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Abstract: Alongside natural language processing and computer vision, large learning models have
found their way into e-commerce. Especially, for recommender systems and click-through rate predic-
tion, these models have shown great predictive power. In this work, we aim to predict the probability
that a customer will click on a given recommendation, given only its current session. Therefore, we
propose a two-stage approach consisting of a customer behavior-embedding representation and a
recurrent neural network. In the first stage, we train a self-supervised skip-gram embedding on
customer activity data. The resulting embedding representation is used in the second stage to encode
the customer sequences which are then used as input to the learning model. Our proposed approach
diverges from the prevailing trend of utilizing extensive end-to-end models for click-through rate
prediction. The experiments, which incorporate a real-world industrial use case and a widely used as
well as openly available benchmark dataset, demonstrate that our approach outperforms the current
state-of-the-art models. Our approach predicts customers’ click intention with an average F1 accuracy
of 94% for the industrial use case which is one percentage point higher than the state-of-the-art
baseline and an average F1 accuracy of 79% for the benchmark dataset, which outperforms the best
tested state-of-the-art baseline by more than seven percentage points. The results show that, contrary
to current trends in that field, large end-to-end models are not always needed. The analysis of our
experiments suggests that the reason for the performance of our approach is the self-supervised
pre-trained embedding of customer behavior that we use as the customer representation.
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1. Introduction

Recently, large deep learning models have dominated various domains such as natural
language processing (NLP) and computer vision (CV) in academia and industry. Since the
introduction of the transformer model [1] in 2017, they have been repeatedly archiving
state-of-the-art results. Recent examples like ChatGPT (https://openai.com/blog/chatgpt/
(accessed on 26 September 2023)), GPT-3 [2], or Dall-E [3] show what such deep models are
capable of. A similar trend can be observed in e-commerce, especially with recommender
models like “Wide & Deep” [4] or Bert4Rec [5] and Click-Through Rate (CTR) prediction
(CTR-P) models like “Deep & Cross” [6].

In the last years, CTR-P became a core task in online advertisement (also called ads) [7,8].
This is mainly because search engines, and especially recommender systems, are playing a
significant role in e-commerce businesses [9–12]. Furthermore, predicting CTR accurately
leads to a better user experience which has been shown to have a great impact on business
effectiveness [8,13]. Additionally, CTR is a key performance indicator for online ads and

J. Theor. Appl. Electron. Commer. Res. 2024, 19, 135–151. https://doi.org/10.3390/jtaer19010008 https://www.mdpi.com/journal/jtaer

https://doi.org/10.3390/jtaer19010008
https://doi.org/10.3390/jtaer19010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jtaer
https://www.mdpi.com
https://orcid.org/0000-0003-3664-0360
https://orcid.org/0000-0003-3797-0396
https://orcid.org/0000-0002-8024-3074
https://orcid.org/0000-0002-1969-559X
https://openai.com/blog/chatgpt/
https://doi.org/10.3390/jtaer19010008
https://www.mdpi.com/journal/jtaer
https://www.mdpi.com/article/10.3390/jtaer19010008?type=check_update&version=1


J. Theor. Appl. Electron. Commer. Res. 2024, 19 136

therefore, its prediction influences the ranking and price for online ads and revenue spon-
sored search [13–15]. Although there is a huge amount of data in the e-commerce sector,
unlike natural language or images which have recurring patterns, customer behavior is
subject to constant change as it is highly dependent on a variety of factors such as season,
inflation, and local as well as global developments. In addition, the data are typically
use case- and user-specific and are therefore limited in their ability to be shared across
organizations. These two reasons raise the question of the extent to which deep and wide
models are suitable in the context of e-commerce. Besides that, another aspect is that
deep learning models require a considerable amount of computing resources, which is an
ever-growing concern in light of the rising energy costs in our modern world. Furthermore,
companies have limited resources and need to plan them accordingly [16]. Consequently,
in the e-commerce sector, companies should ideally only use their resources on reactive
customers, e.g., only display recommendations to those customers who are most likely to
click on them. Lastly, advertising and recommendations can lead to negative experiences
for certain customers, resulting in negative attitudes towards the operating company. This
leads to shorter visit duration, fewer visits, fewer referral opportunities, and increased
negative word-of-mouth. Therefore, it is crucial to only display advertising and recom-
mendations when success is probable. Therefore, it is of great importance for a business to
understand its customers’ intentions and engage them with personalized targeting.

In this work, we approach CTR-P on recommendations for an online shop. Specifically,
the goal is to determine whether the customer will click on the recommendation with the
constraint that customers are not always logged in and, therefore, can be unknown to the
online shop. Furthermore, we aim for our approach to be transferable to other use cases,
which is why we additionally evaluate it on an open benchmark dataset commonly used in
CTR research.

Recent state-of-the-art CTR-P approaches are based on end-to-end deep learning
models. We break with this trend and propose an approach that decouples the customer
representation from the CTR-P task. We train an embedding for this representation prior
to the actual CTR-P task. We use the resulting pre-trained representation as an input to
a subsequent Long Short-Term Memory (LSTM) classifier to predict the CTR and show
in empirical experiments on two real-world use cases, that our approach outperforms
state-of-the-art CTR-P models. Not only is our approach more accurate in terms of AUC
and F1 score, but we also show that the pre-trained embeddings are better capable of
capturing contextual and behavioral features from customer interaction data and help the
LSTM to better generalize this customer behavior by not overfitting on the training data.

Our contribution to the research is as follows:

1. Our results show that baseline elements such as pre-trained embeddings and a recur-
rent neural network such as an LSTM can predict customer click behavior better than
modern CTR prediction models, without the need for large end-to-end models.

2. In this respect, our approach results in reduced training time, making it more re-
source efficient.

3. Furthermore, task-independent pre-training of embeddings based on customer click-
stream data is sufficient to model customers and prevent overfitting.

The remainder of this paper is structured as follows: in the next section, we present
recent literature for CTR-P. In Section 3, we introduce the use case and describe the used
datasets in detail. Section 4 describes all the necessary steps of our experiments to solve the
stated problem and in addition provides theoretical details of our approach. In Section 5,
we present our results and discuss the outcomes. Finally, we summarize our work and
discuss its limitations as well as future research opportunities.

2. Related Work
2.1. Approaching Click-Through Rate Prediction

CTR-P received a lot of attention in industry and academia in the past years. It is
approached as a binary classification problem, where the probability of an item click should
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be predicted regardless of the use case, e.g., retrieved item in a search, clicked ad, or clicked
product. In the literature, there is not one CTR-P use case, but multiple kinds of use cases.
For example, Chen et al. [17], Ge et al. [18], and Fan et al. [9] propose a CTR-P model
to optimize the retrieved items of a search engine. Others predict the CTR for shown
ads [6,19] or products in general [10,20]. Table 1 presents a comprehensive overview of
state-of-the-art CTR-P approaches including information of the authorship, publication
year, proposed approach, used dataset, evaluation metric, and corresponding scores. All
approaches are based on deep neural networks which means mixtures and ensembles
of multi-layer perceptrons, recurrent layers, and attention layers that should capture
customers’ behavioral information. Furthermore, all models contain an embedding input
layer to embed available information, which is usually given by the use case and/or selected
by the data engineers. Typical input information is the user id, target item id, additional user
information, and additional target item information. The DIN [21], DIEN [10], TIEN [22],
and MARN [8] approaches use sequential activity information, which we also rely on in
our approach. CTR approaches are evaluated on different datasets, some publications and
approaches rely only on closed data [13,18,23–25] which are not included in Table 1. Others,
as shown in Table 1, use openly available datasets to evaluate their approach. Of all the
reviewed publications, the Amazon review dataset is the most used and, therefore, we also
use this dataset to evaluate our approach. From previous works, we see that the standard
evaluation metric for CTR-P is the Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC) score, sometimes also referred to as ROC-AUC score. Some authors also
utilize the log loss and F1-score. The AUC score is a metric to evaluate the performance of
a binary classification model which quantifies the ability to distinguish between the two
classes. The log loss can be used for binary and multiclass problems and measures the
uncertainty of the made prediction. The F1 score is a metric that is especially useful when
dealing with imbalanced data and is computed as the harmonic mean between precision
and recall of the positive predictions [26–28]. When possible, some authors also validated
the approaches in live online AB-tests. Based on the evaluation metrics used in the related
work, we will use the AUC and F1 metrics to evaluate our approach. Note that we do not
use the log loss for evaluation because it is the loss we use to optimize the learning models
in our experiments.

Table 1. Overview of publications proposing CTR-P approaches with information on the datasets,
evaluation metrics, and scores used.

Author Year Approach Dataset Score
AUC F1 Logloss

Fan et al. [9] 2022 RACP Avito 0.794
Taobao (closed) 0.7623

C. Li et al. [20] 2021 Mul-AN Criteo 0.8 0.483
MovieLens-100k 0.847 0.395

X. Li et al. [8] 2020 MARN
Amazon Review Electro 0.803

Amazon Review Clothing 0.791
Taobao (closed) 0.749

X. Lie et al. [22] 2020 TIEN

Amazon Review Beauty 0.8701 0.784 0.4479
Amazon Review Clothing 0.7962 0.698 0.5476
Amazon Review Grocery 0.8252 0.7524 0.5019
Amazon Review Phones 0.839 0.7427 0.4949
Amazon Review Sports 0.8266 0.7543 0.5101
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Table 1. Cont.

Author Year Approach Dataset Score
AUC F1 Logloss

Zeng et al. [29] 2020 USRF
RetailRocket datasets 0.8888 0.8001

Amazon Review Digital Music 0.7086 0.6709
MovieLense-1M 0.9921 0.8445

Zhou et al. [10] 2019 DIEN
Amazon Review Electro 0.7792
Amazon Review Books 0.8453

Taobao 0.6541

Zhou et al. [21] 2018 DIN
Amazon Review Electro 0.8871

MovieLense-20M 0.7348
Alibaba (closed)

Wang et al. [30] 2017 DCN Criteo 0.4419

2.2. Customer Representation

Traditionally, customer behavior is modeled by domain experts to make predic-
tions of their intentions and future behavior. Therefore, data like clickstream data or
demographic information are incorporated into the data analysis and feature engineering
process [31–35]. As shown by Alves Gomes et al. [36] most customer representations are
modeled with manual features extracted by experts or with the RFM analysis [37]. For
example, Perisic et al. [38] and Friedrich et al. [39] extracted RFM-based features by ex-
tending the RFM analysis from historical data for customer representation. Wu et al. [40]
modeled and analyzed customer behavior with an extended RFM approach by adding
customer contribution time and repeat purchase attributes and combining it with a k-means
clustering. K-means clustering is also used by Hamed Fazlollahtabar [41]. The author
chose different customer information gathered from their transactions and applied k-means
clustering of different combinations of two features, e.g., gender and product or age and
product. Wang et al. [42] analyzed influence factors of second-hand customer-to-customer
e-commerce platforms by using questioner and demographic information of customers.
Esmeli et al. [35] modeled customers based on twelve features solely based on session
information. Berger et al. [43] used features that describe the change in customer behavior
based on actual session information and the information retrieved from previous session
history. This manual customer representation process is time-consuming and expensive,
especially since it needs to be repeated for each new use case or marketing campaign.

Recent approaches that use embedding layers simplify customer modeling by only
inserting information into the learning model without a proper feature engineering process.
Most of the aforementioned CTR-P approaches utilize embedding layers to learn customer
behavior. Sheil et al. [44] proposed an end-to-end three-layered LSTM to predict future
customer behavior by learning patterns of the product the customer interacts with, the
interaction time, and additional product-related information. Ni et al. [11] proposed a Deep
User Perception Network (DUPN) an end-to-end Long-Short Term Memory (LSTM) with
an embedding input that is trained on multiple tasks for a general customer representation.
Yang et al. [45] and Wu et al. [46] represented customers based on textual features like
product names, categories, and reviews written by the customers. However, in addition to
using an embedding layer for input data, embeddings can also be used to represent features.
Especially in the e-commerce context, embeddings were used in recommendation scenarios.
For this purpose, product embeddings were created and trained [47–50]. A recent approach
using pre-trained embedding features to represent customer behavior was proposed by
Alves Gomes et al. [51,52]. The authors pre-trained an embedding to encode customers’
behavior and used the representation to predict customers’ purchase intention. In this
regard, we adapt the pre-trained embedding representation and an LSTM learning model
and show that it is sufficient to predict the CTR of products and recommendations without
the need for deep and wide neural networks.
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3. Use Case and Data Description

In this work, we approach CTR-P for recommendation in an online store scenario.
Specifically, while browsing the online shop, customers will get recommendations displayed
on the webpage from the online shop’s recommendation engine. The question we want
to answer is: Is it possible to predict if the customer will click a recommendation given
only their session? When browsing an online shop, customers do not necessarily have
to be logged in, so they are unknown to the operator. In our use case, for example, this
concerns about 60% of the recorded events. On the session side, it looks even worse.
Of the sessions, 91% start with unknown customers who, on average, only log in after
eight interactions. For comparison, sessions are on average twelve interactions long. This
showcases the necessity that utilized approaches work for known and unknown customers
alike and do not rely on historical customer information.

The use case for predicting the CTR of recommendation is provided by a large US
retailer group. The (closed) dataset contains customers’ browsing information. Each entry
is an event with information about the event time, event type, session id, user id (if known),
additional meta information, and the URL of the event. The data were recorded over five
months from January 2020 to May 2020. It consists of 53 million customer events in total,
with 66,883 different URLs.

The benchmark use case is based on the Amazon review 2018 dataset, which was pro-
vided by Ni et al. [53] and is one of the most used datasets to benchmark CTR-P [8,10,22,29,54].
The Amazon review dataset consists of 233.1 million user reviews collected from May 1996
to October 2018 with additional product ratings, product meta information like categories,
and images. Similar to [11,15,22], we use the rating information of the selected categories.
The data contain tuples, each of which has an item id, a user id, a rating, and a timestamp.
Using the item id, additional information can be joined with the help of the metadata.

4. Experiments

Typically, CTR-P models take a customer behavior sequence si of length n from
customer ci with the objective to predict P(xn+1|si), where xn+1 is a click interaction on
the target, i.e., product, ad, or recommendation [8]. Over time, various learning models
have been introduced that can be optimized for maximizing P(xn+1|si), including support
vector machines, decision trees, and neural networks. Unfortunately, many of these models
are limited to receiving input data of a fixed length. Nevertheless, since sequence si can be
of any size, it is necessary to handle these. One option is to utilize padding for sequences
that are shorter than the maximum length. Another option is utilizing recurrent neural
networks (RNN) that were developed specifically for handling sequential data. The used
notations and their descriptions are summarized in Table 2.

Table 2. Notation and description.

Notation Description

C, X, S Set of all customers C, customer interactions X, and sequences S
ci, xj A customer ci ∈ C and interaction xj ∈ X, i, j ∈ N

si, ni
si = {x0, x1, ..., xn}, si ∈ S is a ascended time-ordered customer behavior
sequence with sequence length ni, ni ∈ N, n > 1, i ∈ N

k j, M A interaction xj of si has a context k j = {xj+m, xj+m−1, ..., xj−m+1, xj−m} \ xj
with context window size M = 2×m, m ∈ N, m× 2 ≤ ni, i ∈ N

exj , D D-dimensional embedding representation exj of interaction xj, exj ∈ RD

E(xj) Embedding function E that uses the trained embedding and maps xj →
exj , j ∈ N
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4.1. Approach Methodology

As mentioned above, nowadays, deep learning models for CTR-P mostly consist of
an embedding layer to process categorical data and are trained end-to-end. We break
with this paradigm and propose a two-step approach based on a pre-trained embedding
customer interaction representation which encodes all x in s and a LSTM binary classifier
for CTR-P. Our approach is illustrated in Figure 1. The first step of our approach is to train
an embedding customer representation. Therefore, we adapted the “SkipGram” approach
by Mikolov et al. [55] to train the interaction embedding representation. Figure 2 shows
the embedding architecture when using the SkipGram approach, which consists of one
input layer, one hidden layer, and one output layer. The input layer is a one-hot encoding
of the customer interaction xj. The hidden layer, which is the embedding representation exj ,
consists of D neurons. The output layer size is based on the context size and the number of
possible customer interactions and has the goal of predicting the context of the customer
interaction exj .

Figure 1. Our proposed two-stage CTR-P approach.

Specifically, a single hidden layer neural network with optimizable variables (weights)
θ is trained to maximize the likelihood,

L(θ) =
n

∏
j=0

m

∏
α=−m;α 6=0

P(xj+α|xj; θ). (1)

Based on the assumption that words with similar contexts are closer to each other in a D
dimensional vector space, word vector representations have been proposed for natural lan-
guage processing tasks. Our hypothesis is that this assumption is transferable to customer
interaction on online platforms. Hence, the similarity between two interactions xa and xb is
defined by the similarity of their context ka and kb.
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After the training of embeddings, the second step of our approach is to train an RNN
learning model to predict the probability that interaction xn+1 is a click interaction of
customer ci given si. One commonly used RNN architecture is the LSTM, which was
proposed by Hochreiter et al. [56] in 1997. LSTMs have the ability to carry information from
earlier inputs to later inputs by utilizing different kinds of gates and states. In addition to
LSTMs, there are also Gated Recurrent Units (GRU) [57] with a similar mode of operation.
Both RNN architectures are pre-implemented in various deep learning frameworks. In
previously conducted experiments, LSTMs demonstrated superior performance compared
to GRUs. Therefore, we opted for LSTMs. All interactions xj ∈ si are embedded by E(·)
and are used as input for the LSTM binary classifier.

Figure 2. SkipGram embedding architecture as proposed by Mikolov et al. [55].

4.2. Baseline Approaches

Based on our literature research presented in Section 2, we identified four state-of-
the-art CTR-P approaches that are applicable to our use case, as they can handle customer
behavior sequences. Our aim was to compare our approach with these four baseline models.
Unfortunately, we were unable to replicate the outcomes of MARN and TIEN due to the
unavailability of their source code and the inadequate amount of information provided
in their original papers for recreating the approaches. We therefore decided to use only
DIN and DIEN as baseline models. At this point, it is worth noting again that both MARN
and TIEN are extensions of the DIN approach and do not follow a completely new concept.
Therefore, DIN yields similar outcomes in terms of approach.

1. LSTM baseline: The LSTM baseline approach is similar to our approach, but is
designed as an end-to-end model, lacking the embedding decoupling and thus the
self-supervised pre-training of the customer behavior representation embedding.

2. DIN: Zhou et al. [21] proposed the Deep Interest Network (DIN) for CTR-P with the
idea that the model captures user interests in past user interactions. This is realized
with an attention mechanism that refers to the target item.

3. DIEN: Zhou et al. [10] proposed Deep Interest Evolution Network (DIEN) as the
successor of DIN. It has a similar motivation to capture historical user interest but
uses a different approach and model architecture. DIEN consists of three layers;
(1) a Behavior Layer, (2) an Interest Extractor Layer, and (3) an Interest Evolving
Layer. The Behavior Layer is the embedding layer that processes customers’ historical
sequence. The second layer consists of gated recurrent units (GRU) [57]. The third
layer consists of an attention mechanism and AUGRU, a GRU with an attentional
update gate.
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4.3. Data Preprocessing

First, we prepared the datasets for further usage. As mentioned previously, the closed
dataset consists of customers’ browsing events. For each event, we defined an interac-
tion xi as a string of “event type:URL”. For example, an “add to cart” event of the URL
“www.123.abc” would result in “cart:www.123.abc”. Within the dataset, six different event
types exist, which are add to cart, remove from cart, check out, page view, product view, and
recommendation click. In the next step, we removed the query strings from the URLs that are
unique to each customer. Otherwise, they would over-specify the URL, resulting in many
unique URLs and making it difficult to generalize the trained representation. Thereafter,
we aggregated all events by their session id to customer behavior sessions and removed
the session with less than three interactions as personalized prediction is not feasible in a
real-world scenario with only one or two customer interactions. We labeled each session
according to the information if at least one recommendation click event exists or not. Finally,
we removed all click recommendation interactions (training objective) and customer inter-
actions that happened thereafter. The resulting set of sessions is highly imbalanced with
only 1.5% being positively labeled. Therefore, we applied a random undersampling (3:2)
strategy to generate a balanced dataset for training and evaluation.

Regarding the baseline Amazon review dataset, we created two datasets. In the literature,
due to the vast amount of data, the authors usually select one category at a time and
predict the CTR only for that category, as shown in Table 1. Similarly, we decided to select
the “Clothing” subset as a dataset, which was used to evaluate the not openly available
approaches MARN and TIEN. Thus, we can get an indication of how our approach compares
to these two approaches, even if we are not able to include them in our experiments.

Instead of selecting other categories individually, we decided to combine the subsets
of the categories used by X. Li et al. [22], “Clothing”, “Beauty”, “Grocery”, “Phones”, and
“Sports” into one dataset. In the following, we refer to this dataset as “Amazon 5 categories”.
There were two major reasons to do so: (1) While investigating the dataset, we noticed
that customers have interactions between different categories and therefore, we suspect
that neglecting this might not reflect the reality of customer behavior; (2) we want to
demonstrate that large amounts of data are not a limiting factor for the presented approach.

For the following dataset preprocessing steps, we adhered to previous works from [11,15,22].
The Amazon dataset consists of rating quadruples with item id, user id, item rating, and
timestamp information. First, we removed all duplicate tuples and all products and users
that occurred less than five times. Then we built all user behavior sequences by aggregating
the user id and sorting them by the timestamp. Here, rated products are treated as clicked
product interactions regardless of the user rating. Note that only positive examples exist.
In order to create negative examples, we exchanged the last product in 50% of all user
behavior sequences with a product that is not in the behavior sequence.

Following the works of [10,22], we split all datasets into 85% training data and 15%
testing data. In order to avoid feature leakage, we ensured that all training sequences
Strain take place before the testing sequences Stest. Stest is used for evaluation only. For our
pre-trained embedding approach, we used a context window size M = 2 and therefore,
we create trigrams out of all sequences s ∈ Strain. Specifically, for each interaction xi, a
triple (xi, xi−1, xi+1) is formed. For i = 0∨ i = n, with xn the last interaction in a sequence,
we introduced a “START” and a “END” token in order to not neglect the first and last
interaction. New products are frequently introduced and the embedding needs to be able
to deal with them. In our experiments, this is represented by interactions that are not
included in the training set but in the test set. Therefore, we introduced the “unknown”
token which is one way to deal with the out-of-vocabulary problem [51,58]. Note that the
created negative examples of the Amazon training set are not included in the trigrams. The
statistics of the three datasets after preprocessing as well as for the created training and test
sets, are shown in Table 3.
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Table 3. Dataset statistics with meta-information about the number of customers and interactions as
well as information about training sessions, test sessions, and n-grams.

Amazon Clothing Amazon 5 Categories Closed

#interactions 10,714,172 25,862,230 53,825,295
#users 1,164,752 2,547,663 574,890
#sequences 1,164,752 2,547,663 6,195,916
#unique interactions 372,593 801,890 66,891

#train samples 970,717 2,127,165 119,905
∅train sequence length 8.6689 9.5863 12.6557
#test samples 171,406 376,606 21,160
∅test sequence length 7.5048 7.8988 11.6173

#n-grams 7,452,387 18,742,161 3,849,627

4.4. Reproduction of the Experiments

For the sake of the reproducibility of our experiments, we describe the necessary
information in this section. The experiments were implemented in Python 3.8.10 [59] with
NumPy 1.20 [60] and Pandas 1.3 [61] for the data preprocessing of the three datasets. We
implemented our approach (embedding and LSTM) with PyTorch 1.11 [62] and for DIN
and DIEN we used DeepCTR-Torch 0.2.9 [63]. For the evaluation metrics, we used imple-
mentations from scikit-learn 1.1.1 [64,65]. Optuna 2.10 [66] was used for hyperparameter
tuning which uses different strategies like grid search, random, bayesian, and evolutionary
algorithms. The data preprocessing and model validation were computed on a Windows
10 machine with an Intel i9-10885H and 64GB RAM. Model training and hyperparameter
search was computed on an Ubuntu 18.04 machine with 96xIntel Xeon Platinum 8168 CPU
@ 2.70GHz, 756GB RAM, and 8xNvidia Tesla V100 GPUs.

We trained each approach on each dataset and, additionally, conducted a hyperpa-
rameter search for all approaches. Figure 3 illustrates our conducted experiments. First,
the data are preprocessed, as mentioned in Section 4.3, and are split into training and test
data of which all the test data are in the future of the training data split. This is followed
by a hyperparameter tuning process for each evaluated approach in our work. For the
search, we employed 10-fold cross-validation, randomly selecting 10% of the training data
as validation for each fold. Specifically, for 10-fold cross-validation, the training data were
divided into ten equally sized pieces, also referred to as folds, whereby the subdivision is
random. In each validation step, the model is trained with nine folds and the remaining
fold is used for validation. This is repeated ten times with different folds each time and
the validation results of each step are then averaged. The hyperparameters chosen by the
hyperparameter search are described below. We always trained with a batch size of 128. For
the embedding dimension, the hyperparameter search had the search space 2n, 2 ≤ n ≤ 10.
The chosen dimension for our proposed embedding representation is 64 for both Ama-
zon datasets and 32 for the closed dataset. For the embedding training, “AdamW” was
selected as the optimizer and initialized with a learning rate of 0.001. As a loss function,
the “CrossEntropyLoss” was selected, which combines the SoftMax activation and the
negative log-likelihood. The embeddings are trained with early-stopping of the loss and
it stops when the loss does not change more than 10−4 after five epochs which happened
around training 60 epochs. For the CTR-P, a one-layer LSTM was selected by the search
algorithm which had the option to select between one to ten LSTM layers for the model.
Another hyperparameter for the LSTM is the dimension for the hidden size. The search
space for the hidden size is similar to the embedding dimension defined by 2n, 2 ≤ n ≤ 10.
It turned out that the best hidden dimension always had the same shape as the embedding
dimension. Also for the LSTM we utilized the “AdamW” optimizer with a 0.001 learning
rate and “BCEWithLogitLoss” as a loss function. The best hyperparameters for the LSTM
baseline approach are the same as our approach. As mentioned above, for our approach,
only the sequence of customer interactions was used as features which were only the rated
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products for both Amazon datasets and the combination “event type:URL” for the closed
dataset. The same features were also used for the LSTM baseline model.

Regarding DIN and DIEN more features are used. For the two Amazon datasets, we
utilized the history of rated products and their categories. Similarly, for the closed dataset,
we used the sequence URLs and the sequence event type as input features. The features are
each encoded with a 32-dimensional embedding layer for each dataset. Furthermore, for
both models, a dnn-dropout of 50% leads to the best results. As the optimizer, “adagrad”
was selected and “binary_crossentropy” was selected as the loss function. Additionally
for DIEN, we used “AUGRU” as the parameter for the gru-type. Note that, for unnamed
hyperparameters, the default values from the libraries were the best option based on the
conducted hyperparameter search.

After having the best hyperparameter for each approach, we trained the models on the
whole training dataset. Thereafter, we ran ten training runs, each with random initialization,
to eliminate any favorable starting conditions that could affect our results. Each tested
approach was trained for 150 epochs and we recorded the performance and the loss on the
training data. For evaluation, we utilized the test data and we always chose the checkpoint
of the best-average-performance of the model.

Figure 3. Flow chart of the conducted experiments including data preprocessing, hyperparameter
tuning with cross-validation, model training, and evaluation.

5. Results and Discussion

Table 4 shows the resulting AUC and F1 scores of our experiments. The LSTM baseline
has the lowest AUC and F1 score among all approaches for both Amazon datasets. Sur-
prisingly, DIN has a slightly higher AUC score than DIEN for both experiments with the
Amazon datasets, which contradicts the results of Zhou et al. [10]. For the Amazon Clothing
dataset, DEIN outperforms DIN with an F1 score that is 0.059 points higher. Compared to
the experiments conducted on the Amazon datasets, each approach’s experimental results
on the closed dataset yielded higher scores. Also, with regard to our (closed) use case,
DIEN is outperformed by DIN. For our use case, DIEN is the worst-performing approach
tested. The LSTM baseline approach slightly outperforms DIN. Our approach outperforms
all three baseline approaches on each of the three datasets. In the experiments for our
use case, our approach has a 0.0079 higher AUC and a 0.0063 higher F1 score than the
LSTM baseline and they are even higher when compared to the two state-of-the-art models.
With regard to the two Amazon datasets, our approach outperforms the three baseline
approaches by about 0.1 AUC and 0.07 F1. Shi et al. stated that, in CTR-P tasks, “a slightly
higher AUC or Logloss value at 0.001-level is regarded as a huge improvement” [67].
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Table 4. Experiment results for the three baselines and our approach on each dataset. Approaches
were trained ten times with a random initialization each time. Scores are averages of the ten trained
model scores. The standard deviation for all results is around 10−3. The best results for each dataset
and score are shown in bold.

Amazon Clothing Amazon 5 Categories Closed
Approach AUC F1 AUC F1 AUC F1

LSTM baseline 0.7651 0.7071 0.7712 0.7106 0.9731 0.9387
DIN 0.7885 0.7221 0.7948 0.725 0.9626 0.9329
DIEN 0.7796 0.7280 0.7759 0.7246 0.9510 0.9251
ours 0.8851 0.7962 0.8896 0.7996 0.9810 0.9450

The results show that our method is suitable for predicting whether a customer will
click on a recommendation during a session. Thus, we can confidently answer our initial
research question, that it is possible to predict a customer’s click on a recommendation
given the session. Additionally, our experimental results on the two Amazon datasets
demonstrate that our approach has the capability to predict CTR based on customer
interaction history, surpassing previously proposed state-of-the-art approaches.

However, based on our literature review, TIEN [22] and MARN [8] are both more
recent approaches for the CTR-P of customer behavior sequences that outperform DIEN.
Unfortunately, in contrast to DIN and DIEN, the models were, as discussed previously, not
accessible for use. Nevertheless, in both publications, the authors compare their approach
against DIEN on the Amazon clothing subset, which helps us validate our results and
compare them to their approaches. In the work of X. Li et al. [22], DIEN has an AUC score
of 0.7564 and an F1 score of 0.6792, which are lower than our results for DIEN. TIEN has
an AUC score of 0.7962, which is 0.0398 higher, and an F1 score of 0.698, which is 0.0188
higher than DIEN’s scores. In the MARN publication by X. Li et al. [8], the DIEN AUC
score on Amazon clothing is 0.7793, which is approximately the same AUC score that
DIEN archives in our experiment. MARN archives an AUC score of 0.7909 on the Amazon
clothing dataset, which is 0.0116 higher than DIEN’s AUC score. In our experiments, the
AUC score of our approach is 0.1055 higher and the F1 score is 0.0682 higher than DIEN’s
scores, which provides confidence that our approach would also outperform both TIEN
and MARN.

Why does our approach outperform the two state-of-the-art models DIN and DIEN,
as well as the LSTM baseline, even though it is structurally almost identical? The cause
is likely the pre-trained embedding of customer interaction representation. We train the
embeddings task independently in a self-supervised manner and, thus, the embedding
was able to learn similarities between customer interactions from the data and the context.
In contrast, an embedding input layer learns task-specific patterns and not necessarily the
context of the interactions and their meaning. From this, we deduce that the quality of our
pre-trained embedding features is significantly better for learning since only the LSTM
cells need to be adjusted for CTR-P during training. With the other approaches, several
layers have to be adjusted, which for example can lead to the vanishing gradient problem.
Evidence is given by inspecting the training loss and score. Figure 4 shows the average log
loss and AUC score of the approaches’ CTR-P training. Loss-wise for the Amazon datasets,
it can clearly be seen that our approach never reaches a log loss under −1. In fact, it stays
almost constant. For the baseline approaches the loss is getting smaller, especially for the
LSTM baseline, which can be interpreted as overfitting on the train data. This assumption
is supported by the achieved AUC scores of the baseline models. All baseline models reach
an AUC score of one after 25 epochs of training. On the other side, our approach never
reaches such a high AUC score during training which speaks for a better generalization of
the predictor. In the case of the closed dataset, no major difference between the approaches
is seen between the loss and the AUC score. This is also evident in the results for the
closed dataset.
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Our results show that large, deep, and wide learning models are not always suitable
for all use cases. Especially in e-commerce—which has a highly dynamic environment with
ever-changing trends as well as customer preferences—smaller and easier-to-implement
models pose to be superior at the moment. In fact, the LSTM baseline approach is only
slightly worse on the Amazon dataset and slightly better on the closed dataset. This raises
the question of whether it is suitable to construct novel architectures incorporating attention
and other contemporary deep learning techniques that introduce supplementary trainable
parameters to a model, thereby intensifying its training. Further research is necessary to
shed more light on this matter and we encourage the community to take this alternative
perspective of investigating alternative approaches to simply building larger and more
complex models when trying to tackle e-commerce problems such as CTR-P.

In the last part, we want to discuss our approach’s limitations and implications. One
limitation is that, in contrast to DIN, DIEN, and other approaches, incorporating new
information is not a straightforward process. Consequently, it becomes more difficult to
take into account all available information, such as age, gender, and time. In this regard,
further research is needed. A review of the literature reveals that there have been early
attempts to propose product embeddings that encode additional data for embedding-based
recommender systems, like Meta-prod2vec [47] or SkipGramEx [49]. However, it should
be noted that personalized information is becoming increasingly difficult to obtain, for
example, due to government restrictions and laws [68,69], which is why the pure use of
interaction data represents a solution to this problem. Another challenge of our approach,
but also of other approaches such as DIN and DIEN, is the interpretability. Traditional
approaches that use handcrafted features can be understood and explained by domain
experts. End-to-end deep learning approaches or our approach are difficult to explain due
to the black-box characteristics of neural networks. With the emergence of the research
field of explainable AI (XAI), scientists worldwide are making efforts to understand the
decision-making of neural networks and to improve their interpretability and explainability.

Figure 4. Averaged train history of all four approaches on the three datasets for 150 epochs of training.
The first row displays the log loss to the tenth power and the second row the AUC score.

Our research indicates that the ongoing trend toward using large end-to-end models
in various tasks should be re-evaluated. While these models may be revolutionary in many
regards and change the way tasks are solved, they also require substantial amounts of
resources which should always be considered. By examining the case of CTR-P in the e-
commerce sector, we showed that such large models may not always be indispensable, and
we look forward to promoting this awareness across other fields. For industrial applications,
this shows that it is not always necessary to use the largest and most advanced models
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from large technology companies, but that smaller and easier to implement approaches are
sufficient and can even outperform these large models.

Moreover, it is worth highlighting the broad spectrum of data used by large models,
including demographic customer data. Collecting such data is not always an effortless task,
and regulations, as already discussed, need to be accounted for. Our approach refrains
from using demographic and historical data, making it mostly conventional especially
for regions with high data privacy requirements. In addition, by requiring less private
customer information it makes the approach easier to transfer to other use cases.

Another aspect to consider in our study is how it all plays out for the customer. We are
questioning whether ramping up personalization in e-commerce genuinely enhances the
customer experience. Is it a positive experience because it makes shopping more enjoyable,
or is there a flip side where customers might be nudged into actions that are not in their
interest? Exploring these effects in more detail in future research will help us figure out if
any regulations are needed down the line.

6. Summary and Outlook

CTR-P is a significant subject for both academia and industry. Our study predicted
clicks on recommendations solely from sessions where customers are not necessarily logged
in. Recent research demonstrates that end-to-end models can achieve satisfactory results
in addressing this task. However, end-to-end models are becoming larger and utilizing
more complex architectures, resulting in more challenging training due to the increase in
trainable parameters. Additionally, the need for more computation resources is a growing
concern not only in terms of financial costs but also in light of rising energy costs in our
modern world. We proposed a decoupled CTR-P model and were able to show that wide
and deep models are not necessarily needed to predict customer clicks. Our approach
consists of a self-supervised pre-trained customer behavior embedding and a simple one-
layer LSTM. We performed the experiments on our use case with our own closed dataset
and furthermore, to demonstrate the transferability of our approach, we also conducted
the experiments on an open-access benchmark dataset for CTR-P. For our use case, our
approach has a 0.0079 higher AUC and 0.0063 F1 score than the second-best approach
tested. For the benchmark dataset, our approach outperforms the three baseline approaches
by about 0.1 AUC and 0.07 F1 score. Based on the experiment’s results, we have reason
to assume that the task-independent self-supervised pre-training embedded customer
behavior is the key component of our approach’s success. By investigating the training
history, we showed that our approach provides evidence of better generalization compared
to the baseline approaches and is presumably less susceptible to overfitting due to having
less trainable parameters. Therefore, we can conclude that wide and deep models are not
necessary to approach CTR-P.

In future research, we aim to investigate the effect of self-supervised pre-training on
e-commerce task performance. Based on our findings it is possible that the self-supervised
pre-training of the customer behavior context for our embeddings has also a positive impact
on the end-to-end approaches. This way of approaching tasks by pre-trained models is
already best practice for language and vision problems in which large language models
are pre-trained on a huge amount of data and then fine-tuned for a specific use case.
Furthermore, we aim to explore methods for integrating further interaction data, such as
the time of each interaction, into the embedding. We anticipate that enhancing the customer
representation quality through this approach will lead to increased predictive capabilities
of the learning model.

From the literature, we know that similar embedding representation approaches were
already used for product recommendation and purchase prediction. Therefore, we want
to investigate how our approach is transferable to other e-commerce tasks. We assume
that the approach if successful on other e-commerce tasks can have an impact on how to
approach them. However, it is necessary to find ways to explain the embeddings so that
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this transferability to different prediction tasks can also be justified without conducting
experiments to show if it works.

In a real-world application, it is beneficial to comprehend the approach’s decision-
making. As mentioned above, neural networks-based approaches have the issue of being
black boxes. Therefore, an understanding of its decisions a priori is not possible and requires
extensive analysis of the data, training process, and prediction. Therefore, further research
towards explainable AI is necessary, which needs to be undertaken for our approach
and end-to-end approaches alike. We plan to approach explainability with visualization
approaches and ablation studies in the future and hope this will promote the acceptance of
new technologies among skeptics.

Currently, for our use case, we only consider information on the ongoing session. In
the future, we want to investigate how the approach performs if using more information
like historical sessions for known customers. Since this increases the information density of
the input sequence, it would be necessary to investigate when the learning model needs
more parameters. On the one hand, this can be tested with hyperparameter tuning, but
it would be much more interesting if it could be measured to what extent more trainable
parameters are necessary to achieve the optimal result. It is possible that, with longer
sequences, the large end-to-end models perform better and we would have to extend the
LSTM or the embeddings so that more patterns can be learned from the sequences.
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