position information from the feature map and construct the attention map to improve the feature extraction ability of the model for the region of interest. For training, we use transfer learning to improve the training speed of the model. In the experiment, ResNet built on positional attention blocks achieves 96.4% accuracy, which is much higher compared to other comparable models. Afterward, we optimized the undesirable detection class and validated its generalization performance on an open-source dataset. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 1222 KiB  
Article
Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts
by Andrea Plaza, Lyanne Rodríguez, Anibal A. Concha-Meyer, René Cabezas, Elsie Zurob, Gastón Merlet, Iván Palomo and Eduardo Fuentes
Plants 2023, 12(5), 1188; https://doi.org/10.3390/plants12051188 - 6 Mar 2023
Cited by 6 | Viewed by 2254
Abstract
Aqueous and ethanolic extracts of tomato pomace were examined with the aim of optimizing the extraction process of compounds with cardioprotective activity. Once the results of the ORAC response variables, total polyphenols, °Brix, and antiplatelet activity of the extracts were obtained, a multivariate [...] Read more.
Aqueous and ethanolic extracts of tomato pomace were examined with the aim of optimizing the extraction process of compounds with cardioprotective activity. Once the results of the ORAC response variables, total polyphenols, °Brix, and antiplatelet activity of the extracts were obtained, a multivariate statistical analysis was performed using the Statgraphics Centurion XIX software. This analysis showed that the most relevant positive effects in the inhibition of platelet aggregation were 83 ± 2% when using the agonist TRAP-6, when the working conditions were the type of tomato pomace conditioning (drum-drying process at 115 °C), phase ratio (1/8), type of solvent (ethanol 20%), and type of extraction (ultrasound-assisted solid–liquid extraction). The extracts with the best results were microencapsulated and characterized by HPLC. The presence of chlorogenic acid (0.729 mg/mg of dry sample) was found, a compound that has a potential cardioprotective effect documented in various studies, in addition to rutin (2.747 mg/mg of dry sample) and quercetin (0.255 mg/mg of dry sample). These results show that the extraction efficiency of compounds with cardioprotective activity depends largely on the polarity of the solvent, thus playing an important role in the antioxidant capacity of the extracts of tomato pomace. Full article
(This article belongs to the Special Issue Pharmacology and Toxicology of Plants and Their Constituents)
Show Figures

Figure 1

27 pages, 5762 KiB  
Review
Chronic Ionizing Radiation of Plants: An Evolutionary Factor from Direct Damage to Non-Target Effects
by Gustavo Turqueto Duarte, Polina Yu. Volkova, Fabricio Fiengo Perez and Nele Horemans
Plants 2023, 12(5), 1178; https://doi.org/10.3390/plants12051178 - 4 Mar 2023
Cited by 16 | Viewed by 5070
Abstract
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical [...] Read more.
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical applications, and as a result of radiation disasters or nuclear tests. In the current review, we discuss modern sources of radioactivity, its direct and indirect effects on different plant species, and the scope of the radiation protection of plants. We present an overview of the molecular mechanisms of radiation responses in plants, which leads to a tempting conjecture of the evolutionary role of IR as a limiting factor for land colonization and plant diversification rates. The hypothesis-driven analysis of available plant genomic data suggests an overall DNA repair gene families’ depletion in land plants compared to ancestral groups, which overlaps with a decrease in levels of radiation exposure on the surface of Earth millions of years ago. The potential contribution of chronic IR as an evolutionary factor in combination with other environmental factors is discussed. Full article
(This article belongs to the Special Issue Effects of Chronic Irradiation in Plants)
Show Figures

Figure 1

23 pages, 2383 KiB  
Review
Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress
by Natalia Napieraj, Małgorzata Janicka and Małgorzata Reda
Plants 2023, 12(5), 1159; https://doi.org/10.3390/plants12051159 - 3 Mar 2023
Cited by 16 | Viewed by 3691
Abstract
Numerous environmental conditions negatively affect plant production. Abiotic stresses, such as salinity, drought, temperature, and heavy metals, cause damage at the physiological, biochemical, and molecular level, and limit plant growth, development, and survival. Studies have indicated that small amine compounds, polyamines (PAs), play [...] Read more.
Numerous environmental conditions negatively affect plant production. Abiotic stresses, such as salinity, drought, temperature, and heavy metals, cause damage at the physiological, biochemical, and molecular level, and limit plant growth, development, and survival. Studies have indicated that small amine compounds, polyamines (PAs), play a key role in plant tolerance to various abiotic stresses. Pharmacological and molecular studies, as well as research using genetic and transgenic approaches, have revealed the favorable effects of PAs on growth, ion homeostasis, water maintenance, photosynthesis, reactive oxygen species (ROS) accumulation, and antioxidant systems in many plant species under abiotic stress. PAs display a multitrack action: regulating the expression of stress response genes and the activity of ion channels; improving the stability of membranes, DNA, and other biomolecules; and interacting with signaling molecules and plant hormones. In recent years the number of reports indicating crosstalk between PAs and phytohormones in plant response to abiotic stresses has increased. Interestingly, some plant hormones, previously known as plant growth regulators, can also participate in plant response to abiotic stresses. Therefore, the main goal of this review is to summarize the most significant results that represent the interactions between PAs and plant hormones, such as abscisic acid, brassinosteroids, ethylene, jasmonates, and gibberellins, in plants under abiotic stress. The future perspectives for research focusing on the crosstalk between PAs and plant hormones were also discussed. Full article
(This article belongs to the Special Issue Phytohormone-Related Response of Crops to Biotic and Abiotic Stresses)
Show Figures

Figure 1

18 pages, 2378 KiB  
Article
Exogenous Melatonin Alters Stomatal Regulation in Tomato Seedlings Subjected to Combined Heat and Drought Stress through Mechanisms Distinct from ABA Signaling
by Nikolaj Bjerring Jensen, Carl-Otto Ottosen and Rong Zhou
Plants 2023, 12(5), 1156; https://doi.org/10.3390/plants12051156 - 3 Mar 2023
Cited by 10 | Viewed by 2049
Abstract
The understanding of stomatal regulation in climate stress is essential for ensuring resilient crops. The investigation of the stomatal regulation in combined heat and drought stress aimed to link effects of exogenous melatonin on stomatal conductance (gs) and its mechanistic interactions [...] Read more.
The understanding of stomatal regulation in climate stress is essential for ensuring resilient crops. The investigation of the stomatal regulation in combined heat and drought stress aimed to link effects of exogenous melatonin on stomatal conductance (gs) and its mechanistic interactions with ABA or ROS signaling. Melatonin-treated and non-treated tomato seedlings were subjected to moderate and severe levels of heat (38°C for one or three days) and drought stress (soil relative water content of 50% or 20%) applied individually and in combination. We measured gs, stomatal anatomy, ABA metabolites and enzymatic ROS scavengers. The stomata in combined stress responded predominantly to heat at soil relative water content (SRWC) = 50% and to drought stress at SRWC = 20%. Drought stress increased ABA levels at severe stress, whereas heat stress caused an accumulation of the conjugated form, ABA glucose ester, at both moderate and severe stress. The melatonin treatment affected gs and the activity of ROS scavenging enzymes but had no effect on ABA levels. The ABA metabolism and conjugation of ABA might play a role in stomatal opening toward high temperatures. We provide evidence that melatonin increases gs in combined heat and drought stress, but the effect is not mediated through ABA signaling. Full article
(This article belongs to the Special Issue New Insights of Plants to Combined Stresses)
Show Figures

Figure 1

21 pages, 3204 KiB  
Article
Almond Tree Adaptation to Water Stress: Differences in Physiological Performance and Yield Responses among Four Cultivar Grown in Mediterranean Environment
by Ana Fernandes de Oliveira, Massimiliano Giuseppe Mameli, Luciano De Pau and Daniela Satta
Plants 2023, 12(5), 1131; https://doi.org/10.3390/plants12051131 - 2 Mar 2023
Cited by 6 | Viewed by 3271
Abstract
Maximizing water use efficiency, yield, and plant survival under drought is a relevant research issue for almond-tree-growing areas worldwide. The intraspecific diversity of this species may constitute a valuable resource to address the resilience and productivity challenges that climate change poses to crop [...] Read more.
Maximizing water use efficiency, yield, and plant survival under drought is a relevant research issue for almond-tree-growing areas worldwide. The intraspecific diversity of this species may constitute a valuable resource to address the resilience and productivity challenges that climate change poses to crop sustainability. A comparative evaluation of physiological and productive performance of four almond varieties: ‘Arrubia’, ‘Cossu’, ‘Texas’, and ‘Tuono’, field-grown in Sardinia, Italy, was performed. A great variability in the plasticity to cope with soil water scarcity and a diverse capacity to adapt to drought and heat stresses during fruit development were highlighted. The two Sardinian varieties, Arrubia and Cossu, showed differences in water stress tolerance, photosynthetic and photochemical activity, and crop yield. ‘Arrubia’ and ‘Texas’ showed greater physiological acclimation to water stress while maintaining higher yields, as compared to the self-fertile ‘Tuono’. The important role of crop load and specific anatomical traits affecting leaf hydraulic conductance and leaf gas exchanges efficiency (i.e., dominant shoot type, leaf size and roughness) was evidenced. The study highlights the importance of characterizing the relationships among almond cultivar traits that affect plant performance under drought in order to better assist planting choices and orchard irrigation management for given environmental contexts. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

17 pages, 2274 KiB  
Review
Ginsenosides and Biotic Stress Responses of Ginseng
by Paul H. Goodwin and Madison A. Best
Plants 2023, 12(5), 1091; https://doi.org/10.3390/plants12051091 - 1 Mar 2023
Cited by 6 | Viewed by 2466
Abstract
Ginsenosides are saponins that possess a sugar moiety attached to a hydrophobic aglycone triterpenoid. They have been widely studied for their various medicinal benefits, such as their neuroprotective and anti-cancer activities, but their role in the biology of ginseng plants has been much [...] Read more.
Ginsenosides are saponins that possess a sugar moiety attached to a hydrophobic aglycone triterpenoid. They have been widely studied for their various medicinal benefits, such as their neuroprotective and anti-cancer activities, but their role in the biology of ginseng plants has been much less widely documented. In the wild, ginsengs are slow-growing perennials with roots that can survive for approximately 30 years; thus, they need to defend themselves against many potential biotic stresses over many decades. Biotic stresses would be a major natural selection pressure and may at least partially explain why ginseng roots expend considerable resources in order to accumulate relatively large amounts of ginsenosides. Ginsenosides may provide ginseng with antimicrobial activity against pathogens, antifeedant activity against insects and other herbivores, and allelopathic activity against other plants. In addition, the interaction of ginseng with pathogenic and non-pathogenic microorganisms and their elicitors may trigger increases in different root ginsenosides and associated gene expression, although some pathogens may be able to suppress this behavior. While not covered in this review, ginsenosides also have roles in ginseng development and abiotic stress tolerance. This review shows that there is considerable evidence supporting ginsenosides as important elements of ginseng’s defense against a variety of biotic stresses. Full article
(This article belongs to the Special Issue Plant Metabolomics: Metabolite Responses to Stress)
Show Figures

Figure 1

13 pages, 1444 KiB  
Review
On the Path towards a “Greener” EU: A Mini Review on Flax (Linum usitatissimum L.) as a Case Study
by Panteleimon Stavropoulos, Antonios Mavroeidis, George Papadopoulos, Ioannis Roussis, Dimitrios Bilalis and Ioanna Kakabouki
Plants 2023, 12(5), 1102; https://doi.org/10.3390/plants12051102 - 1 Mar 2023
Cited by 9 | Viewed by 2435
Abstract
Due to the pressures imposed by climate change, the European Union (EU) has been forced to design several initiatives (the Common Agricultural Policy, the European Green Deal, Farm to Fork) to tackle the climate crisis and ensure food security. Through these initiatives, the [...] Read more.
Due to the pressures imposed by climate change, the European Union (EU) has been forced to design several initiatives (the Common Agricultural Policy, the European Green Deal, Farm to Fork) to tackle the climate crisis and ensure food security. Through these initiatives, the EU aspires to mitigate the adverse effects of the climate crisis and achieve collective prosperity for humans, animals, and the environment. The adoption or promotion of crops that would facilitate the attaining of these objectives is naturally of high importance. Flax (Linum usitatissimum L.) is a multipurpose crop with many applications in the industrial, health, and agri-food sectors. This crop is mainly grown for its fibers or its seed and has recently gained increasing attention. The literature suggests that flax can be grown in several parts of the EU, and potentially has a relatively low environmental impact. The aim of the present review is to: (i) briefly present the uses, needs, and utility of this crop and, (ii) assess its potential within the EU by taking into account the sustainability goals the EU has set via its current policies. Full article
Show Figures

Figure 1

22 pages, 3129 KiB  
Article
Biological Activity of Cupressus sempervirens Essential Oil
by Lucia Galovičová, Natália Čmiková, Marianna Schwarzová, Milena D. Vukic, Nenad L. Vukovic, Przemysław Łukasz Kowalczewski, Ladislav Bakay, Maciej Ireneusz Kluz, Czeslaw Puchalski, Ana D. Obradovic, Miloš M. Matić and Miroslava Kačániová
Plants 2023, 12(5), 1097; https://doi.org/10.3390/plants12051097 - 1 Mar 2023
Cited by 9 | Viewed by 2217
Abstract
The aim of this study was to evaluate the antioxidant, antibiofilm, antimicrobial (in situ and in vitro), insecticidal, and antiproliferative activity of Cupressus sempervirens essential oil (CSEO) obtained from the plant leaf. The identification of the constituents contained in CSEO was also intended [...] Read more.
The aim of this study was to evaluate the antioxidant, antibiofilm, antimicrobial (in situ and in vitro), insecticidal, and antiproliferative activity of Cupressus sempervirens essential oil (CSEO) obtained from the plant leaf. The identification of the constituents contained in CSEO was also intended by using GC and GC/MS analysis. The chemical composition revealed that this sample was dominated by monoterpene hydrocarbons α-pinene, and δ-3-carene. Free radical scavenging ability, performed by using DPPH and ABTS assays, was evaluated as strong. Higher antibacterial efficacy was demonstrated for the agar diffusion method compared to the disk diffusion method. The antifungal activity of CSEO was moderate. When the minimum inhibitory concentrations of filamentous microscopic fungi were determined, we observed the efficacy depending on the concentration used, except for B. cinerea where the efficacy of lower concentration was more pronounced. The vapor phase effect was more pronounced at lower concentrations in most cases. Antibiofilm effect against Salmonella enterica was demonstrated. The relatively strong insecticidal activity was demonstrated with an LC50 value of 21.07% and an LC90 value of 78.21%, making CSEO potentially adequate in the control of agricultural insect pests. Results of cell viability testing showed no effects on the normal MRC-5 cell line, and antiproliferative effects towards MDA-MB-231, HCT-116, JEG-3, and K562 cells, whereas K562 cells were the most sensitive. Based on our results, CSEO could be a suitable alternative against different types of microorganisms as well as suitable for the control of biofilms. Due to its insecticidal properties, it could be used in the control of agricultural insect pests. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity II)
Show Figures

Figure 1

24 pages, 2741 KiB  
Article
Physiological and Transcriptomic Evaluation of Drought Effect on Own-Rooted and Grafted Grapevine Rootstock (1103P and 101-14MGt)
by Davide Bianchi, Valentina Ricciardi, Carola Pozzoli, Daniele Grossi, Leila Caramanico, Massimo Pindo, Erika Stefani, Alessandro Cestaro, Lucio Brancadoro and Gabriella De Lorenzis
Plants 2023, 12(5), 1080; https://doi.org/10.3390/plants12051080 - 28 Feb 2023
Cited by 8 | Viewed by 1695
Abstract
Grapevines worldwide are grafted onto Vitis spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype. In this work, [...] Read more.
Grapevines worldwide are grafted onto Vitis spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype. In this work, the responses of genotypes to drought were evaluated on 1103P and 101-14MGt plants, own-rooted and grafted with Cabernet Sauvignon, in three different water deficit conditions (80, 50, and 20% soil water content, SWC). Gas exchange parameters, stem water potential, root and leaf ABA content, and root and leaf transcriptomic response were investigated. Under well-watered conditions, gas exchange and stem water potential were mainly affected by the grafting condition, whereas under sever water deficit they were affected by the rootstock genotype. Under severe stress conditions (20% SWC), 1103P showed an “avoidance” behavior. It reduced stomatal conductance, inhibited photosynthesis, increased ABA content in the roots, and closed the stomata. The 101-14MGt maintained a high photosynthetic rate, limiting the reduction of soil water potential. This behavior results in a “tolerance” strategy. An analysis of the transcriptome showed that most of the differentially expressed genes were detected at 20% SWC, and more significantly in roots than in leaves. A core set of genes has been highlighted on the roots as being related to the root response to drought that are not affected by genotype nor grafting. Genes specifically regulated by grafting and genes specifically regulated by genotype under drought conditions have been identified as well. The 1103P, more than the 101-14MGt, regulated a high number of genes in both own-rooted and grafted conditions. This different regulation revealed that 1103P rootstock readily perceived the water scarcity and rapidly faced the stress, in agreement with its avoidance strategy. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 2008 KiB  
Article
Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil
by Natália Čmiková, Lucia Galovičová, Marianna Schwarzová, Milena D. Vukic, Nenad L. Vukovic, Przemysław Łukasz Kowalczewski, Ladislav Bakay, Maciej Ireneusz Kluz, Czeslaw Puchalski and Miroslava Kačániová
Plants 2023, 12(5), 1076; https://doi.org/10.3390/plants12051076 - 28 Feb 2023
Cited by 10 | Viewed by 4978
Abstract
Eucalyptus globulus essential oil (EGEO) is considered as a potential source of bioactive compounds with significant biological activity. The aim of this study was to analyze the chemical composition of EGEO, in vitro and in situ antimicrobial activity, antibiofilm activity, antioxidant activity, and [...] Read more.
Eucalyptus globulus essential oil (EGEO) is considered as a potential source of bioactive compounds with significant biological activity. The aim of this study was to analyze the chemical composition of EGEO, in vitro and in situ antimicrobial activity, antibiofilm activity, antioxidant activity, and insecticidal activity. The chemical composition was identified using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The main components of EGEO were 1,8-cineole (63.1%), p-cimene (7.7%), a-pinene (7.3%), and a-limonene (6.9%). Up to 99.2% of monoterpenes were present. The antioxidant potential of essential oil and results indicate that 10 μL of this sample can neutralize 55.44 ± 0.99% of ABTS•+, which is equivalent to 3.22 ± 0.01 TEAC. Antimicrobial activity was determined via two methods: disk diffusion and minimum inhibitory concentration. The best antimicrobial activity was shown against C. albicans (14.00 ± 1.00 mm) and microscopic fungi (11.00 ± 0.00 mm–12.33 ± 0.58 mm). The minimum inhibitory concentration showed the best results against C. tropicalis (MIC 50 2.93 µL/mL, MIC 90 3.17 µL/mL). The antibiofilm activity of EGEO against biofilm-forming P. flourescens was also confirmed in this study. The antimicrobial activity in situ, i.e., in the vapor phase, was significantly stronger than in the contact application. Insecticidal activity was also tested and at concentrations of 100%, 50%, and 25%; the EGEO killed 100% of O. lavaterae individuals. EGEO was comprehensively investigated in this study and information regarding the biological activities and chemical composition of the essential oil of Eucalyptus globulus was expanded. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Compounds)
Show Figures

Figure 1

15 pages, 2521 KiB  
Article
The Effects of Two Organic Soil Amendments, Biochar and Insect Frass Fertilizer, on Shoot Growth of Cereal Seedlings
by Aaron Carroll, Mark Fitzpatrick and Simon Hodge
Plants 2023, 12(5), 1071; https://doi.org/10.3390/plants12051071 - 27 Feb 2023
Cited by 6 | Viewed by 2835
Abstract
To mitigate the environmental harm associated with high-input agriculture, arable farmers are increasingly required to maintain productivity while reducing inputs of synthetic fertilizers. Thus, a diverse range of organic products are now being investigated in terms of their value as alternative fertilizers and [...] Read more.
To mitigate the environmental harm associated with high-input agriculture, arable farmers are increasingly required to maintain productivity while reducing inputs of synthetic fertilizers. Thus, a diverse range of organic products are now being investigated in terms of their value as alternative fertilizers and soil amendments. This study used a series of glasshouse trials to investigate the effects of an insect frass-based fertilizer derived from black soldier fly waste [HexaFrass™, Meath, Ireland] and biochar on four cereals grown in Ireland (barley, oats, triticale, spelt) as animal feed and for human consumption. In general, the application of low quantities of HexaFrass™ resulted in significant increases in shoot growth in all four cereal species, along with increased foliage concentrations of NPK and SPAD levels (a measure of chlorophyll density). These positive effects of HexaFrass™ on shoot growth were observed, however, only when a potting mix with low basal nutrients was used. Additionally, excessive application of HexaFrass™ resulted in reduced shoot growth and, in some cases, seedling mortality. The application of finely ground or crushed biochar produced from four different feedstocks (Ulex, Juncus, woodchip, olive stone) had no consistent positive or negative effects on cereal shoot growth. Overall, our results indicate that insect frass-based fertilizers have good potential in low-input, organic, or regenerative cereal production systems. Based on our results, biochar appears to have less potential as a plant growth promoting product, but could be used as a tool for lowering whole-farm carbon budgets by providing a simplistic means of storing carbon in farm soils. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

22 pages, 1407 KiB  
Review
Beyond Cleansing: Ecosystem Services Related to Phytoremediation
by Werther Guidi Nissim, Stefano Castiglione, Francesco Guarino, Maria Chiara Pastore and Massimo Labra
Plants 2023, 12(5), 1031; https://doi.org/10.3390/plants12051031 - 24 Feb 2023
Cited by 8 | Viewed by 2436
Abstract
Phytotechnologies used for cleaning up urban and suburban polluted soils (i.e., brownfields) have shown some weakness in the excessive extent of the timeframe required for them to be effectively operating. This bottleneck is due to technical constraints, mainly related to both the nature [...] Read more.
Phytotechnologies used for cleaning up urban and suburban polluted soils (i.e., brownfields) have shown some weakness in the excessive extent of the timeframe required for them to be effectively operating. This bottleneck is due to technical constraints, mainly related to both the nature of the pollutant itself (e.g., low bio-availability, high recalcitrance, etc.) and the plant (e.g., low pollution tolerance, low pollutant uptake rates, etc.). Despite the great efforts made in the last few decades to overcome these limitations, the technology is in many cases barely competitive compared with conventional remediation techniques. Here, we propose a new outlook on phytoremediation, where the main goal of decontaminating should be re-evaluated, considering additional ecosystem services (ESs) related to the establishment of a new vegetation cover on the site. The aim of this review is to raise awareness and stress the knowledge gap on the importance of ES associated with this technique, which can make phytoremediation a valuable tool to boost an actual green transition process in planning urban green spaces, thereby offering improved resilience to global climate change and a higher quality of life in cities. This review highlights that the reclamation of urban brownfields through phytoremediation may provide several regulating (i.e., urban hydrology, heat mitigation, noise reduction, biodiversity, and CO2 sequestration), provisional (i.e., bioenergy and added-value chemicals), and cultural (i.e., aesthetic, social cohesion, and health) ESs. Although future research should specifically be addressed to better support these findings, acknowledging ES is crucial for an exhaustive evaluation of phytoremediation as a sustainable and resilient technology. Full article
Show Figures

Figure 1

12 pages, 888 KiB  
Review
Salicylic Acid and Mobile Regulators of Systemic Immunity in Plants: Transport and Metabolism
by Tae-Jin Kim and Gah-Hyun Lim
Plants 2023, 12(5), 1013; https://doi.org/10.3390/plants12051013 - 23 Feb 2023
Cited by 10 | Viewed by 3831
Abstract
Systemic acquired resistance (SAR) occurs when primary infected leaves produce several SAR-inducing chemical or mobile signals that are transported to uninfected distal parts via apoplastic or symplastic compartments and activate systemic immunity. The transport route of many chemicals associated with SAR is unknown. [...] Read more.
Systemic acquired resistance (SAR) occurs when primary infected leaves produce several SAR-inducing chemical or mobile signals that are transported to uninfected distal parts via apoplastic or symplastic compartments and activate systemic immunity. The transport route of many chemicals associated with SAR is unknown. Recently, it was demonstrated that pathogen-infected cells preferentially transport salicylic acid (SA) through the apoplasts to uninfected areas. The pH gradient and deprotonation of SA may lead to apoplastic accumulation of SA before it accumulates in the cytosol following pathogen infection. Additionally, SA mobility over a long distance is essential for SAR, and transpiration controls the partitioning of SA into apoplasts and cuticles. On the other hand, glycerol-3-phosphate (G3P) and azelaic acid (AzA) travel via the plasmodesmata (PD) channel in the symplastic route. In this review, we discuss the role of SA as a mobile signal and the regulation of SA transport in SAR. Full article
(This article belongs to the Special Issue Systemic Signaling during Abiotic Stress in Plants)
Show Figures

Figure 1

21 pages, 3349 KiB  
Article
Yield and Grain Quality of Common Wheat (Triticum aestivum L.) Depending on the Different Farming Systems (Organic vs. Integrated vs. Conventional)
by Katarzyna Mitura, Grażyna Cacak-Pietrzak, Beata Feledyn-Szewczyk, Tomasz Szablewski and Marcin Studnicki
Plants 2023, 12(5), 1022; https://doi.org/10.3390/plants12051022 - 23 Feb 2023
Cited by 21 | Viewed by 5546
Abstract
Genotype (cultivar), soil and climatic conditions, the agrotechnology used, and the interaction of the factors mentioned play a key role in the yield and quality of wheat grain. Currently, the European Union recommends the balanced use of mineral fertilisers and plant protection products [...] Read more.
Genotype (cultivar), soil and climatic conditions, the agrotechnology used, and the interaction of the factors mentioned play a key role in the yield and quality of wheat grain. Currently, the European Union recommends the balanced use of mineral fertilisers and plant protection products in agricultural production (integrated production) or the use of only natural production methods (organic production). The aim of the study was to compare the yield and grain quality of four spring common wheat cultivars Harenda, Kandela, Mandaryna, and Serenada, grown under three farming systems: organic (ORG), integrated (INT), and conventional (CONV). A three-year field experiment was conducted between 2019 and 2021 at the Osiny Experimental Station (Poland, 51°27′ N; 22°2′ E). The results showed that significantly the highest wheat grain yield (GY) was obtained at INT, while the lowest was obtained at ORG. The physicochemical and rheological characteristics of the grain were significantly influenced by the cultivar factor and, with the exception of 1000 grain weight (TGW) and ash content (AC), by the farming system. There were also numerous interactions between the cultivar and farming systems, which suggests different performances of cultivars and, in fact, that some cultivars are better or worse suited to different production systems. The exceptions were protein content (PC) and falling number (FN), which were significantly highest in grain with CONV and lowest in grain with ORG farming systems. Full article
(This article belongs to the Special Issue Agricultural Water and Fertilizer Management for Crop Production)
Show Figures

Figure 1

17 pages, 893 KiB  
Review
Abscisic-Acid-Regulated Responses to Alleviate Cadmium Toxicity in Plants
by Yuquan Zhao, Jiaqi Wang, Wei Huang, Dawei Zhang, Jinfeng Wu, Bao Li, Mei Li, Lili Liu and Mingli Yan
Plants 2023, 12(5), 1023; https://doi.org/10.3390/plants12051023 - 23 Feb 2023
Cited by 9 | Viewed by 2178
Abstract
High levels of cadmium (Cd) in soil can cause crop yield reduction or death. Cadmium accumulation in crops affects human and animal health as it passes through the food chain. Therefore, a strategy is needed to enhance the tolerance of crops to this [...] Read more.
High levels of cadmium (Cd) in soil can cause crop yield reduction or death. Cadmium accumulation in crops affects human and animal health as it passes through the food chain. Therefore, a strategy is needed to enhance the tolerance of crops to this heavy metal or reduce its accumulation in crops. Abscisic acid (ABA) plays an active role in plants’ response to abiotic stress. The application of exogenous ABA can reduce Cd accumulation in shoots of some plants and enhance the tolerance of plants to Cd; therefore, ABA may have good application prospects. In this paper, we reviewed the synthesis and decomposition of ABA, ABA-mediated signal transduction, and ABA-mediated regulation of Cd-responsive genes in plants. We also introduced physiological mechanism underlying Cd tolerance because of ABA. Specifically, ABA affects metal ion uptake and transport by influencing transpiration and antioxidant systems, as well as by affecting the expression of metal transporter and metal chelator protein genes. This study may provide a reference for further research on the physiological mechanism of heavy metal tolerance in plants. Full article
Show Figures

Figure 1

12 pages, 11777 KiB  
Article
Surfactin and Spo0A-Dependent Antagonism by Bacillus subtilis Strain UD1022 against Medicago sativa Phytopathogens
by Amanda Rosier, Maude Pomerleau, Pascale B. Beauregard, Deborah A. Samac and Harsh P. Bais
Plants 2023, 12(5), 1007; https://doi.org/10.3390/plants12051007 - 23 Feb 2023
Cited by 7 | Viewed by 2866
Abstract
Plant growth-promoting rhizobacteria (PGPR) such as the root colonizers Bacillus spp. may be ideal alternatives to chemical crop treatments. This work sought to extend the application of the broadly active PGPR UD1022 to Medicago sativa (alfalfa). Alfalfa is susceptible to many phytopathogens resulting [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) such as the root colonizers Bacillus spp. may be ideal alternatives to chemical crop treatments. This work sought to extend the application of the broadly active PGPR UD1022 to Medicago sativa (alfalfa). Alfalfa is susceptible to many phytopathogens resulting in losses of crop yield and nutrient value. UD1022 was cocultured with four alfalfa pathogen strains to test antagonism. We found UD1022 to be directly antagonistic toward Collectotrichum trifolii, Ascochyta medicaginicola (formerly Phoma medicaginis), and Phytophthora medicaginis, and not toward Fusarium oxysporum f. sp. medicaginis. Using mutant UD1022 strains lacking genes in the nonribosomal peptide (NRP) and biofilm pathways, we tested antagonism against A. medicaginicola StC 306-5 and P. medicaginis A2A1. The NRP surfactin may have a role in the antagonism toward the ascomycete StC 306-5. Antagonism toward A2A1 may be influenced by B. subtilis biofilm pathway components. The B. subtilis central regulator of both surfactin and biofilm pathways Spo0A was required for the antagonism of both phytopathogens. The results of this study indicate that the PGPR UD1022 would be a good candidate for further investigations into its antagonistic activities against C. trifolii, A. medicaginicola, and P. medicaginis in plant and field studies. Full article
(This article belongs to the Special Issue Plant Bioprotection)
Show Figures

Figure 1

18 pages, 4830 KiB  
Article
Genome-Wide Analysis of the Rhododendron AP2/ERF Gene Family: Identification and Expression Profiles in Response to Cold, Salt and Drought Stress
by Zhenhao Guo, Lisi He, Xiaobo Sun, Chang Li, Jiale Su, Huimin Zhou and Xiaoqing Liu
Plants 2023, 12(5), 994; https://doi.org/10.3390/plants12050994 - 22 Feb 2023
Cited by 8 | Viewed by 2003
Abstract
The AP2/ERF gene family is one of the most conserved and important transcription factor families mainly occurring in plants with various functions in regulating plant biological and physiological processes. However, little comprehensive research has been conducted on the AP2/ERF gene family in Rhododendron [...] Read more.
The AP2/ERF gene family is one of the most conserved and important transcription factor families mainly occurring in plants with various functions in regulating plant biological and physiological processes. However, little comprehensive research has been conducted on the AP2/ERF gene family in Rhododendron (specifically, Rhododendron simsii), an important ornamental plant. The existing whole-genome sequence of Rhododendron provided data to investigate the AP2/ERF genes in Rhododendron on a genome-wide scale. A total of 120 Rhododendron AP2/ERF genes were identified. The phylogenetic analysis showed that RsAP2 genes were classified into five main subfamilies, AP2, ERF, DREB, RAV and soloist. Cis-acting elements involving plant growth regulators, response to abiotic stress and MYB binding sites were detected in the upstream sequences of RsAP2 genes. A heatmap of RsAP2 gene expression levels showed that these genes had different expression patterns in the five developmental stages of Rhododendron flowers. Twenty RsAP2 genes were selected for quantitative RT-PCR experiments to clarify the expression level changes under cold, salt and drought stress treatments, and the results showed that most of the RsAP2 genes responded to these abiotic stresses. This study generated comprehensive information on the RsAP2 gene family and provides a theoretical basis for future genetic improvement. Full article
(This article belongs to the Special Issue Molecular Biology of Ornamental Plants)
Show Figures

Figure 1

21 pages, 1344 KiB  
Review
Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents
by Rosa Tundis, Jianbo Xiao, Ana Sanches Silva, Filipa Carreiró and Monica Rosa Loizzo
Plants 2023, 12(5), 991; https://doi.org/10.3390/plants12050991 - 21 Feb 2023
Cited by 11 | Viewed by 2872
Abstract
Citrus is an important genus in the Rutaceae family, with high medicinal and economic value, and includes important crops such as lemons, orange, grapefruits, limes, etc. The Citrus species is rich sources of carbohydrates, vitamins, dietary fibre, and phytochemicals, mainly including limonoids, flavonoids, [...] Read more.
Citrus is an important genus in the Rutaceae family, with high medicinal and economic value, and includes important crops such as lemons, orange, grapefruits, limes, etc. The Citrus species is rich sources of carbohydrates, vitamins, dietary fibre, and phytochemicals, mainly including limonoids, flavonoids, terpenes, and carotenoids. Citrus essential oils (EOs) consist of several biologically active compounds mainly belonging to the monoterpenes and sesquiterpenes classes. These compounds have demonstrated several health-promoting properties such as antimicrobial, antioxidant, anti-inflammatory, and anti-cancer properties. Citrus EOs are obtained mainly from peels, but also from leaves and flowers, and are widely used as flavouring ingredients in food, cosmetics, and pharmaceutical products. This review focused on the composition and biological properties of the EOs of Citrus medica L. and Citrus clementina Hort. Ex Tan and their main constituents, limonene, γ-terpinene, myrcene, linalool, and sabinene. The potential applications in the food industry have been also described. All the articles available in English or with an abstract in English were extracted from different databases such as PubMed, SciFinder, Google Scholar, Web of Science, Scopus, and Science Direct. Full article
Show Figures

Figure 1

23 pages, 1827 KiB  
Article
Characterization, Antioxidant Potential, and Pharmacokinetics Properties of Phenolic Compounds from Native Australian Herbs and Fruits
by Akhtar Ali, Jeremy J. Cottrell and Frank R. Dunshea
Plants 2023, 12(5), 993; https://doi.org/10.3390/plants12050993 - 21 Feb 2023
Cited by 14 | Viewed by 2503
Abstract
In recent decades, plant bioactive phenolic compounds gained much attention due to their various health benefits. Therefore, this study aimed to analyze native Australian river mint (Mentha australis), bush mint (Mentha satureioides), sea parsley (Apium prostratum), and bush [...] Read more.
In recent decades, plant bioactive phenolic compounds gained much attention due to their various health benefits. Therefore, this study aimed to analyze native Australian river mint (Mentha australis), bush mint (Mentha satureioides), sea parsley (Apium prostratum), and bush tomatoes (Solanum centrale) for their bioactive metabolites, antioxidant potential, and pharmacokinetics properties. LC-ESI-QTOF-MS/MS was applied to elucidate these plants’ composition, identification, and quantification of phenolic metabolites. This study tentatively identified 123 phenolic compounds (thirty-five phenolic acids, sixty-seven flavonoids, seven lignans, three stilbenes, and eleven other compounds). Bush mint was identified with the highest total phenolic content (TPC—57.70 ± 4.57 mg GAE/g), while sea parsley contained the lowest total phenolic content (13.44 ± 0.39 mg GAE/g). Moreover, bush mint was also identified with the highest antioxidant potential compared to other herbs. Thirty-seven phenolic metabolites were semi-quantified, including rosmarinic acid, chlorogenic acid, sagerinic acid, quinic acid, and caffeic acid, which were abundant in these selected plants. The most abundant compounds’ pharmacokinetics properties were also predicted. This study will develop further research to identify these plants’ nutraceutical and phytopharmaceutical potential. Full article
Show Figures

Figure 1

35 pages, 835 KiB  
Review
Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies
by Gustavo Ribeiro Xavier, Ederson da Conceição Jesus, Anelise Dias, Marcia Reed Rodrigues Coelho, Yulimar Castro Molina and Norma Gouvêa Rumjanek
Plants 2023, 12(4), 954; https://doi.org/10.3390/plants12040954 - 20 Feb 2023
Cited by 7 | Viewed by 3529
Abstract
Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity [...] Read more.
Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems. Full article
(This article belongs to the Special Issue Interactions between Plants and Soil Microorganisms)
Show Figures

Figure 1

18 pages, 2008 KiB  
Article
Influence of Drought and Heat Stress on Mineral Content, Antioxidant Activity and Bioactive Compound Accumulation in Four African Amaranthus Species
by Mmbulaheni Happiness Netshimbupfe, Jacques Berner, Frank Van Der Kooy, Olakunle Oladimeji and Chrisna Gouws
Plants 2023, 12(4), 953; https://doi.org/10.3390/plants12040953 - 20 Feb 2023
Cited by 7 | Viewed by 1641
Abstract
Drought and heat stress is known to influence the accumulation of mineral content, antioxidant activity, phenolics, flavonoids and other bioactive compounds in many tolerant leafy vegetables. Amaranthus plants can tolerate adverse weather conditions, especially drought and heat. Therefore, evaluating the influence of drought [...] Read more.
Drought and heat stress is known to influence the accumulation of mineral content, antioxidant activity, phenolics, flavonoids and other bioactive compounds in many tolerant leafy vegetables. Amaranthus plants can tolerate adverse weather conditions, especially drought and heat. Therefore, evaluating the influence of drought and heat stress on commercially and medically important crop species like Amaranthus is important to grow the crop for optimal nutritional and medicinal properties. This study investigated the influence of drought and heat stress and a combination of both on the accumulation of phenolic and flavonoid compounds and the antioxidant capacity of African Amaranthus caudatus, A. hypochondriacus, A. cruentus and A. spinosus. Phenolic and flavonoid compounds were extracted with methanol and aqueous solvents and were quantified using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Caffeic acid was the main phenolic compound identified in aqueous extracts of A. caudatus and A. hypochondriacus. Rutin was the most abundant flavonoid compound in all the Amaranthus species tested, with the highest concentration found in A. caudatus. The results suggest a strong positive, but species and compound-specific effect of drought and heat stress on bioactive compounds accumulation. We concluded that heat stress at 40 °C under well-watered conditions and combined drought and heat stress (at 30 °C and 35 °C) appeared to induce the accumulation of caffeic acid and rutin. Hence, cultivation of these species in semi-arid and arid areas is feasible. Full article
(This article belongs to the Special Issue Plant Ecophysiological Adaptation to Environmental Stress)
Show Figures

Figure 1

24 pages, 2201 KiB  
Review
Persimmon Leaves: Nutritional, Pharmaceutical, and Industrial Potential—A Review
by Abul Hossain and Fereidoon Shahidi
Plants 2023, 12(4), 937; https://doi.org/10.3390/plants12040937 - 18 Feb 2023
Cited by 10 | Viewed by 3291
Abstract
Persimmon is a delicious fruit, and its leaves are considered a valuable ingredient in food, beverage, pharmaceutical, and cosmetic sectors. Traditionally, persimmon leaves (PL) are used as a functional tea in Asian culture to cure different ailments, and are also incorporated into various [...] Read more.
Persimmon is a delicious fruit, and its leaves are considered a valuable ingredient in food, beverage, pharmaceutical, and cosmetic sectors. Traditionally, persimmon leaves (PL) are used as a functional tea in Asian culture to cure different ailments, and are also incorporated into various food and cosmeceutical products as a functional ingredient. PL mainly contain flavonoids, terpenoids, and polysaccharides, along with other constituents such as carotenoids, organic acids, chlorophylls, vitamin C, and minerals. The major phenolic compounds in PL are proanthocyanidins, quercetin, isoquercetin, catechin, flavonol glucosides, and kaempferol. Meanwhile, ursolic acid, rotungenic acid, barbinervic acid, and uvaol are the principal terpenoids. These compounds demonstrate a wide range of pharmacological activities, including antioxidant, anticancer, antihypertensive, antidiabetic, anti-obesity, anti-tyrosinase, antiallergic, and antiglaucoma properties. This review summarizes the latest information on PL, mainly distribution, traditional uses, industrial potential, and bioactive compounds, as well as their potential action mechanisms in exhibiting biological activities. In addition, the effect of seasonality and geographical locations on the content and function of these biomolecules are discussed. Full article
(This article belongs to the Special Issue Bioactive Compounds from Plants-Based Functional Foods)
Show Figures

Graphical abstract

15 pages, 1148 KiB  
Article
Isolation and Screening of Antagonistic Endophytes against Phytophthora infestans and Preliminary Exploration on Anti-oomycete Mechanism of Bacillus velezensis 6-5
by Jiaomei Zhang, Xiaoqing Huang, Yuqin Hou, Xiangning Xia, Zhiming Zhu, Airong Huang, Shun Feng, Peihua Li, Lei Shi and Pan Dong
Plants 2023, 12(4), 909; https://doi.org/10.3390/plants12040909 - 17 Feb 2023
Cited by 8 | Viewed by 2243
Abstract
Phytophthora infestans, the notorious pathogen of potato late blight, leads to a severe decline in potato yields and even harvest failure. We isolated 201 endophytic isolates from healthy root tissues of potatoes, among which 41 showed strong antagonistic activity against P. infestans [...] Read more.
Phytophthora infestans, the notorious pathogen of potato late blight, leads to a severe decline in potato yields and even harvest failure. We isolated 201 endophytic isolates from healthy root tissues of potatoes, among which 41 showed strong antagonistic activity against P. infestans. Further, the tolerance to stress and the potential application against potato late blight of these antagonistic isolates were tested. Most of them were extremely tolerant to stresses such as acid–alkali, temperature, UV, salt, and heavy metal stress. However, some antagonistic isolates with excellent stress tolerance might be pathogenic to potatoes. Combining the screening results, a total of 14 endophytes had excellent comprehensive performance in all the tests. In this paper, the endophyte 6-5 was selected among them for the preliminary exploration of the anti-oomycete mechanism. Analysis of the 16S rDNA sequence revealed that 6-5 had a high homology to the corresponding sequence of Bacillus velezensis (99.72%) from the NCBI database. Endophyte 6-5 significantly inhibited the mycelial growth of P. infestans, with an inhibition rate of over 90% in vitro assays, and deformed the hyphal phenotype of P. infestans. In addition, endophyte 6-5 could secrete protease and cellulase, and produce antagonistic substances with high thermal stability, which might be helpful to its antagonistic activity against P. infestans. Furthermore, it was demonstrated that 6-5 had the ability to improve the resistance of potato tubers to late blight. In short, our study described the process of isolating and screening endophytes with antagonistic activity against P. infestans from potato roots, and further explored the potential of biocontrol candidate strain 6-5 in potato late blight control. Full article
Show Figures

Figure 1

21 pages, 10449 KiB  
Article
Exogenous Proline Enhances Systemic Defense against Salt Stress in Celery by Regulating Photosystem, Phenolic Compounds, and Antioxidant System
by Yanqiang Gao, Jing Zhang, Cheng Wang, Kangning Han, Lixia Hu, Tianhang Niu, Yan Yang, Youlin Chang and Jianming Xie
Plants 2023, 12(4), 928; https://doi.org/10.3390/plants12040928 - 17 Feb 2023
Cited by 8 | Viewed by 1660
Abstract
This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress [...] Read more.
This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress and no proline spraying as control. The results showed that proline-treated plants exhibited a significant increase in plant biomass due to improved growth physiology, supported by gas exchange parameters, chlorophyll fluorescence, and Calvin cycle enzyme activity (Ketosasaccharide-1,5-diphosphate carboxylase and Fructose-1,6-diphosphate aldolase) results. Also, proline spraying significantly suppressed the increase in relative conductivity and malondialdehyde content caused by salt stress, suggesting a reduction in biological membrane damage. Moreover, salt stress resulted in hydrogen peroxide, superoxide anions and 4-coumaric acid accumulation in celery, and their contents were reduced after foliar spraying of proline. Furthermore, proline increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the content of non-enzymatic antioxidants (reduced ascorbic acid, glutathione, caffeic acid, chlorogenic acid, total phenolic acids, and total flavonoids). Additionally, proline increased the activity of key enzymes (ascorbate oxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase) in the ascorbic acid–glutathione cycle, activating it to counteract salt stress. In summary, exogenous proline promoted celery growth under salt stress, enhanced photosynthesis, increased total phenolic acid and flavonoid contents, and improved antioxidant capacity, thereby improving salt tolerance in celery. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

36 pages, 3267 KiB  
Article
Quantitative Traits of Interest in Apple Breeding and Their Implications for Selection
by Radu E. Sestras and Adriana F. Sestras
Plants 2023, 12(4), 903; https://doi.org/10.3390/plants12040903 - 16 Feb 2023
Cited by 12 | Viewed by 2444
Abstract
Apple breeding is a laborious and long-lasting process that requires qualified resources, land, time, and funds. In this study, more than 5000 F1 apple hybrids from direct and testcrosses were analyzed. The results revealed how the phenotypic expression of the main quantitative [...] Read more.
Apple breeding is a laborious and long-lasting process that requires qualified resources, land, time, and funds. In this study, more than 5000 F1 apple hybrids from direct and testcrosses were analyzed. The results revealed how the phenotypic expression of the main quantitative traits of interest assessed in five half-sib families was controlled by the additive genetic effects and by non-additive effects of dominance and epistasis. The statistical number of hybrids required to ensure efficient selection increased exponentially with the number of desirable traits. The minimum number of progenies required to obtain a hybrid with associated quantitative traits of agronomic interest was highly variable. For two independent traits essential in selection (fruit size and quality), but incorporated together in the same hybrid, the statistical number was between about 30 and 300. If three more cumulative traits were added (a large number of fruits per tree, resistance/tolerance to apple scab, and powdery mildew attack), the limits increased to between 1500 and 18,000. The study highlighted the need for new apple varieties due to the narrowing of the genetic diversity of the cultivated species and how the choice of parents used in hybridizations (as well as the objectives pursued in the selection) can increase the efficiency of apple breeding. Full article
Show Figures

Figure 1

15 pages, 5232 KiB  
Article
A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses
by Yessenia E. Maldonado, Omar Malagón, Nixon Cumbicus and Gianluca Gilardoni
Plants 2023, 12(4), 849; https://doi.org/10.3390/plants12040849 - 14 Feb 2023
Cited by 8 | Viewed by 1863
Abstract
An essential oil, distilled from the leaves of the Andean species Gynoxys rugulosa Muschl., is described in the present study for the first time. The chemical composition was qualitatively and quantitatively determined by GC–MS and GC–FID, respectively. On the one hand, the qualitative [...] Read more.
An essential oil, distilled from the leaves of the Andean species Gynoxys rugulosa Muschl., is described in the present study for the first time. The chemical composition was qualitatively and quantitatively determined by GC–MS and GC–FID, respectively. On the one hand, the qualitative composition was obtained by comparing the mass spectrum and the linear retention index of each component with data from literature. On the other hand, the quantitative composition was determined by calculating the relative response factor of each constituent, according to its combustion enthalpy. Both analyses were carried out with two orthogonal columns of nonpolar and polar stationary phases. A total of 112 compounds were detected and quantified with at least one column, corresponding to 87.3–93.0% of the whole oil mass. Among the 112 detected components, 103 were identified. The main constituents were α-pinene (5.3–6.0%), (E)-β-caryophyllene (2.4–2.8%), α-humulene (3.0–3.2%), germacrene D (4.9–6.5%), δ-cadinene (2.2–2.3%), caryophyllene oxide (1.6–2.2%), α-cadinol (3.8–4.4%), 1-nonadecanol (1.7–1.9%), 1-eicosanol (0.9–1.2%), n-tricosane (3.3–3.4%), 1-heneicosanol (4.5–5.8%), n-pentacosane (5.8–7.1%), 1-tricosanol (4.0–4.5%), and n-heptacosane (3.0–3.5%). Furthermore, an enantioselective analysis was carried out on the essential oil, by means of two cyclodextrin-based capillary columns. The enantiomers of α-pinene, β-pinene, sabinene, α-phellandrene, β-phellandrene, linalool, α-copaene, terpinen-4-ol, α-terpineol, and germacrene D were detected, and the respective enantiomeric excess was calculated. Full article
Show Figures

Figure 1

21 pages, 3479 KiB  
Article
Protective Effects of Sodium Nitroprusside on Photosynthetic Performance of Sorghum bicolor L. under Salt Stress
by Martin A. Stefanov, Georgi D. Rashkov, Ekaterina K. Yotsova, Preslava B. Borisova, Anelia G. Dobrikova and Emilia L. Apostolova
Plants 2023, 12(4), 832; https://doi.org/10.3390/plants12040832 - 13 Feb 2023
Cited by 9 | Viewed by 1700
Abstract
In this study, the impacts of the foliar application of different sodium nitroprusside (SNP, as a donor of nitric oxide) concentrations (0–300 µM) on two sorghum varieties (Sorghum bicolor L. Albanus and Sorghum bicolor L. Shamal) under salt stress (150 mM NaCl) [...] Read more.
In this study, the impacts of the foliar application of different sodium nitroprusside (SNP, as a donor of nitric oxide) concentrations (0–300 µM) on two sorghum varieties (Sorghum bicolor L. Albanus and Sorghum bicolor L. Shamal) under salt stress (150 mM NaCl) were investigated. The data revealed that salinity leads to an increase in oxidative stress markers and damage of the membrane integrity, accompanied by a decrease in the chlorophyll content, the open photosystem II (PSII) centers, and the performance indexes (PI ABS and PI total), as well as having an influence on the electron flux reducing photosystem I (PSI) end acceptors (REo/RC). Spraying with SNP alleviated the NaCl toxicity on the photosynthetic functions; the protection was concentration-dependent, and greater in Shamal than in Albanus, i.e., variety specific. Furthermore, the experimental results revealed that the degree of SNP protection under salt stress also depends on the endogenous nitric oxide (NO) amount in leaves, the number of active reaction centers per PSII antenna chlorophylls, the enhanced electron flux reducing end acceptors at the acceptor side of PSI, as well as the stimulation of the cyclic electron transport around PSI. The results showed better protection in both varieties of sorghum for SNP concentrations up to 150 µM, which corresponds to about a 50% increase in the endogenous NO leaf content in comparison to the control plants. Our study provides valuable insight into the molecular mechanisms underlying SNP-induced salt tolerance in sorghum varieties and might be a practical approach to correcting salt intolerance. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

15 pages, 1498 KiB  
Article
The Role of Protein-Rich Extracts from Chondrus crispus as Biostimulant and in Enhancing Tolerance to Drought Stress in Tomato Plants
by Guido Domingo, Milena Marsoni, Milena Álvarez-Viñas, M. Dolores Torres, Herminia Domínguez and Candida Vannini
Plants 2023, 12(4), 845; https://doi.org/10.3390/plants12040845 - 13 Feb 2023
Cited by 9 | Viewed by 2676
Abstract
The application of seaweed extract-based biostimulants is a promising approach for achieving sustainable agriculture, with an enormous potential of improving crop yield and mitigating climate change effects. Abiotic stressors, such as drought, are major factors resulting in tomato (Solanum lycopersicum L.) yield [...] Read more.
The application of seaweed extract-based biostimulants is a promising approach for achieving sustainable agriculture, with an enormous potential of improving crop yield and mitigating climate change effects. Abiotic stressors, such as drought, are major factors resulting in tomato (Solanum lycopersicum L.) yield losses and seaweed-based biostimulants have been proposed as an eco-friendly strategy to counteract this negative impact. Chondrus crispus is a common red seaweed widely used as source of carrageenans, not yet explored as a plant biostimulant. In this study, a protein hydrolysate-rich C. crispus extract, by-products of the carrageenan extraction, was tested on tomato plants under well-watered condition and water shortage. The foliar application of the protein-rich C. crispus extract conferred drought tolerance to tomato plants resulting in less noticeable visual stress symptoms. Treated plants showed higher shoot height and biomass under both well-watered and water deficit conditions, evidencing the double effect exerted by this new biostimulant, as plant growth promoter and drought stress protector. The treatment with the biostimulant had an effect on levels of abscisic acid and proline, and triggered the expression of Solyc02g084840, a drought marker gene. Finally, a label-free mass spectrometric approach allowed us to identify phycoerythrins and phycocyanins as major bioactive proteins contained in the extract. Altogether, these results indicate that the foliar application of protein hydrolysate-rich extracts from C. crispus improved tomato plant growth and tolerance to drought stress, suggesting a new opportunity for further applications in the agriculture and horticultural sectors. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Drug Development)
Show Figures

Figure 1

15 pages, 1706 KiB  
Review
Use of Natural Agents and Agrifood Wastes for the Treatment of Skin Photoaging
by Melania Parisi, Mariavittoria Verrillo, Maria Antonietta Luciano, Giuseppina Caiazzo, Maria Quaranta, Francesco Scognamiglio, Vincenzo Di Meo, Alessia Villani, Mariateresa Cantelli, Lucia Gallo, Giovanna G. Altobelli, Serena Poggi, Riccardo Spaccini and Gabriella Fabbrocini
Plants 2023, 12(4), 840; https://doi.org/10.3390/plants12040840 - 13 Feb 2023
Cited by 9 | Viewed by 2453
Abstract
Photoaging is the premature aging of the skin caused by repeated exposure to ultraviolet (UV) rays. The harmful effects of UV rays—from the sun or from artificial sources—alter normal skin structures and cause visible damage, especially in the most exposed areas. Fighting premature [...] Read more.
Photoaging is the premature aging of the skin caused by repeated exposure to ultraviolet (UV) rays. The harmful effects of UV rays—from the sun or from artificial sources—alter normal skin structures and cause visible damage, especially in the most exposed areas. Fighting premature aging is one of the most important challenges of the medical landscape. Additionally, consumers are looking for care products that offer multiple benefits with reduced environmental and economic impact. The growing requests for bioactive compounds from aromatic plants for pharmaceutical and cosmetic applications have to find new sustainable methods to increase the effectiveness of new active formulations derived from eco-compatible technologies. The principle of sustainable practices and the circular economy favor the use of bioactive components derived from recycled biomass. The guidelines of the European Commission support the reuse of various types of organic biomass and organic waste, thus transforming waste management problems into economic opportunities. This review aims to elucidate the main mechanisms of photoaging and how these can be managed using natural renewable sources and specific bioactive derivatives, such as humic extracts from recycled organic biomass, as potential new actors in modern medicine. Full article
Show Figures

Figure 1

13 pages, 322 KiB  
Article
The Type of Grain Counts: Effectiveness of Three Essential Oil-Based Nanoemulsions against Sitophilus oryzae
by Nickolas G. Kavallieratos, Giulia Bonacucina, Erifili P. Nika, Anna Skourti, Stavroula Kyriaki C. Georgakopoulou, Constantin S. Filintas, Anna Maria E. Panariti, Filippo Maggi, Riccardo Petrelli, Marta Ferrati, Eleonora Spinozzi, Diego Romano Perinelli, Angelo Canale and Giovanni Benelli
Plants 2023, 12(4), 813; https://doi.org/10.3390/plants12040813 - 11 Feb 2023
Cited by 6 | Viewed by 2128
Abstract
Essential oil (EO)-based nanoemulsions (NEs) are promising grain protectants in the management of stored-product pests. However, the potential impact of the stored-grain species on the green insecticide effectiveness has been poorly studied. In this study, two concentrations of EO-based NEs from Carlina acaulis [...] Read more.
Essential oil (EO)-based nanoemulsions (NEs) are promising grain protectants in the management of stored-product pests. However, the potential impact of the stored-grain species on the green insecticide effectiveness has been poorly studied. In this study, two concentrations of EO-based NEs from Carlina acaulis L., Mentha longifolia (L.) Huds., and Hazomalania voyronii (Jum.) Capuron were evaluated as insecticides against the major stored-product pest Sitophilus oryzae (L.) on barley, oats, and maize kernels. The C. acaulis EO-based NE applied at 1000 ppm on barley achieved the highest mortality, killing 94.4% of S. oryzae adults after a 7-day exposure, followed by 1000 ppm of H. voyronii EO-based NE (83.3%). The lowest mortality (1.1%) was recorded with 500 ppm of M. longifolia EO-based NE on maize after the same interval. All tested NEs exhibited elevated efficacy when applied on barley, while mortalities were lower on oats and maize. Furthermore, C. acaulis EO-based NE was the most effective when applied on all commodities, followed by H. voyronii and M. longifolia EO-based NEs. Overall, our results highlighted the significant impact of the stored cereal on the insecticidal effectiveness of EO-based NE used for stored-product pest control. Sitophilus oryzae adults on barley can be adequately controlled through the application of C. acaulis and H. voyronii EO-based NEs. Full article
11 pages, 1165 KiB  
Article
Effects of Carbohydrates on Rosmarinic Acid Production and In Vitro Antimicrobial Activities in Hairy Root Cultures of Agastache rugosa
by Hyeon Ji Yeo, Min Jae Kwon, Sang Yeon Han, Jae Cheol Jeong, Cha Young Kim, Sang Un Park and Chang Ha Park
Plants 2023, 12(4), 797; https://doi.org/10.3390/plants12040797 - 10 Feb 2023
Cited by 7 | Viewed by 1788
Abstract
Agastache rugosa (popularly known as Korean mint) belongs to the Lamiaceae family and comprises 22 species of perennial aromatic medicinal species native to East Asian countries, such as Korea, Taiwan, Japan, and China. A. rugosa contains many phenolic compounds that exhibit pharmacological and [...] Read more.
Agastache rugosa (popularly known as Korean mint) belongs to the Lamiaceae family and comprises 22 species of perennial aromatic medicinal species native to East Asian countries, such as Korea, Taiwan, Japan, and China. A. rugosa contains many phenolic compounds that exhibit pharmacological and physiological activities, including antioxidant, anticancer, antiviral, antifungal, and antibacterial activities. The highest concentrations of rosmarinic acid and its isomers have been reported in the roots of A. rugosa. In this in vitro study, hairy roots of A. rugosa were obtained and the carbohydrates (sorbitol, mannitol, glucose, maltose, galactose, mannose, and sucrose) were evaluated to determine those that were optimal for rosmarinic acid production and hairy root growth. Antioxidant and antibacterial activities of extracts of A. rugosa were also assessed. The best carbon source for A. rugosa hairy root cultures was sucrose, considering biomass productivity (0.460 ± 0.034 mg/30 mL), rosmarinic acid production (7.656 ± 0.407 mg/g dry weight), and total phenolic content (12.714 ± 0.202 mg/g gallic acid equivalent). Antioxidant and antimicrobial activities were displayed by A. rugosa hairy roots cultured in liquid medium supplemented with 100 mM sucrose. Twenty-five bacterial strains, including multidrug-resistant bacteria and one pathogenic yeast strain, were used for antimicrobial screening of A. rugosa hairy roots. The hairy root extracts displayed antibacterial activity against Micrococcus luteus (KCTC 3063) and Bacillus cereus (KCTC 3624). The inhibition of these bacteria was greater using A. rugosa hairy roots with the highest levels of phenolic compounds cultured in the presence of sucrose, compared to hairy roots with the lowest levels of phenolic compounds cultured in the presence of fructose. Considering hairy root biomass, phenolic compound production, and antibacterial activity, sucrose is the best carbon source for A. rugosa hairy root cultures. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Compounds)
Show Figures

Figure 1

15 pages, 1322 KiB  
Article
Light Intensity Affects the Assimilation Rate and Carbohydrates Partitioning in Spinach Grown in a Controlled Environment
by Simona Proietti, Roberta Paradiso, Stefano Moscatello, Francesco Saccardo and Alberto Battistelli
Plants 2023, 12(4), 804; https://doi.org/10.3390/plants12040804 - 10 Feb 2023
Cited by 7 | Viewed by 2535
Abstract
The cultivation of spinach (Spinacia oleracea L.) has been increasing during the last years in controlled environment agriculture, where light represents a key factor for controlling plant growth and development and the highest energetic costs. The aim of the experiment was to [...] Read more.
The cultivation of spinach (Spinacia oleracea L.) has been increasing during the last years in controlled environment agriculture, where light represents a key factor for controlling plant growth and development and the highest energetic costs. The aim of the experiment was to evaluate the plant’s response to two light intensities, corresponding to an optimal and a reduced level, in terms of the photosynthetic process, photoassimilates partitioning, and the biosynthesis of sucrose and starch. Plants of spinach cv. ‘Gigante d’Inverno’ were grown in a phytotron under controlled conditions, comparing two values of photosynthetic photon flux density (PPFD), 800 μmol m−2 s−1 (800 PPFD) and 200 μmol m−2 s−1 (200 PPFD), at a 10 h light/14 h dark regime. Compared to 800 PPFD, under 200 PPFD, plants showed a reduction in biomass accumulation and a redirection of photoassimilates to leaves, determining a leaf expansion to optimize the light interception, without changes in the photosynthetic process. A shift in carbon partitioning favouring the synthesis of starch, causing an increase in the starch/sucrose ratio at the end of light period, occurred in low-light leaves. The activity of enzymes cFBAse, SPS, and AGPase, involved in the synthesis of sucrose and starch in leaves, decreased under lower light intensity, explaining the rate of accumulation of photoassimilates. Full article
(This article belongs to the Special Issue Responses of Plants to Light Stress)
Show Figures

Figure 1

15 pages, 6462 KiB  
Article
Classification of Tomato Fruit Using Yolov5 and Convolutional Neural Network Models
by Quoc-Hung Phan, Van-Tung Nguyen, Chi-Hsiang Lien, The-Phong Duong, Max Ti-Kuang Hou and Ngoc-Bich Le
Plants 2023, 12(4), 790; https://doi.org/10.3390/plants12040790 - 9 Feb 2023
Cited by 16 | Viewed by 4263
Abstract
Four deep learning frameworks consisting of Yolov5m and Yolov5m combined with ResNet50, ResNet-101, and EfficientNet-B0, respectively, are proposed for classifying tomato fruit on the vine into three categories: ripe, immature, and damaged. For a training dataset consisting of 4500 images and a training [...] Read more.
Four deep learning frameworks consisting of Yolov5m and Yolov5m combined with ResNet50, ResNet-101, and EfficientNet-B0, respectively, are proposed for classifying tomato fruit on the vine into three categories: ripe, immature, and damaged. For a training dataset consisting of 4500 images and a training process with 200 epochs, a batch size of 128, and an image size of 224 × 224 pixels, the prediction accuracy for ripe and immature tomatoes is found to be 100% when combining Yolo5m with ResNet-101. Meanwhile, the prediction accuracy for damaged tomatoes is 94% when using Yolo5m with the Efficient-B0 model. The ResNet-50, EfficientNet-B0, Yolov5m, and ResNet-101 networks have testing accuracies of 98%, 98%, 97%, and 97%, respectively. Thus, all four frameworks have the potential for tomato fruit classification in automated tomato fruit harvesting applications in agriculture. Full article
(This article belongs to the Collection Application of AI in Plants)
Show Figures

Figure 1

25 pages, 1323 KiB  
Review
What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation?
by Luis Bolaños, Isidro Abreu, Ildefonso Bonilla, Juan J. Camacho-Cristóbal and María Reguera
Plants 2023, 12(4), 777; https://doi.org/10.3390/plants12040777 - 9 Feb 2023
Cited by 7 | Viewed by 4129
Abstract
On the eve of the 100th anniversary of Dr. Warington’s discovery of boron (B) as a nutrient essential for higher plants, “boronists” have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II [...] Read more.
On the eve of the 100th anniversary of Dr. Warington’s discovery of boron (B) as a nutrient essential for higher plants, “boronists” have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model. Full article
Show Figures

Figure 1

17 pages, 1277 KiB  
Review
Melatonin as a Possible Natural Anti-Viral Compound in Plant Biocontrol
by Josefa Hernández-Ruiz, Manuela Giraldo-Acosta, Amina El Mihyaoui, Antonio Cano and Marino B. Arnao
Plants 2023, 12(4), 781; https://doi.org/10.3390/plants12040781 - 9 Feb 2023
Cited by 9 | Viewed by 2945
Abstract
Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as [...] Read more.
Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as well as of hormonal homeostasis. Likewise, it is known for its role as a protective biomolecule and activator of tolerance and resistance against biotic and abiotic stress in plants. Since infections by pathogens such as bacteria, fungi and viruses in crops result in large economic losses, interest has been aroused in determining whether melatonin plays a relevant role in plant defense systems against pathogens in general, and against viruses in particular. Currently, several strategies have been applied to combat infection by pathogens, one of them is the use of eco-friendly chemical compounds that induce systemic resistance. Few studies have addressed the use of melatonin as a biocontrol agent for plant diseases caused by viruses. Exogenous melatonin treatments have been used to reduce the incidence of several virus diseases, reducing symptoms, virus titer, and even eradicating the proliferation of viruses such as Tobacco Mosaic Virus, Apple Stem Grooving Virus, Rice Stripe Virus and Alfalfa Mosaic Virus in tomato, apple, rice and eggplant, respectively. The possibilities of using melatonin as a possible natural virus biocontrol agent are discussed. Full article
(This article belongs to the Special Issue Plant Virus Disease Control)
Show Figures

Figure 1

14 pages, 713 KiB  
Review
The Potential of Cover Crops for Weed Management: A Sole Tool or Component of an Integrated Weed Management System?
by Margaret Fernando and Anil Shrestha
Plants 2023, 12(4), 752; https://doi.org/10.3390/plants12040752 - 8 Feb 2023
Cited by 11 | Viewed by 3769
Abstract
Cover crops are an important component of integrated weed management programs in annual and perennial cropping systems because of their weed suppressive abilities. They influence weed populations using different mechanisms of plant interaction which can be facilitative or suppressive. However, the question often [...] Read more.
Cover crops are an important component of integrated weed management programs in annual and perennial cropping systems because of their weed suppressive abilities. They influence weed populations using different mechanisms of plant interaction which can be facilitative or suppressive. However, the question often arises if cover crops can be solely relied upon for weed management or not. In this review we have tried to provide examples to answer this question. The most common methods of weed suppression by an actively growing cover crop include competition for limited plant growth resources that result in reduced weed biomass, seed production, and hence reductions in the addition of seeds to the soil seedbank. Cover crop mulches suppress weeds by reducing weed seedling emergence through allelopathic effects or physical effects of shading. However, there is a great degree of variability in the success or failure of cover crops in suppressing weeds that are influenced by the cover crop species, time of planting, cover crop densities and biomass, time of cover crop termination, the cash crop following in the rotation, and the season associated with several climatic variables. Several studies demonstrated that planting date was important to achieve maximum cover crop biomass, and a mixture of cover crop species was better than single cover crop species to achieve good weed suppression. Most of the studies that have demonstrated success in weed suppression have only shown partial success and not total success in weed suppression. Therefore, cover crops as a sole tool may not be sufficient to reduce weeds and need to be supplemented with other weed management tools. Nevertheless, cover crops are an important component of the toolbox for integrated weed management. Full article
(This article belongs to the Special Issue New Methods and Innovative Strategies for Weed Management)
Show Figures

Figure 1

25 pages, 2572 KiB  
Article
The Combination of Both Heat and Water Stresses May Worsen Botryosphaeria Dieback Symptoms in Grapevine
by Olivier Fernandez, Christelle Lemaître-Guillier, Aurélie Songy, Guillaume Robert-Siegwald, Marc-Henri Lebrun, Philippe Schmitt-Kopplin, Philippe Larignon, Marielle Adrian and Florence Fontaine
Plants 2023, 12(4), 753; https://doi.org/10.3390/plants12040753 - 8 Feb 2023
Cited by 7 | Viewed by 1891
Abstract
(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in [...] Read more.
(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in pathology and symptomatology challenging. Third, a consensus is raising to pinpoint combined abiotic stresses as a key factor contributing to disease symptom expression. (2) Methods: We analyzed the impact of combined abiotic stresses in grapevine cuttings artificially infected by two fungi involved in Botryosphaeria dieback (one of the major GTDs), Neofusicoccum parvum and Diplodia seriata. Fungal-infected and control plants were subjected to single or combined abiotic stresses (heat stress, drought stress or both). Disease intensity was monitored thanks to the measurement of necrosis area size. (3) Results and conclusions: Overall, our results suggest that combined stresses might have a stronger impact on disease intensity upon infection by the less virulent pathogen Diplodia seriata. This conclusion is discussed through the impact on plant physiology using metabolomic and transcriptomic analyses of leaves sampled for the different conditions. Full article
(This article belongs to the Special Issue New Insights of Plants to Combined Stresses)
Show Figures

Figure 1

23 pages, 5219 KiB  
Article
Genetic Diversity and Population Structure of Common Bean (Phaseolus vulgaris L.) Landraces in the Lazio Region of Italy
by Giulio Catarcione, Anna Rita Paolacci, Enrica Alicandri, Elena Gramiccia, Paola Taviani, Roberto Rea, Maria Teresa Costanza, Gabriella De Lorenzis, Guglielmo Puccio, Francesco Mercati and Mario Ciaffi
Plants 2023, 12(4), 744; https://doi.org/10.3390/plants12040744 - 7 Feb 2023
Cited by 8 | Viewed by 2181
Abstract
Common bean cultivation has historically been a typical component of rural economies in Italy, particularly in mountainous and hilly zones along the Apennine ridge of the central and southern regions, where the production is focused on local landraces cultivated by small-scale farmers using [...] Read more.
Common bean cultivation has historically been a typical component of rural economies in Italy, particularly in mountainous and hilly zones along the Apennine ridge of the central and southern regions, where the production is focused on local landraces cultivated by small-scale farmers using low-input production systems. Such landraces are at risk of genetic erosion because of the recent socioeconomic changes in rural communities. One hundred fourteen accessions belonging to 66 landraces still being grown in the Lazio region were characterized using a multidisciplinary approach. This approach included morphological (seed traits), biochemical (phaseolin and phytohemagglutinin patterns), and molecular (microsatellite loci) analyses to investigate their genetic variation, structure, and distinctiveness, which will be essential for the implementation of adequate ex situ and in situ conservation strategies. Another objective of this study was to determine the original gene pool (Andean and Mesoamerican) of the investigated landraces and to evaluate the cross-hybridization events between the two ancestral gene pools in the P. vulgaris germplasm in the Lazio region. Molecular analyses on 456 samples (four for each of the 114 accessions) revealed that the P. vulgaris germplasm in the Lazio region exhibited a high level of genetic diversity (He = 0.622) and that the Mesoamerican and Andean gene pools were clearly differentiated, with the Andean gene pool prevailing (77%) and 12% of landraces representing putative hybrids between the two gene pools. A model-based cluster analysis based on the molecular markers highlighted three main groups in agreement with the phaseolin patterns and growth habit of landraces. The combined utilisation of morphological, biochemical, and molecular data allowed for the differentiation of all landraces and the resolution of certain instances of homonymy and synonymy. Furthermore, although a high level of homozygosity was found across all landraces, 32 of the 66 examined (49%) exhibited genetic variability, indicating that the analysis based on a single or few plants per landrace, as usually carried out, may provide incomplete information. Full article
Show Figures

Figure 1

22 pages, 1095 KiB  
Article
Essential Oils from Apiaceae, Asteraceae, Cupressaceae and Lamiaceae Families Grown in Serbia: Comparative Chemical Profiling with In Vitro Antioxidant Activity
by Nevena Gladikostić, Bojana Ikonić, Nemanja Teslić, Zoran Zeković, Danica Božović, Predrag Putnik, Danijela Bursać Kovačević and Branimir Pavlić
Plants 2023, 12(4), 745; https://doi.org/10.3390/plants12040745 - 7 Feb 2023
Cited by 10 | Viewed by 2079
Abstract
The aim of the present study was to investigate the chemical profile and antioxidant activity of essential oils obtained from the most commonly grown plant species in Serbia. Aromatic and medicinal plants from Lamiaceae (Mentha x Piperita, Ocimum basilicum, Origanum [...] Read more.
The aim of the present study was to investigate the chemical profile and antioxidant activity of essential oils obtained from the most commonly grown plant species in Serbia. Aromatic and medicinal plants from Lamiaceae (Mentha x Piperita, Ocimum basilicum, Origanum majorana, Origanum vulgare, Salvia officinalis, Satureja hortensis, Satureja montana and Thymus vulgaris), Asteraceae (Ehinacea purpurea and Matricaria chamomilla), Apiaceae (Anethum graveolens, Carum carvi, Foeniculum vulgare, Petroselinum crispum and Pimpinella anisum) and Cupressaceae (Juniperus comunis) were selected as raw material for essential oils (EOs)’ isolation. Hydrodistillation (HD) was used for the isolation of EOs while they were evaluated in terms of yield and terpenoid profiles by GC-MS. In vitro radical scavenging DPPH and ABTS+ radical activities were carried out for all EOs. Finally, a principal component analysis (PCA) was performed with the experimental results of the composition and antioxidant activity of the EOs, which showed a clear distinction between the selected plant species for the aforementioned responses. This work represents a screening tool for the selection of other EO candidates for further processing by emerging extraction techniques and the use of EOs as natural additives for meat products. Full article
Show Figures

Figure 1

23 pages, 1823 KiB  
Review
A Green Approach Used for Heavy Metals ‘Phytoremediation’ Via Invasive Plant Species to Mitigate Environmental Pollution: A Review
by Irfan Ullah Khan, Shan-Shan Qi, Farrukh Gul, Sehrish Manan, Justice Kipkorir Rono, Misbah Naz, Xin-Ning Shi, Haiyan Zhang, Zhi-Cong Dai and Dao-Lin Du
Plants 2023, 12(4), 725; https://doi.org/10.3390/plants12040725 - 6 Feb 2023
Cited by 24 | Viewed by 7576
Abstract
Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly [...] Read more.
Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly in weedy plants (invasive plant species (IPS)). This method provides a favorable tool for HM hyperaccumulation using invasive plants. Improving the phytoremediation strategy requires a profound knowledge of HM uptake and translocation as well as the development of resistance or tolerance to HMs. This review describes a comprehensive mechanism of uptake and translocation of HMs and their subsequent detoxification with the IPS via phytoremediation. Additionally, the improvement of phytoremediation through advanced biotechnological strategies, including genetic engineering, nanoparticles, microorganisms, CRISPR-Cas9, and protein basis, is discussed. In summary, this appraisal will provide a new platform for the uptake, translocation, and detoxification of HMs via the phytoremediation process of the IPS. Full article
(This article belongs to the Special Issue Plant Invasion 2022)
Show Figures

Figure 1

19 pages, 701 KiB  
Article
The Effect of Extraction Methods on Phytochemicals and Biological Activities of Green Coffee Beans Extracts
by Octavia Gligor, Simona Clichici, Remus Moldovan, Dana Muntean, Ana-Maria Vlase, George Cosmin Nadăș, Ioana Adriana Matei, Gabriela Adriana Filip, Laurian Vlase and Gianina Crișan
Plants 2023, 12(4), 712; https://doi.org/10.3390/plants12040712 - 6 Feb 2023
Cited by 7 | Viewed by 2580
Abstract
The objectives of the present study consisted of identifying the impact of extraction methods and parameters held over the phytochemistry and biological activities of green coffee beans. Extraction processes belonging to two categories were performed: classical methods—maceration, Soxhlet extraction, and such innovative methods [...] Read more.
The objectives of the present study consisted of identifying the impact of extraction methods and parameters held over the phytochemistry and biological activities of green coffee beans. Extraction processes belonging to two categories were performed: classical methods—maceration, Soxhlet extraction, and such innovative methods as turboextraction, ultrasound-assisted extraction, and a combination of the latter two. Total polyphenolic and flavonoid content, as well as in vitro antioxidant activity of the resulted extracts were spectrophotometrically determined. Extracts displaying the highest yields of bioactive compounds were subjected to High Performance Liquid Chromatography-Mass Spectrometry analysis. The extracts with the best phytochemical profiles were selected for biological activity assessment. In vivo, a model of plantar inflammation in Wistar rats was used to determine antioxidant activity, by evaluating the oxidative stress reduction potential, and anti-inflammatory activity. In vitro antimicrobial activity was also determined. The Soxhlet extraction and ultrasound-assisted extraction gave the highest bioactive compound yields. The highest total polyphenolic content was 2.691 mg/mL gallic acid equivalents and total flavonoid content was 0.487 mM quercetin equivalents for the Soxhlet extract subjected to 60 min extraction time. Regarding the antioxidant activity, ultrasound-assisted extraction reached the highest levels, i.e., 9.160 mg/mL Trolox equivalents in the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay and 26.676 mM Trolox equivalents in the FRAP (Ferric Reducing Antioxidant Power) assay, at a 30 min extraction time and 50 °C extraction temperature. The 60 min Soxhlet extract reached the highest level for the ABTS+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, 16.136 mM Trolox equivalents, respectively. Chlorogenic acid was present in the highest concentration in the same Soxhlet extract, 1657.179 µg/mL extract, respectively. Sterolic compounds were found in high concentrations throughout all the analyzed extracts. A proportional increase between yields and extraction parameter values was observed. Increased inhibition of Gram-negative bacteria was observed. The finally selected Soxhlet extract, that of 60 min extraction time, presented a significant in vivo antioxidant activity, with a slight anti-inflammatory activity. Antioxidant levels were elevated after 2 h of extract administration. Pro-inflammatory cytokine secretion was not influenced by the administration of the extract. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

26 pages, 1770 KiB  
Review
Biocontrol Activity of Aromatic and Medicinal Plants and Their Bioactive Components against Soil-Borne Pathogens
by Babett Greff, András Sáhó, Erika Lakatos and László Varga
Plants 2023, 12(4), 706; https://doi.org/10.3390/plants12040706 - 5 Feb 2023
Cited by 17 | Viewed by 4219
Abstract
Soil-borne phytopathogens can have detrimental effects on both cereal and horticultural crops resulting in serious losses worldwide. Due to their high efficiency and easy applicability, synthetic pesticides are still the primary choice in modern plant disease control systems, but stringent regulations and increasing [...] Read more.
Soil-borne phytopathogens can have detrimental effects on both cereal and horticultural crops resulting in serious losses worldwide. Due to their high efficiency and easy applicability, synthetic pesticides are still the primary choice in modern plant disease control systems, but stringent regulations and increasing environmental concerns make the search for sustainable alternatives more pressing than ever. In addition to the incorporation of botanicals into agricultural practices, the diversification of cropping systems with aromatic and medicinal plants is also an effective tool to control plant diseases through providing nutrients and shaping soil microbial communities. However, these techniques are not universally accepted and may negatively affect soil fertility if their application is not thoroughly controlled. Because the biocontrol potential of aromatic and medicinal plants has been extensively examined over the past decades, the present study aims to overview the recent literature concerning the biopesticide effect of secondary metabolites derived from aromatic and medicinal plants on important soil-borne plant pathogens including bacteria, fungi, and nematodes. Most of the investigated herbs belong to the family of Lamiaceae (e.g., Origanum spp., Salvia spp., Thymus spp., Mentha spp., etc.) and have been associated with potent antimicrobial activity, primarily due to their chemical constituents. The most frequently tested organisms include fungi, such as Rhizoctonia spp., Fusarium spp., and Phytophthora spp., which may be highly persistent in soil. Despite the intense research efforts dedicated to the development of plant-based pesticides, only a few species of aromatic herbs are utilized for the production of commercial formulations due to inconsistent efficiency, lack of field verification, costs, and prolonged authorization requirements. However, recycling the wastes from aromatic and medicinal plant-utilizing industries may offer an economically feasible way to improve soil health and reduce environmental burdens at the same time. Overall, this review provides comprehensive knowledge on the efficiency of aromatic herb-based plant protection techniques, and it also highlights the importance of exploiting the residues generated by aromatic plant-utilizing sectors as part of agro-industrial processes. Full article
Show Figures

Figure 1

18 pages, 999 KiB  
Review
A Review on Regulation of Irrigation Management on Wheat Physiology, Grain Yield, and Quality
by Zhuanyun Si, Anzhen Qin, Yueping Liang, Aiwang Duan and Yang Gao
Plants 2023, 12(4), 692; https://doi.org/10.3390/plants12040692 - 4 Feb 2023
Cited by 8 | Viewed by 3622
Abstract
Irrigation has been pivotal in sustaining wheat as a major food crop in the world and is increasingly important as an adaptation response to climate change. In the context of agricultural production responding to climate change, improved irrigation management plays a significant role [...] Read more.
Irrigation has been pivotal in sustaining wheat as a major food crop in the world and is increasingly important as an adaptation response to climate change. In the context of agricultural production responding to climate change, improved irrigation management plays a significant role in increasing water productivity (WP) and maintaining the sustainable development of water resources. Considering that wheat is a major crop cultivated in arid and semi-arid regions, which consumes high amounts of irrigation water, developing wheat irrigation management with high efficiency is urgently required. Both irrigation scheduling and irrigation methods intricately influence wheat physiology, affect plant growth and development, and regulate grain yield and quality. In this frame, this review aims to provide a critical analysis of the regulation mechanism of irrigation management on wheat physiology, plant growth and yield formation, and grain quality. Considering the key traits involved in wheat water uptake and utilization efficiency, we suggest a series of future perspectives that could enhance the irrigation efficiency of wheat. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

34 pages, 2934 KiB  
Review
Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens
by Camilla Badiali, Valerio Petruccelli, Elisa Brasili and Gabriella Pasqua
Plants 2023, 12(4), 694; https://doi.org/10.3390/plants12040694 - 4 Feb 2023
Cited by 7 | Viewed by 2890
Abstract
Xanthones are a class of secondary metabolites produced by plant organisms. They are characterized by a wide structural variety and numerous biological activities that make them valuable metabolites for use in the pharmaceutical field. This review shows the current knowledge of the xanthone [...] Read more.
Xanthones are a class of secondary metabolites produced by plant organisms. They are characterized by a wide structural variety and numerous biological activities that make them valuable metabolites for use in the pharmaceutical field. This review shows the current knowledge of the xanthone biosynthetic pathway with a focus on the precursors and the enzymes involved, as well as on the cellular and organ localization of xanthones in plants. Xanthone biosynthesis in plants involves the shikimate and the acetate pathways which originate in plastids and endoplasmic reticulum, respectively. The pathway continues following three alternative routes, two phenylalanine-dependent and one phenylalanine-independent. All three routes lead to the biosynthesis of 2,3′,4,6-tetrahydroxybenzophenone, which is the central intermediate. Unlike plants, the xanthone core in fungi and lichens is wholly derived from polyketide. Although organs and tissues synthesizing and accumulating xanthones are known in plants, no information is yet available on their subcellular and cellular localization in fungi and lichens. This review highlights the studies published to date on xanthone biosynthesis and trafficking in plant organisms, from which it emerges that the mechanisms underlying their synthesis need to be further investigated in order to exploit them for application purposes. Full article
Show Figures

Figure 1

19 pages, 1378 KiB  
Article
Nutritionally Improved Wheat Bread Supplemented with Quinoa Flour of Large, Medium and Small Particle Sizes at Typical Doses
by Ionica Coţovanu, Costel Mironeasa and Silvia Mironeasa
Plants 2023, 12(4), 698; https://doi.org/10.3390/plants12040698 - 4 Feb 2023
Cited by 6 | Viewed by 2079
Abstract
One of the food industry’s challenges is to enhance bread quality from a nutritional point of view without impacting negatively sensorial characteristics and consumer decisions on product choice. This study aimed to assess the baking characteristics of wheat bread supplemented with quinoa flour [...] Read more.
One of the food industry’s challenges is to enhance bread quality from a nutritional point of view without impacting negatively sensorial characteristics and consumer decisions on product choice. This study aimed to assess the baking characteristics of wheat bread supplemented with quinoa flour (QF) of large, medium and small particle sizes at typical doses previously established based on an optimization process, and to evaluate the optimal bread from a physical, textural, nutritional, and sensorial point of view. The results showed a decrease in the Falling number index, water absorption, dough stability, speed of protein weakening, dough extensibility, and creep-recovery compliances for optimal wheat–quinoa composite samples with large and medium particle sizes; meanwhile, for the samples with small particle sizes an opposite trend was recorded, with the exception of dough extensibility. Dough fermentation parameters and bread volume rose for all optimal formulations, while firmness decreased compared to wheat bread. All optimal bread samples presented an improved nutritional profile depending on the particle size. The protein content was up to 19% higher, ash up to 13.8%, and lipids up to fifteen times higher. A noticeable enrichment in minerals (mainly K, Mg, Na, Zn, up to 2.3 times) and essential amino acids (with 13.53%) was also obtained for all optimal breads. From an acceptability point of view, the highest score (8.70) was recorded for the optimal bread with a QF of medium particle size. These findings offer processors new information which will be useful for diversifying bakery products with an enhanced nutritional profile. Full article
(This article belongs to the Special Issue Cereals: Aspects of Quality, Health, Technology, and Innovation)
Show Figures

Figure 1

23 pages, 2538 KiB  
Article
Effects of Co-Inoculating Saccharomyces spp. with Bradyrhizobium japonicum on Atmospheric Nitrogen Fixation in Soybeans (Glycine max (L.))
by Obey Kudakwashe Zveushe, Victor Resco de Dios, Hengxing Zhang, Fang Zeng, Siqin Liu, Songrong Shen, Qianlin Kang, Yazhen Zhang, Miao Huang, Ahmed Sarfaraz, Matina Prajapati, Lei Zhou, Wei Zhang, Ying Han and Faqin Dong
Plants 2023, 12(3), 681; https://doi.org/10.3390/plants12030681 - 3 Feb 2023
Cited by 14 | Viewed by 2767
Abstract
Crop production encounters challenges due to the dearth of nitrogen (N) and phosphorus (P), while excessive chemical fertilizer use causes environmental hazards. The use of N-fixing microbes and P-solubilizing microbes (PSMs) can be a sustainable strategy to overcome these problems. Here, we conducted [...] Read more.
Crop production encounters challenges due to the dearth of nitrogen (N) and phosphorus (P), while excessive chemical fertilizer use causes environmental hazards. The use of N-fixing microbes and P-solubilizing microbes (PSMs) can be a sustainable strategy to overcome these problems. Here, we conducted a greenhouse pot experiment following a completely randomized blocked design to elucidate the influence of co-inoculating N-fixing bacteria (Bradyrhizobium japonicum) and PSMs (Saccharomyces cerevisiae and Saccharomyces exiguus) on atmospheric N2-fixation, growth, and yield. The results indicate a significant influence of interaction on Indole-3-acetic acid production, P solubilization, seedling germination, and growth. It was also found that atmospheric N2-fixation, nodule number per plant, nodule dry weight, straw, and root dry weight per plant at different growth stages were significantly increased under dual inoculation treatments relative to single inoculation or no inoculation treatment. Increased seed yield and N and P accumulation were also noticed under co-inoculation treatments. Soil available N was highest under sole bacterial inoculation and lowest under the control treatment, while soil available P was highest under co-inoculation treatments and lowest under the control treatment. We demonstrated that the co-inoculation of N-fixing bacteria and PSMs enhances P bioavailability and atmospheric N2-fixation in soybeans leading to improved soil fertility, raising crop yields, and promoting sustainable agriculture. Full article
(This article belongs to the Special Issue Interactions between Plants and Soil Microorganisms)
Show Figures

Figure 1

Back to TopTop