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Abstract: Categorical data analysis of 2 × 2 contingency tables is extremely common, not least
because they provide risk difference, risk ratio, odds ratio, and log odds statistics in medical research.
A χ2 test analysis is most often used, although some researchers use likelihood ratio test (LRT)
analysis. Does it matter which test is used? A review of the literature, examination of the theoretical
foundations, and analyses of simulations and empirical data are used by this paper to argue that
only the LRT should be used when we are interested in testing whether the binomial proportions are
equal. This so-called test of independence is by far the most popular, meaning the χ2 test is widely
misused. By contrast, the χ2 test should be reserved for where the data appear to match too closely
a particular hypothesis (e.g., the null hypothesis), where the variance is of interest, and is less than
expected. Low variance can be of interest in various scenarios, particularly in investigations of data
integrity. Finally, it is argued that the evidential approach provides a consistent and coherent method
that avoids the difficulties posed by significance testing. The approach facilitates the calculation of
appropriate log likelihood ratios to suit our research aims, whether this is to test the proportions or
to test the variance. The conclusions from this paper apply to larger contingency tables, including
multi-way tables.

Keywords: 2 × 2 table; χ2 test; test for independence; likelihood ratio test; G-test; likelihood;
odds ratio; data integrity; too good to be true; test for variance; binomial; contingency tables;
multi-way tables

1. Introduction

CHUCK: Well then there’s nothing more to talk about! I will beat this. Ergo, a falsis
principiis proficisci. Meaning? (gestures to Saul)
SAUL: That’s the one about false principles, but it’s not. . .
CHUCK: You proceed from false principles. Your argument is built on quicksand; therefore
it collapses.
Better Call Saul TV Series (2015–2022)

The 2 × 2 contingency table is commonly encountered in research. For example, it is
used in randomized controlled trials where patients are given either treatment or placebo,
and the outcome is either healthy or diseased. The design gives rise to risk ratios (relative
risk) and odds ratios, which are particularly useful in medical research [1]. In such a table,
the expected frequencies are typically those representing the null model: that the two
proportions from the two rows (or columns) are equal. In a treatment/medical setting, we
have the following 2 × 2 table.
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Outcome
+ −

Treatment
+ a c a + c
− b d b + d

a + b c + d N

There is a large body of literature on statistical modelling [2–4]. For our purposes,
a model represents a means by which data may be produced or predicted, and specific
hypotheses follow from the model. In this paper, we are concerned with the simplest
of models when confronted by a 2 × 2 table representing binomial counts from two
treatments. Most often, researchers are interested in whether the proportions/means of
the two binomial counts from the two rows in the 2 × 2 table differ from the overall
proportion/mean. More rarely, though with equal scientific validity, we see the issue of
whether the variances of the two binomial counts differ from the average overall variance.
As will be seen, the usual X2 test statistic used to test proportions/means is inappropriate
and should be restricted to test variances.

2. The Binomial Nature of the 2 × 2 Table

The outcome for each of the two treatments follows a discrete binomial distribution,
where the number of ‘successes’ (positive outcomes) k in a sequence of n independent
Bernoulli trials provides a probability p = k/n and a mass function for random variable X

P(X = k) =
n!

k!(n − k)!
pk(1 − p)n−k

where k = 0, 1, 2, ..., n. The likelihood of p for the sequence would be

L = C × pk(1 − p)n−k

where C is an arbitrary constant to scale the function so that it has a maximum of 1. In a
likelihood ratio, the constant cancels out, as it is the same for both models.

We can envisage two models in this context, one unrestricted and the other re-
stricted [5]. The unrestricted model is that k events out of a total number of n trials
are binomial independent and identically distributed (i.i.d.) with a probability 0 ≤ p ≤ 1
taken from a distribution that is uniform and random. The mean and variance for the
binomial distribution are np and npq, respectively, where q = 1 − p. For the first row, we
can refer to use subscripts 1 and 2, respectively, for terms such as n1, n2, p1, p2, q1, and q2.

For the whole table, the proportion of successes would be those with a positive outcome

π =
(a + b)

N

The mean being Nπ and variance Nπ(1 − π).
Typically, the null model would specify that the two row proportions π1 and π2 are

equal, and the same as the overall proportion

π = π1 =
a
c
= π2 =

b
d

Consequently, the null model specifies that the two column proportions π3 and π4 are
also equal

π3 =
a
b
= π4 =

c
d

Alternatively and equivalently, we can talk about means, which was the preferred
term used by Edwards in this context [6] (P182–191). For example, both the row mean
number of positive outcomes would equal the overall mean number µ.
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Unless specified a priori, the expected frequencies under the null hypothesis can be
determined from the marginal totals. The degree of mismatch between the observed and
the expected gives us the so-called test of association or independence. Tests can be made
on the equality of the marginal totals (main effects), although these are usually of little or
no interest.

The simplest situation of a 2 × 2 table is considered here, but the conclusions generalize
to larger contingency tables, including multi-way tables.

3. Equations for X2, Log Likelihood Ratio, and Likelihood Ratio Tests

The restricted model provides the null hypothesis specifying that the two binomial
rows are from the same population. For the 2 × 2 table mentioned at the beginning, the
expected value for the first cell (a = O11) would be

E11 =
(a + b)(a + c)

N

The Pearson X2 statistic [7] can be calculated from a 2 × 2 table directly using

X2 =
2

∑
i=1

2

∑
j=1

(
Oij − Eij

)2

Eij
(1)

for two rows and two columns, where we denote the observed count in the ith row and jth
column as Oij and the expected value in the ith row and jth column as Eij. The expected
values are either calculated from the marginal totals (for the null model) or are assigned
according to a specified model (such as one suggested a priori by Mendelian inheritance).
The distribution has (i − 1)× (j − 1) = 1 degree of freedom (df ).

The log likelihood ratio is calculated for the two models. The first model is that the
binomials in the two rows are independent and their means estimated from the data. The
second model is that the two independent binomials have a common mean µ = µ1 =
(a + c)π1 = µ2 = (b + d)π2. As earlier, the expected values are either calculated from the
marginal totals or are assigned according to a specified model. Assuming the former model,
we obtain the likelihood ratio for the first cell

LR11 =

(
a × N

(a + b)(a + c)

)a

hence for the whole table, we obtain

LR =
aabbccddNN

(a + b)a+b(c + d)c+d(a + c)a+c(b + d)b+d

A form of this equation was first derived by Sir Ronald Fisher [8] (P 128), and the full
form given by Edwards [9]. The log likelihood ratio (support) for the first cell is

S11 = a × ln
(

a × N
(a + b)(a + c)

)
= O11 × ln

(
O11

E11

)
So that for the whole table, the log likelihood ratio sums the values for all cells

S =
2

∑
i=1

2

∑
j=1

{
Oij × ln

(
Oij

Eij

)}
(2)

The analysis allows for cells to contain zeros, and calculations are performed using the
convention that 0 × ln 0 = 0. Here, S represents the term support, which was first defined
by Harold Jeffreys as the natural logarithm of the likelihood ratio for one hypothesis versus
another [10]. This scale represents the relative evidence and ranges from −∞ to +∞, with
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zero indicating no evidence either way. This is used in the likelihood approach [6,11,12],
see later.

2S approximates to the χ2 distribution [13]

2
2

∑
i=1

2

∑
j=1

{
Oij × ln

(
Oij

Eij

)}
.∼ χ2 (3)

This is the form of the equations used for LRT analysis, where the right-hand tail area
of the χ2 distribution is consulted for significance testing.

For the goodness of fit test where there is a single dimension of classification, Fisher [14]
(P 357) (and noted by Woolf [15]) gave the expansion for support S

k

∑
i=1

{
Oi × ln

(
Oi
Ei

)}
=

k

∑
i=1

[
(O i − Ei)

2

2Ei
− (O i − Ei)

3

6E2
i

+
(O i − Ei)

4

12E3
i

− · · ·
]

(4)

where k is the number of categories. The leading term in the expansion is of course half
Pearson’s criterion. When the discrepancy between observed and expected relative to
expected is small across all categories then

2
k

∑
i=1

{
Oi × ln

(
Oi
Ei

)}
∼=

k

∑
i=1

(O i − Ei)
2

Ei

Naturally, this extends to the addition of a second dimension for a contingency table.
Again, we see the apparent relationship between the log likelihood ratio and the X2 statistic.
However, this relationship is deceptive as each is independently assessing a different
parameter. One parameter is concerned with whether the proportions are equal to each
other. The second is concerned with whether the variance of the two proportions differs
from the overall average variance.

4. The LRT to Test for Proportions

Equation (3), given earlier, is known as the likelihood ratio test (LRT, also known as
the G-test [15]). There are several advantages of using the LRT over the χ2 test, includ-
ing better performance when expected numbers are small [16,17] and better theoretical
grounding [14,18]. The LRT has the highest power among other competing tests according
to the Neyman–Pearson lemma [19]. It avoids the χ2 test’s restriction that expected values
should not be less than 5. The LRT is also computationally easier to calculate [20]. An im-
portant advantage of using the log likelihood ratio (Equations (2) and (3)) is that sub-tables
within a large dimensional table can be independently analyzed, and that components from
the sub-tables sum precisely, unlike in a χ2 analysis [21]. The same equations are employed
for log-linear analyses of multi-way tables.

Use of the LRT to test proportions is non-controversial and is accepted as an appro-
priate way to test proportions. The LRT is based upon the likelihood of the data under
a specific hypothesis (usually the null) relative to maximum likelihood estimates. Ed-
wards (P 191) gives the derivation of Equation (2) for the log likelihood ratio from first
principles [6]. As such, it represents a test of two binomial proportions. If the observed
frequencies exactly match the expected frequencies, then S = 0, indicating no evidence of a
difference from the null hypothesis.

The LRT assesses the equality of the model proportions, but it does not test the overall
model variance.

5. The χ2 Test to Test Variance

There has been considerable confusion over the meaning of small X2 statistics in
categorical data analysis [22,23]. This occurs when there is little variation between observed
and expected values. The X2 statistic has been used to assess the variance of the model [16].
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Specific use has been made in the analysis of Mendel’s results of plant hybridization
experiments [24,25]. Actually, in his analysis, Edwards used X, rather than its square X2,
which had the advantage of preserving the direction of effect [25].

We can start from the first principles and consider the simpler binomial situation [25].
In testing the variance, the unrestricted model is the same as that used for testing the pro-
portions/means, namely positive outcomes are binomial i.i.d. with a probability 0 ≤ p ≤ 1.
For the restricted model, x is normally distributed and µ is fixed and part of the model.
The alternative hypotheses concern different values for σ2, so that all the information we
need is given by the X2 statistic with 1 df

X2
1 =

(x − µ)2

σ2 (5)

This is due to the following. For binomial events, µ = np, where n is the number of
events in the sample and p is the probability of an event occurring. Hence σ2 = npq, where
q = 1 − p, specifying a as the observed number of successes, and b = n − a will be the
number of failures. Note: the a and b used here do not relate to the 2 × 2 table used earlier.
Thus, a and b are the observed numbers in a binomial trial. Each approximates to a normal
distribution, which improves as sample size increases. Our expected numbers are np and
nq, respectively, since

X2
1 = (a−np)2

npq

= (a−np)2

np + (a−np)2

nq

= (a−np)2

np + (b−nq)2

nq

Each of these last two terms representing the successes and failures, respectively,
which is

= ∑
{
(observed − expected)2

expected

}

The expectation is precisely 1 because E(a − np)2 = npq. This is so because, by
definition, npq is the variance. Knowing σ2 = npq means that the expectation of the sum of
the two terms for successes and failures will be 1. Moreover, if χ2 terms are independent of
each other, then the expectation of their sum will exactly equal the df. This proof confirms
the use of the χ2 test to test the variance in a contingency table. An alternative proof of this
is given by Edwards [6] (P 182–183).

Hence, the χ2 test should be reserved for testing if the variance in the model is too low,
as in determining whether the observed values match too closely the expected values. The
data, then, appear to be ‘too good to be true’. This is not routinely of interest, but it can, for
example, be important is assessing data integrity [25–27].

6. Evidential Support for the Variance

Using the likelihood approach, Edwards specifically derived an equation to test the
variance in categorical data analyses [6]. From the previous section we know that the
variance is assessed by the X2 statistic. The distribution of X2 on null hypothesis is

1
2
√

2πX
e−

X2
2 d(X2)

Supposing the variance on the alternative hypothesis is v2σ2, then X2 will be reduced
by v2 and distributed as

1
2
√

2πvX
e−

X2

2v2 d(X2)
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For a given X2, the likelihood ratio of the alternative hypothesis to the null is

LR =
e−

X2

2v2

ve−
X2
2

Taking logarithms to obtain the support

S = −1
2

ln v2 − X2

2v2 +
X2

2

The best supported value of v2 is X2 as this value maximizes S. The maximum
improvement in support is then

S = −1
2

ln X2 − 1
2
+

X2

2

This is the case for 1 df. As shown by Edwards [6] (P 186–187), this extends to multiple
known means and hence greater df. This produces the general equation for support that can
be used to test the variance (Svar) for any calculated X2 statistic and its associated df [11]

Svar =
d f
2

(
ln

d f
X2

)
− 1

2
(d f − X2) (6)

This can test whether the variance is larger or smaller than we would expect in the
2 × 2 table (here with 1 df ). Typically, this would be used to test whether the data are
too good to be true, i.e., the observed data fit expected too well (e.g., suggestive of data
integrity issues, as in Mendel’s data). In the evidential approach, it can be used to assess
the strength of evidence for lower-than-expected variance by referring to Table 1 given at
the end. If all the observed values exactly match the expected values, then this equation
would give Svar = ∞. Equation (6) may be more useful than Equation (1) since it calculates
support for when X2 test statistics approach 0 (i.e., when the variance is less than expected
and the observed data are too good to be true). Multiplying Svar by 2 then gives a X2

statistic, and the p value accessed in the usual way by reference to the right-hand tail of the
distribution. The X2 test Equation (1) can also be used, but by referencing the left-hand tail
of the distribution (note: if all observed = expected, then X2 = 0 and left-hand tail p = 0).

7. Comparing the Three Equations

We can compare the performance of the three equations if we fix the all the expected
frequencies to the same value assuming that all four marginal totals are 100 (Eij = 50,
∑2

i=1 ∑2
j=1 Eij = 200) and vary the observed values (which also maintain all the marginal

totals to 100). The choice of 100 for the marginal totals is sufficiently large to simulate the
situations typically encountered in practice. Each cell in the simulation varies from 1 to
99, so that a sufficient range of proportions is explored. The use of continuity corrections,
though important [28], are not pertinent to the main issues explored by this paper, and can
be examined in future work. Figure 1 shows the plot of LRT (2 × S), χ2 test and 2 × Svar (to
convert to approximate to the χ2 distribution). The observed value for the top left cell in
the 2 × 2 table (cell a) varies from 1 to 99. When observed and expected values are close to
each other, the LRT and X2 tests produce almost identical results. Between observed values
of 38 and 62, the X2 statistic differs by less than 1% from the LRT statistic. In contrast, the
2 × Svar varies from the other two statistics, although it more consistently follows the X2

statistic. As the discrepancy between the observed and the expected increases, say, beyond
the range of 30–70, a clear divergence is apparent between the statistics for X2 and 2 × Svar
and the LRT statistic. The LRT is less conservative, giving chi-square values that are higher
than the other two statistics. Consistent with 2× Svar measuring variance, it is closest to the
X2 test line. In order to examine the 2 × Svar statistic at a higher resolution, as the observed
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and expected values become closer to each other, a plot on an expanded scale from 40 and
60 is given in Figure 2. This shows that as the observed value approaches the expected
value (50), the 2 × Svar statistic increases dramatically, signaling that the variance of these
probabilities is smaller than expected.

By specifying expected values for the top left cell in the 2 × 2 table (cell a), we can
then plot the calculated chi-square for LRT and X2 test for a range of observed values from
1 to 99. Figure 3 shows this for different expected cell a values of 20, 30, 50, and 90 (see
insets showing E). As the expected value approaches their extremes (20 and 90 plots), the
LRT statistics for even more extreme observed probabilities become more liberal (higher
calculated statistics, giving smaller p values) compared to the X2 test statistics. In contrast,
the LRT statistics become more conservative for observed probabilities that head towards
0.5 and beyond.

Figures 1 and 3 show that as large differences between observed and expected values
occur, the lines for LRT and X2 diverge. This is because they are measuring different things.
The former is measuring the fit of the proportions, while the latter is measuring the variance
in the model. Typically, we are interested in whether the proportions match the expected
proportions. Generally, we are less frequently interested in whether the data are too close
to expected frequencies [22]. Therefore, we should normally be using the LRT rather than
the χ2 test.

Should we be interested in whether the observed frequencies too closely match fre-
quencies specified by a particular hypothesis, then we should use the χ2 or Svar test.
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8. Comparison between LRT and χ2 Test for Type I and Type II Errors

The results of the simulations shown in Figures 1–3 were obtained assuming that all
marginal totals were fixed and equal. Typically, in randomized controlled trials, only the
rows in the 2 × 2 table are fixed. Even with two rows fixed, as is typical in randomized
clinical trials, a Monte Carlo simulation results in a confusion of lines. This is because
the horizontal axis attached to one cell of the one row becomes meaningless because the
calculated statistics also depend on the cells in the other row. In order to systematically
compare the performance of the X2 and LRT statistics in terms of type I and type II errors,
binomial probabilities were applied to the first cells in the two rows. Each row had a fixed
number of 100, while the column rows were determined by the binomial probabilities.
Binomial randomness was applied to the selected probabilities, with 50,000 Monte Carlo
repetitions for each point plotted in Figure 4. The probabilities ranged from 0.005 to 0.095.
To examine type I error rates, identical probabilities were selected for the first cell of both
rows, while for type II error rates, the first cell was fixed at 0.1. A significance level of 5%
was used. The X2 and LRT analyses produced similar type I error rates (around 5%) until
a binomial probability of 0.08. Figure 4 shows that the type I error rate increased for LRT
compared to X2 analyses, as the probability decreased below 0.08, peaking at probability
0.015. In a complementary fashion, the type II error rate decreased for LRT compared to X2

analyses. The actual type II error rates were similar (around 94.4%) at a probability of 0.1.
At binomial probability 0.05, the type II error rates were 71.8% and 72.9% for LRT and X2

analyses, respectively. These figures changed to 34.5% and 38.7% for a probability of 0.025,
and finally to 4.2% and 7.2% for probability of 0.005. A mirror image of these results were
obtained using binomial probabilities at the upper end from 0.9 upwards.
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Figure 4. Difference in percentage of type I and type II errors for LRT—X2 analyses. For type I errors
(dashed line, filled circles), the same binomial probabilities were assigned to the first cell of each row
and systematically changed from 0.005 to 0.095. For type II errors (continuous line, unfilled circles),
the first cell was fixed with a probability of 0.1, while the binomial probability for the first cell of the
second row was systematically changed from 0.005 to 0.095. Data were obtained by Monte Carlo
simulations of randomly generated binomial numbers, with 50,000 repetitions for each point. R code
for this and other figures is available in Supplementary Data.
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9. Effects of Conditioning on the Marginal Totals

The current analyses shown in Figures 1–3 used all marginal totals fixed. There is a
rich history of controversy over the effects of conditioning on the marginal totals, discussed
by [21] (P 94–96 and note 3.9). Although simulations not conditional on the marginal totals
produce a greater range of p values, it is suggested that conditioning on fixed marginal
totals eliminates nuisance parameters. Furthermore, the margin totals anyway contain little
information relevant to the association of interest. From the analysis of the type I and II
error rates shown in Figure 4, it is clear that while LRT analyses have increased type I error
rates, they are less likely to make type II errors. The discrepancies between the LRT and
X2 analyses most obviously occur when expected values are near the extremes (binomial
probabilities outwith the range 0.1 to 0.9). In these circumstances, the LRT is generally
more powerful than X2 analyses. However, this also means that when the null hypothesis
is true, LRT analyses will obtain higher values for the statistics, and hence an increase in
type I errors.

There is general agreement that exact tests are preferable for small samples [21].
Convincing and cogent arguments have been made for the use of unconditioned exact
tests for 2 × 2 tables, where smaller p values are obtained, and are hence more powerful
than conditional tests [30,31]. These are almost certainly the best tests to use for the
2 × 2 situation, although, even with the current computational power, difficulties arise
with larger tables. The primary purpose of this paper was to compare two commonly used
tests, LRT and χ2, and to explain that the χ2 analysis is misused in most circumstances,
since it is concerned with variance rather than independence of variables.

10. Empirical Data

Let us consider a particular set of data. Imagine that a large study was conducted on
20 thousand patients; half received a treatment and half received placebo. From this study,
we obtained this contingency table:

Death Survival

Treatment 80 9920 10,000
Placebo 120 9880 10,000

200 19,800 20,000

Despite the rather modest odds ratio of 0.66 indicating a protective effect of the
treatment, the result was highly statistically significant because of the large sample size
with X2(1) = 8.08, p = 0.004 (using LRT, we obtain a similar result X2(1) = 8.13, p = 0.004).

Now, a small modification was made to the treatment, and some thought it might not
make a difference. A smaller replication study was conducted with a tenth of the number
patients, giving the following data:

Death Survival

Modified treatment 3 997 1000
Placebo 10 990 1000

13 1987 2000

The general effect was similar, but achieved a better odds ratio of 0.30. The usual
analysis of these data would give a non-statistically significant result with the χ2 test:

X2(1) = 3.79, p = 0.051
But it would be statistically significant with the LRT:
X2(1) = 4.00, p = 0.045
Since we are interested in proportions here, we should use the LRT result.
Although we could claim that there was a statistically significant beneficial effect of

the modified treatment in the smaller sample, we do not know if the result differs from the
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previous large-scale study that used the original form of the treatment. To do this, we need
to first obtain the probabilities for each outcome based upon the original study

Death Survival

Treatment 0.004 0.496
Placebo 0.006 0.494

The expected frequencies generated from these probabilities using the smaller sample,
N = 2000, can then be used to calculate our two test statistics.

The χ2 test is non-statistically significant:
X2(1) = 3.49, p = 0.062
Again, the LRT is statistically significant, this time by a larger margin:
X2(1) = 4.50, p = 0.034
Again, since we are interested in proportions (not variances), then we should use the

statistically significant LRT result, which suggests that the modified treatment is even better
than the original treatment. This result is predicted from Figure 3 (top left panel), where
there was a low expected value of 8 and an even lower observed value of 3 (resulting in
more statistical power for the LRT versus the χ2 test).

11. Using the LRT to Test Proportions/Means (the Typical Scenario)

Hence, both theoretical and empirical considerations indicate that the correct test to
test independence in a 2 × 2 contingency table is the LRT. In this test, we are interested in
the two binomial proportions (typically the null hypothesis is that they are equal).

Although Sokal and Rohlf may have been unaware of the distinction between testing
for proportions or variance in categorical data, in their seminal textbook [32], they wrote
about the advantages of the LRT (which they call the G test) in their first edition (P 550):

“. . .as is explained at various places throughout the text, G has general theoretical ad-
vantages over X2, as well as being computationally simpler for tests of independence. It
may be confusing to the reader to have two alternative tests presented for most types of
problems and our inclination would be to drop the chi-square tests entirely and teach G
only. . . .to the newcomer to statistics, however, we would recommend that he familiarize
himself principally with the G-tests.”

After this proselytizing, their third edition of 1995 [33] (P 686) merely states:

“. . .as we will explain, G has theoretical advantages over X2 in addition to being compu-
tationally simpler, not only by computer but also on most calculators.”

The calculational advantages are minimal now that most statistical packages routinely
calculate both statistics. It is all too easily argued that the differences seen here between
the two tests are marginal and might make little difference. The counterargument is to
say that researchers feel more comfortable using a theoretically justified technique that is
statistically testing what they are actually out to test. Edwards (P 193) comments scathingly:
“The original test [χ2] gave the ‘right’ answer, but for the wrong reason. This is, of course,
an expected characteristic of a procedure which has stood the test of time; it is only when
we examine the problem closely that we realise the difficulties.” [6].

A contender for the shortest ever paper in statistics [34] provides a killer argument
against the use of X2 versus LRT. Briefly, reproducing from that paper, we can rewrite
Equation (3) from above as

= 2∑ [E + (O − E)]ln
[

1 +
O − E

E

]
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When the logarithm part is expanded, we obtain our X2 statistic plus other terms:

= ∑
(O − E)2

E
+ terms o f the order

[
(O − E)3

E2

]

However, the logarithmic expansion, known as the Mercator series, is only valid to
calculate the X2 statistic if |O − E| < E. If this is untrue, even for a single cell, then the X2

statistic should not be computed. Violation of the inequality will happen if the specified
expected value for one of the cells is less than half of the observed value or, more trivially,
if one of the cells in the table contains zero counts. On the strength of this, a prominent
textbook on the analysis of contingency tables determined to exclusively use LRTs rather
than χ2 tests [35] (see P 72).

We therefore have the encouragements from Sokal and Rohlf (1969), the unimpeachable
arguments from Edwards (1972), a killer argument from Williams (1976), and a prominent
textbook by Everitt (1992) to use the LRT in our typical quest to test proportions. All
unheeded, since the consensus position remains that the LRT and X2 statistics are, in most
circumstances, equivalent. Furthermore, there appears to be no awareness among either
researchers or statisticians of the distinction between the analysis of proportions and of
variance in a contingency table. The χ2 test continues to be used inappropriately.

The general belief that χ2 and LRT tests give much the same result is erroneous: they
often differ. For example, using models with latent variables, one study concludes that
the asymptotic distribution of the LRT statistic does not follow χ2 distribution [36]. Also,
consider the analysis above (10. Empirical data) where results from LRTs and χ2 tests
straddled the statistical significance line. This can matter, since marginally significant or
non-significant effects will be incorrectly reported one way or the other in a proportion of
these tests. Decisions over whether effects are present often depend on the 5% significance
level, and as such will influence whether a paper is published, a medical treatment adopted,
or a research grant awarded. This reinforces the argument that it is essential to use the
correct test for the parameter of interest (be it proportions or variance).

12. How to Decide Whether We Are Interested in the Proportions/Means or the Variance

How do we know which parameter we are interested in? Edwards suggested a simple
question the investigator should ask before doing the χ2 test: “if I get a small X2 will I be
suspicious about my null hypothesis?” [6] P 190.

If the answer is ‘No’, then we are interested in the proportions. This would mean that if
the observed values closely match the expected, we are happy to report the finding as
consistent with the specified (or null) hypothesis.

If ‘Yes’, then we are interested in the variance. This would mean that a close match
between the observed and expected values arouse our suspicions that there must be
something ‘wrong’ with the data. This may be due to a number of reasons: errors in the
data, bias, data selection, cooking [37], or even outright fraud [38].

To reiterate, the choice of statistical test should depend upon which model parameter
is being tested. If a test of proportion equality is required (the typical situation), then the
LRT is appropriate. The LRT is calculated directly from the log likelihood ratio. The latter
can be used directly for statistical inference; see below. If a test of variance is required
(e.g., the data are too good to be true), then the χ2 test should be used. Both tests exploit
the χ2 distribution to calculate p values for statistical significance.

A natural alternative, for both analyses, is to use the evidential approach, avoiding the
p values and the pitfalls of significance testing.

13. The Evidential Approach Using the Log Likelihood Ratio S

A more consistent and coherent approach is to calculate the log likelihood ratio (S or
Svar) from the categorical data according to the expected values suggested by the model.
The evidential approach was endorsed by Fisher later in his life, when he wrote [8]
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“. . .it is important that the likelihood always exists, and is directly calculable. It is usually
convenient to tabulate its logarithm. . .”

This is “directly calculable” because there is no need to calculate the tail probability
integral.

The evidential approach was strongly promoted by Edwards in 1972 [9] and an
expanded edition published in 1992 [6]. Additional arguments and perspectives were
supplied by Royall [39]. More recently, the approach has been strengthened by further
elaboration in books, chapters, and articles [11,40–46]. The approach allows the investigator
to provide support for one hypothesis over another. In contrast, significance testing focusses
on one hypothesis to be rejected. Such tests have a constant probability of a type I error
if the hypothesis is true, irrespective of sample size. This contrasts with the evidential
approach where the relative support of hypotheses can be determined, and the probabilities
of weak and misleading evidence for one hypothesis versus another, decreases as sample
size increases [42,47]. Although the log likelihood ratio as an evidence function is optimal
for the simple case presented by the 2 × 2 table here, more complicated situations (involving
outliers and nuisance parameters for example) can be dealt with using more sophisticated
evidence functions [46].

In the context of the present paper, the evidential approach would calculate S values.
To test proportions (the typical situation), Equation (2) is used

S =
2

∑
i=1

2

∑
j=1

{
Oij × ln

(
Oij

Eij

)}

To test for the variance, Equation (6) is used

Svar =
d f
2

(
ln

d f
X2

)
− 1

2
(d f − X2)

In most research, only the first of these would be required. The second equation
would be used to assess whether the fit of the data to the model is closer than expected
(implemented in statistical platform jamovi (version 2.4) (retrieved from https://www.
jamovi.org accessed on 19 March 2024) in the module named jeva (https://blog.jamovi.org/
2023/02/22/jeva.html accessed on 19 March 2024)). In this approach, the support values
obtained would be evaluated by reference to Table 1 below giving relative strengths of
evidence [11,48].

Table 1. Using the log likelihood ratio for statistical inference. The left column gives the log likelihood
ratio (S). The next column shows the likelihood ratio (LR). The final column gives the interpretations
for comparing two hypotheses. Negative values of S would indicate the evidence for H2 exceeded
that for H1.

S LR Evidence for H1 vs. H2

0 1 No evidence either way
1 2.7 Weak evidence
2 7.4 Moderate evidence
3 20.1 Strong evidence
4 54.6 Extremely strong evidence
7 1096.6 More than a thousand to one
14 1.2 × 106 More than a million to one

14. Concluding Remarks

For the same contingency table data, two different tests can be performed, depending
on the specific intention of the researchers. Researchers must determine which parameter
of the contingency table they are interested in testing: the proportions or the variance.
Typically, researchers are interested in whether the binomial proportions differ, in which

https://www.jamovi.org
https://www.jamovi.org
https://blog.jamovi.org/2023/02/22/jeva.html
https://blog.jamovi.org/2023/02/22/jeva.html
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case, the LRT should be used. More rarely, researchers are interested in testing the variance,
in which case the χ2 test should be used. The current use of the χ2 test to test propor-
tions/means is flawed, representing widespread misuse of the test. A consistent and
coherent approach to statistical inference is offered by support tests using the log likelihood
ratio. Again, for contingency tables, the researcher must determine which parameter is
of interest. Two different equations to calculate the log likelihood ratio (S and Svar) are
available, one to test for proportions and the other to test for variance.

Supplementary Materials: R code to produce all the figures can be downloaded at: https://www.
mdpi.com/article/10.3390/e26050375/s1.
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