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Abstract: Spatiotemporal information on individual trajectories in urban rail transit is important for
operational strategy adjustment, personalized recommendation, and emergency command decision-
making. However, due to the lack of journey observations, it is difficult to accurately infer unknown
information from trajectories based only on AFC and AVL data. To address the problem, this paper
proposes a spatiotemporal probabilistic graphical model based on adaptive expectation maximization
attention (STPGM-AEMA) to achieve the reconstruction of individual trajectories. The approach
consists of three steps: first, the potential train alternative set and the egress time alternative set of
individuals are obtained through data mining and combinatorial enumeration. Then, global and local
potential variables are introduced to construct a spatiotemporal probabilistic graphical model, provide
the inference process for unknown events, and state information about individual trajectories. Further,
considering the effect of missing data, an attention mechanism-enhanced expectation-maximization
algorithm is proposed to achieve maximum likelihood estimation of individual trajectories. Finally,
typical datasets of origin-destination pairs and actual individual trajectory tracking data are used to
validate the effectiveness of the proposed method. The results show that the STPGM-AEMA method
is more than 95% accurate in recovering missing information in the observed data, which is at least
15% more accurate than the traditional methods (i.e., PTAM-MLE and MPTAM-EM).

Keywords: urban rail transit; trajectory prediction; probabilistic graphical model; expectation-maximization
algorithm; attention mechanism

1. Introduction

Currently, urban rail transit (URT) has become the preferred public transport mode
for residents due to its large capacity and high efficiency. For example, in Beijing, the total
number of passengers reached 5.327 billion in 2022, of which 42.5% were transported by
URT [1]. Due to the large proportion of transportation, the URT system also faces many
problems, such as the fact that it is often difficult to transport passengers in a timely manner
during peak traffic hours, which leads to crowding induced by passengers waiting for trains
on platforms and other areas [2–4]. Furthermore, factors such as the capacity of different
train types and station layouts also result in uncertain waiting times and complicated travel
choices for passengers [2,5–11].
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To better monitor the URT system’s status and optimize train scheduling, precise
access to spatiotemporal characteristics and semantic information of passengers is a prereq-
uisite [2,4,5,10,12–16]. The prediction of individual mobility using data-driven modeling
approaches based on Automatic Fare Collection (AFC) data and Automatic Vehicle Location
(AVL) data has been a hot research topic in recent years. Meanwhile, individual movement
information can also be used for emergency commands or providing personalized recom-
mendation services [10]. Among the studies on individual mobility modeling in urban rail
transit, scholars mainly carry out three aspects to achieve accurate prediction of individual
movement, namely, travel pattern mining [17,18], route choice model [19–24], and indi-
vidual trajectory inference [10,15,25–27]. These studies are categorized into network-level,
path-level, and train-level according to the scale of the URT system.

In the first aspect of research, unsupervised learning methods (e.g., K-means, LDA)
are used to mine job-housing relationships or travel patterns about passengers, which can
subdivide passengers into different groups [5,18,28–32]. For example, Cheng et al. [18]
developed a topic model to predict passengers’ travel destinations, thereby distinguishing
between commuters and non-commuters. However, the focus of these methods is generally
to construct input features (such as travel days, travel time, etc.), which are primarily used
to support macro-level transportation planning or the prediction of new lines, offering
limited assistance for operational-level adjustments and strategies [32].

Furthermore, considering the path-level, passengers need to be matched to one physi-
cal path between Origin-Destination (OD) pairs. Thus, large research on route choice and
assignment models consists of three main methodologies: the Logit model based on labeled
data, the clustering model based on unsupervised learning, and the probability-based
generative model [3,21,33–36]. The Logit model and its variants are generally established
by considering the number of transfers, distance, waiting time, etc. [6,34,37,38]. Some
scholars have adopted unsupervised clustering methods for exploration, e.g., Fu et al. [39]
combined the AFC data of London Underground with the Gaussian Mixture Model (GMM)
within a Naive Bayesian framework to calculate the line selection probability. Wu et al. [36]
proposed a fuzzy matching method to assign the passenger flow to each line using the
AFC data. Probabilistic generative models appeared almost simultaneously with clustering
methods [40]. They are mainly based on Bayes’ rule or frequency-based statistical inference
methods. Sun et al. [21] proposed a comprehensive Bayesian inference framework that is
combined with the Metropolis–Hastings (M-H) algorithm to provide a posterior distribu-
tion for route choice. From an application perspective, at the path-level, these researchers
are still unable to obtain fine-grained information about individual trajectories and face
methodological limitations such as poor stability or over-reliance on survey data.

Moreover, some scholars have expanded individual trajectory reconstruction (ITR)
from the path-level to the train-level by integrating AFC data with other data, focusing
on models for matching passengers to the train. Current research primarily rely on the
Rule-based Method (RM) and the Probabilistic Generative Model (PGM). RM directly
utilizes the segmentation and concatenation of AFC and AVL data to mine the matching re-
lationship between passengers and trains [15,26]. However, the spatiotemporal constraints
in such methods are considered hard constraints, lacking detailed depictions of passenger
behaviors. Studies based on PGM refine the modeling of passengers’ left-behind or waiting
behaviors at stations [2,12,20,41–43], such as PTAM [20] and LBPMF [42]. However, some
essential parameters in these studies still need manual surveys (walking speed, etc.). The
improved MPTAM model established by Xiong et al. [12] can automatically fit parameters
without resorting to external data. Considering the randomness of boarding choice at the
individual level, the error of these researches may be large. Further exploring the inherent
value of data to replace manual surveys presents a worthwhile approach for obtaining
passengers’ spatiotemporal trajectories to explore.

In summary, the existing methods have the problems of the high cost of manual
investigation, large sample randomness, coarse sampling granularity, etc. Therefore, it is
extremely challenging to fully explore the hidden information and obtain the unknown
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state and semantic information (e.g., waiting time, walking time, etc.) of each passenger
without relying on any manual investigation.

In this paper, a spatiotemporal probabilistic graphical model based on the adaptive
expectation-maximization attention algorithm (STPGM-AEMA) is proposed. The method
can effectively recover the rich semantic and state information of each individual trajectory
only from Automatic Fare Collection (AFC) data and Automatic Vehicle Location (AVL)
data. Specifically, the main contributions of the paper are as follows:

1. A spatiotemporal probabilistic graphical model (STPGM) is proposed with global
and local interactive representation to capture the complex spatiotemporal dependen-
cies between individuals and system components (stations or trains) and obtain the
individual trajectory at the train level, operating without manual survey data input.

2. Considering the sensitivity of the expectation-maximization (EM) approach to ini-
tial parameters, a novel data-driven parameter estimation framework is developed
called the Adaptive Expectation-Maximization Attention Algorithm (AEMA). It can
autonomously alternate between maximum likelihood estimation and latent variable
information interpolation to return the missing information we want while ensuring
fast and stable convergence.

3. Actual individual trajectory tracking (ITT) data is used to compare baselines on
multiple OD pair datasets, thereby confirming the effectiveness and robustness of the
proposed approach, STPGM-AEMA.

The paper is structured into six sections. Section 2 describes the problem of recon-
structing individual trajectories with incomplete information. In Section 3, the trajectory
inference model is developed, and the methods for parameter estimation are described in
Section 4. Section 5 outlines the validation scenarios and compares various methods using
real ITT data, followed by an interpretive analysis and a residual analysis of the model
results. Finally, Section 6 elucidates the conclusion of the study.

2. Problem Description

In the closed URT system, it is assumed that the passenger i enters into the station s at
t and leaves from station s′ at t′, as exemplified by OD pair on a single line in Figure 1. Only
tap-in and tap-out events are recorded with spatiotemporal information from AFC data,
and train arrival and departure events are obtained from AVL data. However, due to the
low sampling frequency, the sequential events of each passenger, e.g., waiting for boarding
event, boarding, and alighting event, and the associated state information, are severely
missing in the system. This further results in the inability to obtain accurate system status
(e.g., congestion state at platforms or on trains).
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The information lost in a single trajectory is usually obtained through the spatiotem-
poral interpolation method, but it usually cannot satisfy the comparison of semantic
information in URTS. Different from traditional methods, this paper aims to capture the
missing spatiotemporal events, status, and semantic information in passenger trajectories
through data mining, information interaction design, parameter learning, and probabilis-
tic reasoning without manual investigation. This process is called individual trajectory
reconstruction (ITR). It is worth noting that the problem of ITR in this paper is a further
extension of individual trajectory prediction at the train level.

Further, a set of journey among OD pairs is defined as X = {x1, . . . , xI , . . . , xN},
where xI represents the original information that can be obtained, with the index being
I ∈ 1, . . . , N, and the total number of trips being N. Based on this, D = {D1, . . . , DI , . . . , DN}
is defined as a set of observable information, it comprises known itinerary information xI ,
system observability data Dsys, and mined information Dmining encompassing individual
trips, train operations, station flows, etc. It can be given as follows:

D = {DI} =
{

XI , Dsys, Dmining
}

(1)

Next, the individual trajectory trI is defined as being represented by a sequence of
ordered spatiotemporal events E recorded in chronological order and a state vector S. trI
can be stated as follows:

trI = {E, S} =
{
{Eh},

{
S f

}}
, h ∈ [1, M], f ∈ [1, W] (2)

where Eh denotes a single spatiotemporal event, h is the event index, there are M in total.
S f indicates a state set between two adjacent events, including single or multiple status
values. The value f is the state set index, there are W in total. Furthermore, a single event
Eh is represented in the form of a ternary tuple, containing the characteristics of the moment
of occurrence, location, and instantaneous behavior, namely:

Eh =
(
TEh , LEh , BEh

)
(3)

The passenger travel process consists of two main modes of spatial and temporal
transitions, i.e., walking within the station or moving with the train. The state chain of an
individual trajectory is defined as follows:

S f = {Sstation, Strain} (4)

where, Sstation and Strain represent the set of states of individuals at the origin/interchange/ter-
minal and on the train, respectively. They can be represented by n-tuples. And every state is
a scalar.

The overall trajectories Tr is a set composed of ordered spatiotemporal event sequences
as Tr = {trI} = {tr1, tr2, . . . , trN}.

Summarizing, this paper aims to interpolate missing spatiotemporal events in each
travel trajectory and complement the semantic state information through probabilistic infer-
ence, which can naturally be represented by conditional probabilities P(Tr | X). To achieve
optimal estimation of individual itineraries inference, a probability-based framework is
proposed. Within this framework, the core of ITR is reduced to an optimization problem,
namely seeking the parameter configuration Θ that maximizes the posterior probability in
the parameter space. This optimization problem can be formalized as follows:

argmaxP(Tr | X) = argmaxP(Tr | D) ∝ argmax
Θ

P(D, ? | Θ) (5)

3. Methodology

How to make the best use of limited information and infer high-fidelity individual
trajectories through appropriate design is the key to methodology. A data-driven spa-



Entropy 2024, 26, 388 5 of 27

tiotemporal probabilistic graphical model inference framework is proposed in the paper,
which consists of three steps: potential set mining, modeling, and parameter estimation.
The input data sources of the method are as follows: AFC, AVL, and Lines and Stations
data. Where AFC records passengers’ information, including their origin and destination
stations and times of entry/exit. AVL data captures train operation information such as
the train’s ID, service line, station numbers, and arrival/departure time. Line and Station
data provide physical distance and adjacency relations between stations. The outputs are
spatiotemporal events and state information involved in individual trajectories. The key
steps of the methodology are shown in Figure 2a–c, respectively.
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3.1. Framework

In brief, the steps are as follows:

1. Potential Sets Mining. Considering the sequential nature of passengers’ behaviors
in spatiotemporal events, wherein each event is dependent on the preceding specific
event, the get-off-leave-now (GOLN) principle is introduced. A feasible train alterna-
tive set for a journey as well as an egress time alternative set at the destination station
of the individual are obtained, combined with complex spatiotemporal constraints
and a combinatorial enumeration algorithm. This strategy can effectively reduce
the space of candidate solutions under the premise of guaranteeing accuracy for
subsequent computations.

2. Modeling. In order to suppress the bias caused by small-sample randomness, global
and local latent variables are introduced to model the complex spatiotemporal depen-
dencies of all trips and observed components (stations, trains) in the URT system. The
construction of the model consists of three steps: dataset segmentation, global-local
interaction representation, and trajectory inference. The main details of the model are
presented in Section 3.3.

3. Parameter Estimation. To obtain the optimal parameters of the model and infer the
most probable trajectories, an adaptive expectation-maximizing attention (AEMA)
parameter learning method is proposed, which integrates a base adaptive embedding
unit (UB), which provides automated a priori parameters to the likelihood function.
Next, the introduction of the key-value attention computation unit (UA), where train
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labels can be matched to every individual trajectory. Details of the algorithm are given
in Section 4.

3.2. Potential Sets Mining

The subsequent section outlines the necessary constraints and computational formulas
for resolving both the set of train alternatives and individual travel alternatives. Finally,
the combined enumeration method is used to obtain the collection. Appendix A provides
relevant notation definitions.

Constraint 1. The departure time tjs,dt of a potential train tj at the origin station s constraint. The
departure time tjs,dt must be such that between the time period tap-in time t and tap-out time t′ in
itinerary I.

Is,t < tjs,dt < Is′ ,t′ , tjs,at ̸= tjs,dt and tjs,q ̸= tjes,q (6)

The process generates a set of potential candidates for the train at the origin s called JI(t,s) :

JI(t,s) = {seq[key = tjid]} (7)

Constraint 2. The departure time tjs′ ,dt of the potential train tj at the destination station s′ con-
straint. The departure time tjs′ ,dt must be such that between the time period tap-in time t and
tap-out time t′ in itinerary I.

Is,t < tjs′ ,dt < Is′ ,t′ , tjs′ ,at ̸= tjs′ ,dt and tjs′ ,q ̸= tjfs,q (8)

A set of potential candidates for the train at destination s′ can be generated called
JI(t′ ,s′) :

JI(t′ ,s′) = {seq[key = tjid]} (9)

The set of feasible train choices in the itinerary I can be obtained by taking the
intersection, denoted as JI :

JI = JI(t,s) ∩ JI(t′ ,s′) =
{

j = seq[key = tjI,id]1×LI

}
, j ∈ [1, · · · , LI ] (10)

Based on this premise, constructing the egress time sequence set in the itinerary I as
Teg

I . Each egress time value ti,j is calculated as the time difference between the tap-out time
and the arrival time js′ ,at of the corresponding train of JI .

Teg
I =

{[
ti,j
]

1×LI

T
}
= concat

(
Is′ ,t′ − tjs′ ,at

)
(11)

3.3. Modeling

The Bayes theorem principle and the backward inference method are introduced to estab-
lish a mechanism for global and local interactive representation. After obtaining the optimal
parameters, probabilistic reasoning about individual trajectories is realized. Figure 3 illustrates
the trajectory inference framework based on STPGM, where color coding is employed to
denote different categories of nodes and edges (refer to the legend for details). Events are
represented as nodes, while edges describe potential spatial transition dependencies between
state time intervals and events. Shaded nodes correspond to deterministic variables, whereas
hollow circles indicate unobservable random variables. Solid and dashed lines distinguish
deterministic relationships from uncertain ones, with unidirectional arrows representing
causal relationships and bidirectional arrows indicating correlations.
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As Equation (3), the set of nodes state as follows:

{Eh} =
{

II , WI , VB
I , VA

I , OI

}
(12)

where, the events of tap-in II , waiting for boarding WI , boarding VB
I , alighting VA

I , and
tap-out OI are represented in sequential order.

As in Equations (4) and (12), for OD pairs on a single line that do not require transfers,
the state chain of an individual trajectory is defined as follows:{

S f

}
=
{

Ss, Sj, Ss′
}
= {(TAWT , TWT , TAT), (TRT), (TET)} (13)

where, Ss, Sj, Ss′ represents the state of an individual at different spatial locations of the
origin station s, train j, and destination station s′, respectively. The value of the total time at
the origin station TAWT is calculated by summing the access time TAT and the waiting time
TWT . TRT denotes the running time on the train and TET indicates the egress time at the
destination station. An individual trajectory trI can be represented as follows:

trI =

E =


II = (08 : 00 : 23, TTYB, Tap − in)
WI = (08 : 01 : 28, TTYB, Start waiting)
VB

I = (08 : 04 : 32, TTYB, Boarding Train j)
VA

I = (08 : 28 : 20, DD, Alighting)
OI = (08 : 29 : 03, DD, Tap − out)

, S =


Ss = (249s, 65s, 184s)
Sj = (1428s)
Ss′ = (43s)


.
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The inference tasks of this paper encompass the identification of waiting events at the
platform, as well as the boarding and alighting events of passengers, along with a chain of
unknown states. To establish the model, two strategies are employed:

1. The data is divided into deterministic dataset DLI=1 and stochastic dataset DLI>1 in
order to generate prior samples.

2. A global-local interaction module is devised to transform the problem from maximiz-
ing the probability of individual trajectories to posterior parameter estimation based
on the basis function. Building upon this foundation, boarding and alighting events
are inferred by estimating egress time TET , then determining access time TAT and
waiting for the event through MCMC simulation, thereby achieving comprehensive
inference of unknown events and latent states in trajectories. The modeling process
consists of three steps which are described in detail below.

3.3.1. Dataset Split

In this paper, the dataset is split into a deterministic dataset DLI=1 and a stochastic
dataset DLI>1 with multiple alternatives, based on whether the number of options in the train
candidate set is greater than one. Consequently, Equation (1) can be modified accordingly:

D =
{
(DLI=1, I = 1, . . . , m), (DLI>1, I = 1, . . . , n)

}
(14)

Wherein, the numbers of samples in the deterministic dataset and the stochastic
dataset are respectively denoted as m and n, with m + n = N. This approach benefits by
providing prior data for the training of model parameters from the deterministic dataset
DLI=1, thereby replacing manual surveys and reducing the introduction of system noise.

Observable information is redefined based on node information, as shown in the
dashed box on the left side of Figure 3a, taking the observable dataset as an example:

DLI=1 =
{

xI , Dsys, Dmining
}

LI=1 =
{
[II , OI ]1:m,

[(
VItj

)
,
(

F(∆t,s′)

)]
,
[

JI , Teg
I

]
1:m

}
(15)

where, an individual’s journey xI observations encompass tap-in event II and tap-out OI
event, while system observations Dsys include train operation events VItj and outbound
passenger flow within a specific time interval F(∆t,s′). The mined information set Dmining

comprises a feasible train choices set JI and potential egress time set Teg
I , with their sample

sizes remaining consistent. It is important to note that these observable pieces of informa-
tion are either localized or aggregated. Similarly, this definition DLI>1 follows a similar
logical framework.

3.3.2. Global-Local Interactive Representation

In the study of passenger journeys between OD pairs under incomplete information,
the spatiotemporal dependency is manifested in the dynamics of individual travel events
and state information as they evolve over time and space, exerting a significant influence
on the local elements of the system. This paper introduces two latent variables to facilitate
parameter estimation based on local elements, as elaborated below.

Global variable: latent variables Z I and t. The index position corresponding to
the individual egress time ti,j is set as a discrete random hidden variable Z I , following a
multinomial distribution. The probability mass function can be expressed as follows:

P(Z I = j) = pij, j = 1, 2, · · · LI (16)

where, pij represents the probability of selecting the jth index in Teg
I , and satisfies ∑LI

j=1 pij = 1,
represents the probability distribution in the ordered sequence j = 1, 2, · · · LI . The complete
hidden variable is denoted as Z = {Z I}.

Moreover, in order to effectively characterize the parameter variations throughout the
iterative process and disentangle the interdependencies between global and local elements,
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we propose a set of aggregate vectors referred to t, which are composed of egress time ti,j
for all individuals. Consequently, we obtain the following:

t =
[
ti,j] 1×N = c

(
[ti,1]1×m, [ti,zI ]1×n

)
, ti,1 ∈ DLI=1, ti,zI ∈ DLI>1 (17)

where, ti,1 represents the unique egress time value from dataset DLI=1, with the dimension
being 1 × m; ti,Z I states the jth(zI) egress time component from the set Teg

I of DLI>1, with
the dimension being 1 × n; and c denotes the vector concatenation operation.

Local variable: basis function G(·). In this paper, the distribution of egress time G(·) is
designed as a local variable. It is represented by a continuous probability distribution form
that is integrable

∫ ∞
0 x · f (x)dx and

∫ ∞
0 (x − µ)2 · f (x)dx absolutely convergent, meaning

it possesses finite mean and variance as a basis function G(t; Θ). The general form of
representation is provided as follows:

G(t; Θ) = G
(

t; θ, µ, σ2
)

(18)

where, Θ represents parameters related to the time scale △t and exit station s′, functioning
as spatiotemporally adaptive parameters. θ denotes the intrinsic parameters of the function
G(·) itself, µ determines the central position of the distribution, σ2 describes the dispersion
of data points around the mean, and t signifies the input value.

Interactive representation mechanism. Figure 3b shows the global-local interactive
representation mechanism by basis function G(·), latent variables Z I , and t. Among them,
vector t plays a key role. As a transmission channel, it not only aggregates the egress
time information of all individuals but also provides the required input for updating the
parameters of the basis function G(·).

Specifically, in the process of transferring information from global parameters Θ to
local parameters Z I , t collects the candidate egress time ti,zI generated by each individual
in each iteration, passes these data to the function G(·), and estimates by MLE to fit the
parameters Θ. This step ensures that local parameter updates reflect the latest data in the
context of the system.

In turn, the results of parameter optimization are used to construct the query vector
and the global variable candidate solution ti,zI is used as the key component to construct
the key-value pair for the next step of similarity comparison (to be described in detail in
Section 4). Through this operation, we can re-evaluate and update everyone’s ti,zI , thereby
optimizing the performance of the entire system in each iteration.

3.3.3. Trajectory Inference

1. Calculate the maximum probability of individual trajectories. Under the principle
GOLN, the problem of calculating the maximum probability of all journeys is equivalent to
estimating the best parameters Θ∗ of the basis function G(·) by maximizing the probability
of t under the influence of the latent variable Z, making the observed data most likely to
occur. Thus:

argmaxP(Tr | X) ∝ argmax
Θ

P(D, Z, t | Θ) (19)

It is worth noting that the basis vector t serves as a conduit, facilitating the process of
global-local interaction by aggregating individual travel time information and channeling
it to the basis function G(·) representing local characteristics. Subsequently, parameter
updates occur during each iteration to ensure stability in parameter estimation, which is
elaborated upon in Section 4.

2. Calculate unknown events and state variables. Figure 3c illustrates the trajectory in-
ference process, indicating that the egress time of the passenger is TET = ti,zI . Subsequently,
the individual’s train ID is determined as follows:

tjI,id = idx[i, j] (20)
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where, idx[·] represents a mapping function used to locate an element based on its index
number. Further, the spatiotemporal characteristics of the boarding event VB

I and alighting
event VA

I are established, and the running time duration and access time are computed by
TRT = TVA

I
− TVB

I
and TAWT = TVB

I
− TII , individually.

The next step is to use the formula quoted by Zhu et al. [20] to calculate the waiting time
TWT, which is a typical formula. And the access time of every passenger can be calculated by
TAT = TAWT − TWT. However, it was found that about 10% of the results of TAT are negative
by calculating TWT and TAT, using 26,000 samples from one line of the Beijing Rail Transit
System (BRTS) during the peak period. This reveals that this method may not be suitable for
BRTS. Building upon the decomposition method outlined in Equation (14), this study defines
the waiting duration of the sample set xI ∈ XLI=1 as follows:

TWT
(
xI ∈ XLI=1

)
=

E(Hj→j+1)

2
+

Var(Hj→j+1)

2E(Hj→j+1)
(21)

where, Hj→j+1 states the departure interval between jth and j + 1th train.
The access time of the sample set xI ∈ XLI=1 is calculated by means of a piecewise

function as follows:

TAT
(
xI ∈ XLI=1

)
=

{
TAWT − TWT , i f TAWT > TWT

TAWT , else
(22)

On this basis, the waiting duration of the sample set xI ∈ XLI>1 calculated by the following:

TWT
(
xI ∈ XLI>1

)
= TAWT − TAT (23)

4. Parameter Estimation

The second challenge addressed in this paper is how to design a likelihood function
that maximizes the reconstruction of high-fidelity trajectories for all individuals Tr, con-
sidering dependence between t and Θ. To tackle this, we draw inspiration from the GMM
for mixed distributions [35] and the EMA for semantic segmentation [44]. The Adaptive
Expectation-Maximization Attention (AEMA) algorithm is proposed, which incorporates
the EM algorithm and attention mechanisms.

The idea behind the proposed algorithm is derived from how to establish a data
flow mechanism between global variables representing all individuals and local features
representing the system, which is crucial for fully data-driven algorithms.

The AEMA algorithm consists of an input and output unit and four main opera-
tion units (as shown in Figure 4), namely: Input Unit (UI), Bases Adaptability Embed-
ding Unit (UB), Expectation-Step Unit (UE), Key-Value Attention Calculation Unit (UA),
Maximization-Step Unit (UM), and Output Unit (UO). In brief, the UI is the first step of
AEMA, aimed at providing the UB with observable dataset inputs. The UB is responsible
for dynamically obtaining initial base vectors providing an initial parameter for fitting
the distribution. UE, the E-step in the EM algorithm, defines the objective function under
prior parameters. UA provides methods for computing the posterior distribution of hidden
variables. UM, the M-step in the EM algorithm, aims to maximize until convergence criteria
are met. The UO outputs the reconstructed trajectories. Each step is explained below.
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4.1. Input Unit (UI)

UI is responsible for inputting the observable data set and defining the parameters of
the core steps. It is important to note that

{
X,
[
ti,j
]
,
[[

zi,j
]]}

should be considered as complete
observation data, with the parameters to be estimated as Θ =

{
θ, µ, σ2,

[[
pij
]]}

, and the
number of parameters as 3 + N ∗ LI . Let the likelihood function be L(Θ) = P(D, Z, t | Θ),
with the conditional distribution of the latent variables Z and t being P(Z, t | D, Θ(k)). Where
Θ(k) represents the parameter estimated in the kth iteration. The parameters in the k + 1th
round, Θ∗ are thus the target parameter values to be maximized.

4.2. Bases Adaptability Embedding Unit (UB)

Prior information is typically obtained through surveys involving small labeled
datasets, followed by fitting the parameters Θ(0) through maximum likelihood estimation
(MLE) [20]. However, the calculation of this mean value µ cannot be adaptively chosen,
and different scenarios require different survey data. UB is responsible for acquiring prior
information and initializing parameters. It dynamically obtains samples from the dataset
DLI=1 based on station s′ and time interval △t as inputs for prior knowledge, supporting
the automated calculation of prior parameters Θ(0) for using the MLE method, replacing
the practice in traditional EM algorithms of randomly initializing model parameters. Let:

Θ(0) = argmax
Θ

∏m
i=1 G

(
Θ
∣∣∣[ti,1]1×m

)
, ti,1 ∈ DLI=1 (24)

In summary, the UB exhibits the capability to automatically capture spatiotemporal
information thereby enhancing the model’s robustness and accuracy in handling intricate
spatiotemporal correlations and dynamic patterns. This effectively addresses the issue of
sensitivity in parameter initialization.

4.3. Expectation-Step Unit (UE)

The marginal likelihood function of a sample is denoted as p(DI ,Z I , ti,j | Θ), while
the conditional distribution probability of the latent variables is represented by p(Z I , ti,j |
DI , Θ(k)). By applying Jensen’s inequality, the log-likelihood function is:
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lnL(Θ) = ln ∑
Z

p(DI , Z, ti,j | Θ) = ∑
N

∑
Z I

ln p(DI ,Z i,j, ti,j | Θ)

= ∑
N

∑
Z I

ln
p(DI ,Z i,j ,ti,j |Θ(k))·p(Z i,j ,ti,j |DI ,Θ(k))

p(Z i,j ,ti,j |DI ,Θ(k))

≥ ∑
N

∑
Z I

p(Z i,j, ti,j | DI , Θ(k)) ln p(DI ,Z i,j, ti,j | Θ)/p(DI ,Z i,j, ti,j | Θ(k))

= ∑
N

∑
Z I

p(Z i,j, ti,j | DI , Θ(k)) ln p(DI ,Z i,j, ti,j | Θ)− ∑
N

∑
Z I

p(Z i,j, ti,j | DI , Θ(k)) ln p(DI ,Z i,j, ti,j | Θ(k))

(25)

where ∑
N

∑
Z I

p(Z i,j, ti,j | DI , Θ(k)) ln p(DI ,Z i,j, ti,j | Θ(k)) is a constant, then the objective

function is Q
(

Θ
∣∣∣Θ(k)

)
, which is given by the following:

Q
(

Θ
∣∣∣Θ(k)

)
= ∑

N
∑
Z I

p(Z i,j, ti,j | DI , Θ(k)) ln p(DI ,Z i,j, ti,j | Θ)

= EZ[ln P(D, Z | Θ) | D, Θ(k)]
(26)

It is evident that we need to calculate the conditional distribution probability p(Z I , ti,j |
DI , Θ(k)) for each individual and use it as the maximization target function Q

(
Θ
∣∣∣Θ(k)

)
in

the UM. However, due to the nonlinearity of high-order terms in the objective function,
conventional optimization methods may be sensitive to initial parameters and prone to local
optima. To more effectively capture the relationship between an individual’s egress time
sequence set Teg

I and the station’s local prior information while reducing the communication
cost, this paper draws on a key-value attention mechanism. This involves constructing a
query vector representing local parameters and determining attention weights for key-value
pairs (kI , vI) associated with each individual during the UA step.

4.4. Key-Value Attention Calculation Unit (UA)

In this step, the distribution of the latent variables Z and t are calculated. Figure 5
shows the entire calculation process of UA. The specific steps are as follows:
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First, the query vector (as shown in Figure 5a). It is constructed by leveraging the
broadcasting method commonly used in deep learning to transform scalar values into a
vector representation. Specifically, we utilize the parameter u to create a vectorized form
denoted as q(k)

Teg
(△t,s′)

, which stands for q. Let:

q(k)
Teg
(△t,s′)

=
[
µ(k), µ(k)

]T
, ∀µ ∈ Θ (27)
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In fact, this definition expands the information aggregated at the current station.
Furthermore, the initial value q(0) comes from the sample set DLI=1.

Second, key-value pairs (as shown in Figure 5a). Let kI =

[[
ti,1, µ(k)

]T
, · · · ,

[
ti,j, µ(k)

]T
]

1×LI
used to simulate the values that each individual with multiple potential trajectories can take
in each round, and let vI =

[
ti,1 · · · ti,j

]T
1×LI

represent the egress time corresponding to the
index position of the latent variable. So there are:

(K, V)(k) = {(kI , vI)}(k), I ∈ [1, . . . , n] (28)

Third, the scoring function is defined (as depicted in Figure 5b). The role of this
function is to compute the correlation between each input vector kI and the query vector
q. In the standard Scaled Dot Product Model, the dot product operation tends to be more
sensitive to a larger value. This study focuses on computing proximity values between
vectors kI and q for assigning higher weights accordingly. Hence, cosine similarity based
on vector angle principles is chosen as the definition for the scoring function. This approach
not only considers individual value relationships with groups but also accounts for self-
relationship. Let:

s(kI, q)(k) =
kI · q

∥kI∥ · ∥q∥ (29)

where, the inner product of vectors, denoted by kI · q, ∥·∥ represents the norm of a vector.
A smaller angle indicates higher similarity.

Moreover, calculate the attention function (as shown in Figure 5c). The attention
distribution αI represents the degree of attention the jth component of kI , given the query
vector q. Specifically, when dealing with class-imbalanced data, traditional attention
functions such as So f tmax(·) often fail to provide sufficient learning opportunities for
minority classes because they may be suppressed by dominant classes during computation.
To overcome this, we use a normalization function N (·) to replace the traditional activation
function, which can enhance the model’s focus on minority class features and learning
efficiency. The calculation of αI amounts to computing the posterior probability distribution
of Z I , which is as follows:

αI = [αi,j] = p(Z I = j | (kI , vI), q) =
s(kI , q)
N (·) = s(kI , q)/∑n

1 s(kI , q) (30)

The attention mechanism offers two available forms, hard attention is chosen in this
paper. Subsequently, the attention function is defined as:

att((kI, vI), q) = vi,ŷ = [ti,ŷ], ŷ = argmax
j=1

αi,j (31)

where ŷ is the subscript of the input vector vi,j with the greatest probability, name is
argmax

j=1
αi,j.

Finally, the basis variable t is calculated, let:

t =
[
ti,j] 1×N = c

(
[ti,1]1×m, [ti,ŷ]1×n

)
, ti,1 ∈ DLI=1 (32)

4.5. Maximization-Step Unit (UM)

The main objective in this step is to solve the optimization problem by utilizing
the complete observed variables and obtaining maximum likelihood estimates of the
parameters, which is given by Equation (26). Let:

Θ∗ = argmax
Θ

Q
(

Θ
∣∣∣Θ(k)

)
(33)
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Finally, by alternating iterations among the UE, UA, and UM until convergence is
achieved. In this process, three termination conditions are set. (1) The local variable Θ is
controlled by the Tolerance parameter ϵ1 (set to 1 × 10−3). (2) The global variables convergence
tolerance is managed by the tolerance of the objective function ϵ2 (set to 1 × 10−1). (3) The
overall convergence speed is controlled by setting a maximum number of iterations K, which is
set to 50 times. If the algorithm satisfies the tolerance conditions before reaching the maximum
number of iterations, it will stop prematurely. That is as follows:

∥∥∥Θ(k+1) − Θ(k)
∥∥∥ < ϵ1 or

Q
(

Θ(k+1), Θ(k)
)
− Q

(
Θ(k), Θ(k)

)
< ϵ2 or

k = K

(34)

4.6. Output Unit (UO)

The train ID serves as a primary criterion for assessing the accuracy of the spatial
position of trajectories in ITR. According to Equation (18), it is known that tĵI,id = idx[i, ŷ].
Further, the samples for xI ∈ XLI>1 are simulated to generate values TAT using the NUTS
algorithm for MCMC sampling with the pyMC3 library. Based on this, by applying the
formulas from Section 3.3.3, we can provide detailed information on the attributes and
state features of unknown events involved for all passengers.

5. Experiments

In traditional methods, local features (like egress time distribution) are simulated to
verify the accuracy of parameters or the usability of methods [12,42], but they are rarely
considered from the perspective of actual individual trajectories. Verifying the method
from a bottom-level rather than an aggregate perspective is also one of the contributions of
this article.

5.1. Dataset Description
5.1.1. Design of Individual Trajectory Tracking Simulation Experiment

During peak hours, a large number of passengers entering the origin station or trans-
ferring at the transfer station will flow into the platform; meanwhile, many passengers
will flow out at other destination stations. This may cause local congestion and increase
the complexity of the spatiotemporal modeling of travel trajectories. Therefore, in the
design stage of the individual trajectory tracking simulation experiment, this study pays
special attention to capturing the tidal characteristics of the passenger flow [35]. Take
the CY station in Line 6 as an example. The station is located in a suburban area with
more residential areas in the neighborhood, and the main service targets are commuters.
During the morning peak period, most passengers entering the station from 7:00 to 09:00 are
heading towards downtown Beijing, and the passenger inflow during this period accounts
for about 50% of the total daily passenger inflow. In contrast, the number of passengers
entering the station from 17:00 to 20:00 in the evening is significantly lower, accounting for
only about 15% of the total.

In addition, in order to better validate the effectiveness and applicability of the STPGM-
AEMA method proposed in this article, several factors are considered in depth in this study.
First, this study covers OD pairs with different distances and station types to ensure
the comprehensiveness and representativeness of the experimental setup. Moreover, the
investigation team is from Beijing Metro Network Management Co. Ltd., Beijing, China, the
official regulator of the BRTS. Considering the human and material conditions coordinated
by this agency, we carefully selected four typical OD pairs for experimental validation. See
Section 5.1.2 for details.

Next, in the actual simulation phase, the investigation team simulates the travel
process of actual passengers on specific OD pairs and obtained data on each timestamp
on the travel chain (as shown in Figure 6), including tap-in time, time of arrival at the
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platform, time of train departure at the origin station, boarding time, time of train arrival at
the destination station, alighting time, and tap-out time. Simultaneously, the integration of
AFC and AVL data was employed to generate travel chain status information encompassing
behavioral semantics such as access time to the platform, waiting time, running time, and
egress time at the destination station. The timestamp and state data tables are provided
in Appendices B and C, respectively, serving as a genuine and dependable foundation for
evaluating the efficacy of the proposed methodology.

Entropy 2024, 26, x FOR PEER REVIEW 17 of 31 
 

 

time, and egress time at the destination station. The timestamp and state data tables are 
provided in Appendixes B and C, respectively, serving as a genuine and dependable foun-
dation for evaluating the efficacy of the proposed methodology. 

 
Figure 6. Actual trajectory to obtain experimental records. 

5.1.2. Data Introduction 
As an illustration in Figure 7, typical OD pairs from Line 5 and Line 6 of the BRTS 

during peak periods were selected. The complete dataset comprises four data groups 
(D1~D4) collected in March 2023, including two morning peak period OD pairs (TTYB-
DD, CY-DS) and two evening peak period OD pairs (PHY-TTYB, HJL-CY). Table 1 pre-
sents information related to the dataset that encompasses three parts: basic information, 
validation data information, and training data information. Basic information includes 
route details, such as the number of stations and distance covered. Validation data elimi-
nates 10 trajectories that do not meet requirements, with a total sample size of ITT of 78. 
It is noteworthy that AFC and AVL data must correspond one-to-one in terms of dates and 
periods, while ITT data is included in all AFC data for training purposes. Training data 
involves multiple days, with a total of 3851 AFC samples and 1069 AVL samples. 

The parameter learning process involves training utilizing AEMA, followed by per-
forming probabilistic inference and subsequently comparing the inference results with the 
timestamp and status information of the verification data. The L-BFGS-B optimization al-
gorithm is predominantly employed for parameter learning among various comparison 
algorithms. All algorithms are compiled and executed on a computer equipped with an 
Intel(R) Core(TM) i9-10920X CPU processor and 48 GB of memory. 

Table 1. Dataset Description. 

Description Dataset D1 D2 D3 D4 

I. Base Information   

OD pair TTYB-DD CY-DS  PHY-TTYB HJL-CY 
Line 5 6 5 6 

Station Numbers 17 10 21 7 
Distance(m) 19,700 15,771 24,480 11,859 

II. Validation Data 
Time Duration  07:00–09:00 a.m. 17:00–19:00 

Day  2023.03.21 2023.03.22 2023.03.21 2023.03.22 
ITT Numbers 21 19 20 18 

III. Training Data  
Days   6 6 4 4 

AFC Samples 1359 699 206 1587 
Train Numbers 340 309 225 195 

 

Figure 6. Actual trajectory to obtain experimental records.

5.1.2. Data Introduction

As an illustration in Figure 7, typical OD pairs from Line 5 and Line 6 of the BRTS dur-
ing peak periods were selected. The complete dataset comprises four data groups (D1~D4)
collected in March 2023, including two morning peak period OD pairs (TTYB-DD, CY-DS)
and two evening peak period OD pairs (PHY-TTYB, HJL-CY). Table 1 presents information
related to the dataset that encompasses three parts: basic information, validation data
information, and training data information. Basic information includes route details, such
as the number of stations and distance covered. Validation data eliminates 10 trajectories
that do not meet requirements, with a total sample size of ITT of 78. It is noteworthy that
AFC and AVL data must correspond one-to-one in terms of dates and periods, while ITT
data is included in all AFC data for training purposes. Training data involves multiple
days, with a total of 3851 AFC samples and 1069 AVL samples.

The parameter learning process involves training utilizing AEMA, followed by per-
forming probabilistic inference and subsequently comparing the inference results with the
timestamp and status information of the verification data. The L-BFGS-B optimization
algorithm is predominantly employed for parameter learning among various comparison
algorithms. All algorithms are compiled and executed on a computer equipped with an
Intel(R) Core(TM) i9-10920X CPU processor and 48 GB of memory.

Table 1. Dataset Description.

Description Dataset D1 D2 D3 D4

I. Base Information

OD pair TTYB-DD CY-DS PHY-TTYB HJL-CY
Line 5 6 5 6

Station Numbers 17 10 21 7
Distance(m) 19,700 15,771 24,480 11,859

II. Validation Data
Time Duration 07:00–09:00 a.m. 17:00–19:00

Day 2023.03.21 2023.03.22 2023.03.21 2023.03.22
ITT Numbers 21 19 20 18

III. Training Data
Days 6 6 4 4

AFC Samples 1359 699 206 1587
Train Numbers 340 309 225 195
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5.2. Baselines

This paper compares the proposed method, STPGM-AEMA, with traditional rule-
based approaches and Bayesian methods at the train-level scale. The methods are outlined
as follows:

1. LTRM (Last Train Rule-based Model): Spatiotemporal Segmentation of Metro Trips
algorithm searching for “BORDER-WALKERS” using the nearest timestamp princi-
ple, proposed by Zhang et al. [15], wherein the train’s departure time closest to the
passenger’s tap-out time at the destination station was utilized to determine the train
they boarded. Luo et al. [45] also employed this rule to infer passenger trajectories.
Furthermore, both studies assumed “speed invariance” as a behavioral postulate.

2. PTAM-MLE (Passenger-to-Train Assignment Model with MLE): Zhu et al. [20] pro-
posed a probabilistic approach, named PTAM, which requires AFC/AVL data and the
station’s walking speed distribution as inputs. To ensure consistency in measuring
speed, this paper replaces it with their later proposed LBPMF [42], where the input is
the egress/access time distribution and the likelihood function is expressed accordingly.

3. MPTAM-EM (Modified Passenger-to-Train Assignment Model with EM): A modified
model MPTAM was constructed by Xiong et al. [12], and the EM algorithm was proposed
for estimating the parameters of the egress time distribution and the boarding probability
distribution function, and the likelihood function was formulated by them.
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4. STPGM-EMA (without UB): The proposed STPGM-AEMA algorithm forms the basis
of this method, which entails the removal of the UB module.

5. STPGM-AEM (without UA): Similarly, the proposed STPGM-AEMA algorithm forms
the basis of this method, which entails the removal of the UA module.

5.3. Evaluation Metrics

The present study employs two categories of metrics to assess its accuracy and robust-
ness. The details are given below.

5.3.1. Accuracy Evaluation Metrics

Considering the precision of evaluating the multiclassification problem, a confusion
matrix is introduced, and six evaluation metrics are chosen: macro-precision, macro-recall,
macro-F1 score, micro-precision, micro-recall, and micro-F1 score, and calculated based on
true positives (TP), false positives (FP), and false negatives (FN) across all categories. These
metrics serve as indicators for model performance improvement; higher values indicate
better results. The formula is as follows:

PMacro =
N

∑
c=1

Pc/N (35)

RMacro =
N

∑
c=1

Rc/N (36)

F1Macro =
N

∑
c=1

F1c/N (37)

PMicro =
N

∑
c=1

TPc/

(
N

∑
c=1

TPc +
N

∑
c=1

FPc

)
(38)

RMicro =
k

∑
c=1

TPc/

(
N

∑
c=1

TPc +
N

∑
c=1

FNc

)
(39)

F1Micro = 2 · PMicro · RMicro
PMicro + RMicro

(40)

where, c is the index of categories.

5.3.2. Consistency Evaluation Metric

Considering the impact of random classification by the model, this paper introduces
Cohen’s Kappa coefficient (K) to calculate the overall consistency and random agreement
between observed and predicted values. The K measures the model’s resistance to inter-
ference in the presence of a class imbalance, serving as a statistical measure to evaluate
credibility. The formula is as follows:

K =
Po − Pe

1 − Pe
(41)

where, the variable Po represents the observed accuracy, i.e., the proportion of correctly
classified instances. Pe denotes the expected accuracy, which refers to the proportion of
instances correctly classified by chance. The K value ranges between [−1, 1], with higher
values indicating a model’s more genuine resistance to randomness. A K value closer to
1 signifies a model’s perfect agreement with reality; K = 0 indicates the model’s performance
is equivalent to random classification; and K < 0 suggests the model’s performance is even
worse than random classification.
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5.4. Result
5.4.1. Accuracy Evaluation Results

Figure 8 presents the classification results across four datasets (D1–D4) utilizing
optimal parameters, depicted through a Confusion Matrix format. Each column is allocated
to a dataset, while each row showcases the efficacy of a specific method applied to that
dataset. Predicted labels are displayed along the horizontal axis, with true labels along
the vertical axis. Areas of correct classification are marked in green, whereas inaccuracies
are highlighted in red, accompanied by percentages that reflect the proportion of correct
and incorrect classifications. The intensity of the color signifies proportionality, with
darker shades indicating a higher frequency of occurrences. Owing to the consistent
outcomes between the STPGM-EMA and STPGM-AEMA methods, their results have been
consolidated for representation.
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The experimental analysis elucidates that while most algorithms fare well in scenarios
with a single alternative train option, their efficacy diminishes in contexts with multiple
train choices, illustrating a notable challenge in navigating complex classification land-
scapes. This delineates a direct linkage between the number of potential train choices and
the escalation of uncertainty in passenger trajectories, inherently augmenting the likelihood
of misclassification. A cross-comparison of various methods reveals that the UA module
plays a crucial role in the STPGM-AEMA framework to capture data details. This highlights
a direct correlation between the number of potential train selections and an escalation in
passenger trajectory uncertainty.

Table 2 shows the results of the accuracy assessment of the different algorithms on
each dataset. It is particularly noteworthy that STPGM-AEMA(ours) and STPGM-EMA
(ours without UB) perform well on all datasets, while the other algorithms perform poorly
at least on the D2 dataset. the prediction accuracy of the STPGM_AEMA method proposed
in this article reaches more than 90% on all datasets, showing that the algorithm can cope
with scenarios of different complexity levels. Despite some random errors, the overall
robustness is good.

Table 2. Results of accuracy evaluation metrics.

Dataset Methods PMacro RMacro F1Macro PMicro RMicro F1Micro

D1: TTYB-DD

LTRM 1.00 × 100 1 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

PTAM-MLE 9.46 × 10−1 8.38 × 10−1 8.72 × 10−1 8.57 × 10−1 8.57 × 10−1 8.57 × 10−1

MPTAM-EM 5.95 × 10−1 6.25 × 10−1 6.01 × 10−1 8.57 × 10−1 8.57 × 10−1 8.57 × 10−1

STPGM-AEM 9.62 × 10−1 1 8.88 × 10−1 9.16 × 10−1 9.05 × 10−1 9.05 × 10−1 9.05 × 10−1

STPGM-EMA 9.58 × 10−1 9.38 × 10−1 9.42 × 10−1 9.52 × 10−1 9.52 × 10−1 9.52 × 10−1

STPGM-AEMA(ours) 9.58 × 10−1 9.38 × 10−1 9.42 × 10−1 9.52 × 10−1 9.52 × 10−1 9.52 × 10−1

D2:
CY-DS

LTRM 2.40 × 10−1 9.17 × 10−2 9.44 × 10−2 1.05 × 10−1 1.05 × 10−1 1.05 × 10−1

PTAM-MLE 5.13 × 10−1 5.14 × 10−1 5.12 × 10−1 4.74 × 10−1 4.74 × 10−1 4.74 × 10−1

MPTAM-EM 1.98 × 10−1 9.38 × 10−2 1.22 × 10−1 1.58 × 10−1 1.58 × 10−1 1.58 × 10−1

STPGM-AEM 5.60 × 10−1 4.79 × 10−1 5.10 × 10−1 6.32 × 10−1 6.32 × 10−1 6.32 × 10−1

STPGM-EMA 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

STPGM-AEMA(ours) 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

D3:
PHY-TTYB

LTRM 8.33 × 10−1 9.76 × 10−1 8.77 × 10−1 9.50 × 10−1 9.50 × 10−1 9.50 × 10−1

PTAM-MLE 7.56 × 10−1 8.00 × 10−1 6.79 × 10−1 8.50 × 10−1 8.50 × 10−1 8.50 × 10−1

MPTAM-EM 8.33 × 10−1 9.33 × 10−1 8.52 × 10−1 9.50 × 10−1 9.50 × 10−1 9.50 × 10−1

STPGM-AEM 7.71 × 10−1 7.76 × 10−1 7.02 × 10−1 8.00 × 10−1 8.00 × 10−1 8.00 × 10−1

STPGM-EMA 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

STPGM-AEMA(ours) 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

D4:
HJL-CY

LTRM 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

PTAM-MLE 8.56 × 10−1 6.83 × 10−1 6.90 × 10−1 7.89 × 10−1 7.89 × 10−1 7.89 × 10−1

MPTAM-EM 9.05 × 10−1 8.83 × 10−1 8.79 × 10−1 8.95 × 10−1 8.95 × 10−1 8.95 × 10−1

STPGM-AEM 9.05 × 10−1 7.17 × 10−1 7.54 × 10−1 7.89 × 10−1 7.89 × 10−1 7.89 × 10−1

STPGM-EMA 9.67 × 10−1 9.33 × 10−1 9.45 × 10−1 9.44 × 10−1 9.44 × 10−1 9.44 × 10−1

STPGM-AEMA(ours) 9.67 × 10−1 9.33 × 10−1 9.45 × 10−1 9.44 × 10−1 9.44 × 10−1 9.44 × 10−1

Average

LTRM 7.54 × 10−1 7.59 × 10−1 7.31 × 10−1 7.51 × 10−1 7.51 × 10−1 7.51 × 10−1

PTAM-MLE 7.68 × 10−1 7.09 × 10−1 6.88 × 10−1 7.43 × 10−1 7.43 × 10−1 7.43 × 10−1

MPTAM-EM 6.33 × 10−1 6.34 × 10−1 6.14 × 10−1 7.15 × 10−1 7.15 × 10−1 7.15 × 10−1

STPGM-AEM 7.99 × 10−1 7.15 × 10−1 7.20 × 10−1 7.81 × 10−1 7.81 × 10−1 7.81 × 10−1

STPGM-EMA 9.81 × 10−1 9.68 × 10−1 9.72 × 10−1 9.74 × 10−1 9.74 × 10−1 9.74 × 10−1

STPGM-AEMA(ours) 9.81 × 10−1 9.68 × 10−1 9.72 × 10−1 9.74 × 10−1 9.74 × 10−1 9.74 × 10−1

1 Bold denotes the best result, and underline denotes the second-best result. The same is below in Table 3.
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Table 3. Results of Cohen’s Kappa consistency test.

Method D1:
TTYB-DD

D2:
CY-DS

D3:
PHY-TTYB

D4:
HJL-CY Average

LTRM 1.00 × 100 −1.45 × 10−1 8.95 × 10−1 1.00 × 100 6.87 × 10−1

PTAM-MLE 7.57 × 10−1 1.52 × 10−1 6.61 × 10−1 6.24 × 10−1 5.48 × 10−1

MPTAM-EM 7.69 × 10−1 −1.65 × 10−1 8.90 × 10−1 8.30 × 10−1 5.81 × 10−1

STPGM-AEM 8.42 × 10−1 4.14 × 10−1 5.12 × 10−1 6.18 × 10−1 5.96 × 10−1

STPGM-EMA 9.24 × 10−1 1.00 × 100 1.00 × 100 9.09 × 10−1 9.58 × 10−1

STPGM-AEMA(ours) 9.24 × 10−1 1.00 × 100 1.00 × 100 9.09 × 10−1 9.58 × 10−1

The results are consistent with the hypothesis proposed in this paper that the com-
plexity of the operating model and the station structure influence the accuracy of trajectory
reconstruction. Specifically, in the D2 dataset, the destination station DS is an interchange
and adopts a short-turning operation pattern during peak hours for commuting needs.
Although DD is a transfer station, the operation mode of the D1 dataset is a simple mode.
While the destination stations in the D3 and D4 datasets are non-transfer stations, their
operation mode is also a simple mode. Besides, the passenger flow of the D3 dataset is the
lowest. Therefore, the complexity of these four datasets, from high to low, is D2, D1, D3,
and D4. The performance difference of D2 may be due to the operating modes of the origin
station CY during peak hours; at the same time, the complex mode of the transfer destina-
tion station DS further increases the difficulty of prediction. This comparison reinforces
the view that OD’s complexity of the scene directly affects the accuracy of the algorithm’s
prediction of passenger trajectories.

From the average value, the STPGM-AEMA and STPGM-EMA algorithms have
demonstrated exceptional performance, with all metrics exceeding 0.95, showcasing sig-
nificantly superior classification capabilities compared to other methods. Following them
are the LTRM and STPGM-AEM algorithms, which, despite performing well in certain
scenarios, exhibit relatively lower overall stability, especially when faced with unevenly
distributed dataset features or significant variability. In summary, the STPGM-AEMA
approach presented in this study demonstrates exceptional performance across both macro
and micro metrics, emphasizing the remarkable robustness of the proposed models. This
outcome accentuates the precision of the STPGM-AEMA method devised in this research
in processing intricate spatiotemporal data and accurately capturing passenger behavior
patterns, underscoring its utility in complex urban rail transit analyses.

5.4.2. Consistency Test Result

It is evident that STPGM-AEMA and STPGM-EMA exhibit superior performance (as
presented in Table 3), with K values exceeding 0.9. This observation suggests that as the
sample size tends toward infinity, the estimator’s value can converge to the true parameter
value. Subsequently, the LTRM algorithm demonstrates optimal performance on the D1
and D4 datasets but exhibits subpar results on the D2 dataset. It should be noted that for
other algorithms, the stability of results may be significantly influenced by variations in
walking distances and passenger paths at different entry stations within each dataset.

5.5. Results Interpretability Discussion
5.5.1. Potential Train Sets Feature Analysis

Figure 9 contrasts the distribution of potential train sets for typical OD pairs during
peak hours (using datasets D2 and D3 as examples) with the distribution of train choices
by passengers at the origin station. As shown in Figure 9(a.1–a.4) depict the distribution
of potential train sets for passenger journeys entering the station in dataset D2 between
07:00 and 09:00 a.m. in half-hour increments, where 1–5 represent the number of train
options and “P: >” indicates the statistical proportion ranking of train options. For instance,
in Figure 9(a.1), “P: 2 > 3 > 1 > 4 > 5” indicates that the proportion of having two train
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options is the highest at 45.7%, followed by 3 (25%), 1 (14.6%), 4 (12.8%), and 5 (1.8%).
Figure 9(b.1–b.4) follow a similar pattern. It is observed that during the morning peak,
the statistical values for train options mostly range between 2 and 4, while during the
evening peak, options of 1–2 are more prevalent, likely due to the higher frequency of train
departures in the morning and relatively sparse intervals in the evening.

Entropy 2024, 26, x FOR PEER REVIEW 24 of 31 
 

 

07:00 and 09:00 AM in half-hour increments, where 1–5 represent the number of train op-
tions and “P: >” indicates the statistical proportion ranking of train options. For instance, 
in Figure 9(a.1), “P: 2 > 3 > 1 > 4 > 5” indicates that the proportion of having two train 
options is the highest at 45.7%, followed by 3 (25%), 1 (14.6%), 4 (12.8%), and 5 (1.8%). 
Figure 9(b.1–b.4) follow a similar pattern. It is observed that during the morning peak, the 
statistical values for train options mostly range between 2 and 4, while during the evening 
peak, options of 1–2 are more prevalent, likely due to the higher frequency of train depar-
tures in the morning and relatively sparse intervals in the evening. 

 
Figure 9. Comparison of typical OD on train selection and train selection distribution. 

5.5.2. Analysis of Latent Variable Z Distribution 

Figure 9(a.5–a.8) illustrate the distribution of train choices at the origin station for all 
passenger journeys during the morning peak, in half-hour intervals within dataset D2, 
representing the distribution of the latent variable Z. T1–T5 denotes feasible train ID, with 
“P: >“ indicating their statistical ranking based on chosen trains. For instance, in Figure 
9(a.5), “P: T1 > T2 > T3 > T4” signifies that the first train has the highest selection propor-
tion at 50.6%, followed by T2 (31.7%), T3 (15.9%), and T4 (1.8%). A similar pattern is ob-
served in Figure 9(b.5–b.8). It is evident that during the morning peak, there are variations 
in train choice probabilities across different time slots; however, a more consistent expo-
nential distribution is apparent during the evening peak hours. 

Interestingly, during the evening peak, there is a clear alignment between the ranking 
of potential train numbers and the sequence of chosen train ID, which is not as evident in 
the morning peak. For instance, between 08:30 and 09:00 a.m., despite only 7.9% of choices 
having one train option available, the proportion of selecting the first train reaches 54.4%. 
In contrast, during the evening peak, when only 43.2% of choices have one train option 
available, the selection proportion for the first train rises to 59.1%. This discrepancy can 
be attributed to the higher demand for comfort among evening peak passengers, who pri-
oritize seating and exhibit a slower walking speed compared to morning commuters. In 
contrast, morning commuters prioritize quick arrival and tend to adopt a “board if possi-
ble” behavior. 

Figure 9. Comparison of typical OD on train selection and train selection distribution.

5.5.2. Analysis of Latent Variable Z Distribution

Figure 9(a.5–a.8) illustrate the distribution of train choices at the origin station for
all passenger journeys during the morning peak, in half-hour intervals within dataset
D2, representing the distribution of the latent variable Z. T1–T5 denotes feasible train ID,
with “P: >” indicating their statistical ranking based on chosen trains. For instance, in
Figure 9(a.5), “P: T1 > T2 > T3 > T4” signifies that the first train has the highest selection
proportion at 50.6%, followed by T2 (31.7%), T3 (15.9%), and T4 (1.8%). A similar pattern
is observed in Figure 9(b.5–b.8). It is evident that during the morning peak, there are
variations in train choice probabilities across different time slots; however, a more consistent
exponential distribution is apparent during the evening peak hours.

Interestingly, during the evening peak, there is a clear alignment between the ranking
of potential train numbers and the sequence of chosen train ID, which is not as evident
in the morning peak. For instance, between 08:30 and 09:00 a.m., despite only 7.9% of
choices having one train option available, the proportion of selecting the first train reaches
54.4%. In contrast, during the evening peak, when only 43.2% of choices have one train
option available, the selection proportion for the first train rises to 59.1%. This discrepancy
can be attributed to the higher demand for comfort among evening peak passengers, who
prioritize seating and exhibit a slower walking speed compared to morning commuters.
In contrast, morning commuters prioritize quick arrival and tend to adopt a “board if
possible” behavior.

5.5.3. Analysis of the Changing Process of Attention Mechanism

Figure 10a depicts the variation of value across iterations, with the horizontal axis
representing the number of iterations and the vertical axis indicating changes in value
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µ and pdf of the latent variable t, taking the D2 data set as an example (unit in second).
Figure 10b,c display PDF distributions of the initial 0 and final iteration 9, respectively.
The pdf distribution based on tXLI=1 is represented by a blue-filled curve, while that based
on t is depicted with a green-filled curve. The blue vertical line represents the acquired
prior value (µ(prior) = 150s), serving as a reference for parameter variation, whereas the
red vertical line indicates the current iteration round’s value µ. It can be observed that the
prior value exhibits left-skewness, which decreases from u(0) = 256s to u(9) = 189s, after
learning through UA module and stabilizes thereafter. Notably, Figure 10(b.2–b.5) and
10(c.2–c.5) demonstrate different PDF distribution shapes of vectors at various position
indexes (from left to right: T1–T4), corresponding to the first and last rounds, respectively.
Evidently, as iterations increase, they tend to align more closely with u(9).
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Experimental results demonstrate that the variables of the key-value pairs (K, V)
exhibit a tendency to align more closely with the matrix q, indicating that the UA module
enables interactive learning of both passenger egress time ti,j and destination station time
distribution G(t; Θ).

5.5.4. Individual Trajectory Visualization

The events and state values involved in the reconstructed trajectory are visualized
using 3 samples of the D2 dataset, as shown in Figures 11a and 11b, respectively. Figure 11a
shows the reconstructed trajectory of individual “ID19”, where the tap-in and tap-out
events are known and marked as “be known” in black font. Other events are inferred and
marked “be inferred” in red font. It can be seen that passenger “ID19” has already inferred
that he boarded train 2 at station CY at 08 : 21 : 14, and the interpretation of other event
information is similar. Of course, if the trajectories of all passengers are displayed, the
congestion and distribution of passengers waiting on the platform can be further analyzed,
this is not the focus of this article. Figure 11b shows the inferred state information of each
individual. It can be seen that the egress times are indeed relatively similar, which in turn
confirms the effectiveness of the model STPGM proposed in this article. Furthermore,
detailed error analysis is discussed in depth in the next section.
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5.5.5. Residual Analysis of Trajectory Reconstruction Fragments

The reconstruction error of the involved ITT data, encompassing temporal attributes
TEh and state characteristics S f of the event, is assessed based on residuals err(·) = trI − ˆtrI
(unit in second). Further, err(·) > 0 indicates predicted occurrence times earlier than the
actual events, while positive residuals suggest later predictions. Regarding state values,
err(·) > 0 denote underpredictions, whereas positive values indicate overpredictions.

Figure 12 employs Q-Q plots to demonstrate the normality of each event-time variable.
The horizontal axis represents theoretical quantiles of the probability distribution, and the
vertical axis reflects percentiles of residual values. The red line represents the regression
line satisfying either TEh = ˆTEh (in Figure 12a–e) or S f = Ŝ f (in Figure 12f–j). Two grey
dashed lines indicate a 95% confidence interval, with individual residual err(·) denoted by
points on the plot.
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The analysis in Figure 12 reveals that, when considering the deviation from events, it
is evident that, apart from err(TII ) being influenced by system errors, deviations in TVB

I
and TVA

I
occur due to disregarding the time spent onboarding and alighting. To enhance

the model, future research can incorporate a deviation correction coefficient. Notably,
the largest deviation value about TWI primarily stems from insufficient observational
information and significant randomness. Regarding state values, aside from errors err(TRT)
resulting from individual heterogeneity’s perception bias, most values are predominantly
positive due to their association with calculation methods. It is noteworthy that the
error value err(TET) is minimal, thus confirming the efficacy of our proposed method.
Furthermore, except for err(TII ), a majority of data points fall within an interval range
while exhibiting residuals close to normality, validating the effectiveness of the ITR method
proposed in this paper. The Q-Q plots effectively visualize the normality or deviation of
residuals, offering a statistical basis to assess the model’s performance in reconstructing
travel event timelines.

6. Conclusions

In this paper, an automatic inference method for ITR has been proposed, namely
STPGM-AEMA, which aims to infer missing information from incomplete information.
The method effectively recovers rich semantic and state information about each individual
trajectory using only AFC and AVL data. A GOLN rule is introduced in the model as a
bridge from observed data to inferred information. On this basis, an information interaction
representation module for global and local latent variables was designed, which effectively
promotes autonomous communication of information between individuals and the system,
eliminating dependence on manual survey data. Secondly, the proposed parameter learning
algorithm AEMA enhances the EM algorithm by adaptively introducing a priori parameters
and a key-value attention mechanism. It not only improves the stability and convergence
speed of parameters but also automatically samples the walking time of individual and
egress time distributions to deal with missing data problems. In addition, combined with
ITT data, three methods and two ablation experimental methods were comparatively
analyzed. The results show that the proposed STPGM-AEMA method performs well in
terms of accuracy and robustness, and the accuracy can reach 0.95 (95%), which is at least
15% more accurate than the traditional methods (i.e., PTAM-MLE and MPTAM-EM).

It is worth noting that interpretability analysis was performed on key parts of the
STPGM-AEMA method, including potential set feature mining analysis, latent variable
distribution analysis, the role of the attention mechanism, and temporal residual analysis.
On this basis, some possible directions for improvement could be as follows: (1) addressing
the limitations of the proposed model in estimating individual trajectories between OD
pairs with insufficient data, as any lack of prior information will adversely affect the utility
of the UB module; (2) Currently, a simple normalization function is used in the UA module.
In future research, the application of other activation functions (Leaky ReLU, weighted
Softmax, etc.) in multi-class imbalance problems can be explored to enhance model fitting
capabilities; (3) Extend the model formulation to include route choice probability, passenger
type, station type, or operation strategies as additional model parameters; and (4) Although
the AEMA algorithm proposed in this paper employs offline training, the average training
time for a single dataset in this study is approximately 15.79 s, which adequately satisfies
the requirements for fast trajectory reconstruction of complete samples within a single OD
pair. Future work can explore the possibility of integrating real-time sample generation
and correction modules to achieve real-time personal travel trajectory prediction. Certainly,
this requires significant extensions to existing models.
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Appendix A. Notations and Definitions

Symbol Definition

i Passenger index.
s, s′ The origin and destination stations of an individual trip, respectively.
t, t′ The tap-in and tap-out time of an individual trip index, respectively.

Ii
(t,s)→(t′ ,s′)

Itinerary index, where (t, s) → (t′, s′) indicates that passenger i enter the origin station s at t and leave
the destination station s′ at t′, abbreviated as I.

Is,t, Is′ ,t′ The tap-in and tap-out time of an individual itinerary.
tj Train index of all trains between OD pairs.
tjI,id A unique symbol representing the ID of train in journal I.
tjs,at, tjs,dt, tjs′ ,at, tjs′ ,dt The arrival time and departure time at origin station s/destination station s′ of the train tj, respectively.
tjfs,q, tjs,q, tjs′ ,q, tjes,q The order number of the train tj at first station fs, station s, station s′ and last station es.
JI(t,s) , JI(t′ ,s′ ) The set of feasible train choices at origin station s/destination station s′ for an itinerary I, respectively.

JI

The set of feasible train choices for an itinerary I, denoted as {1, 2, · · · , j}, with the index being j, LI
represents the ordered sequence of train options available. The total length of this sequence is, with the
dimension being 1 × LI .

Teg
iI(s′ ) The potential set of egress time for an itinerary I, denoted as

{
ti,1, ti,2, · · · , ti,j

}
, abbreviated as Teg

I .

ti,j The jth potential egress time value for passenger i in itinerary I.

Appendix B. The Recorded Data from the Trajectory Simulation Experiment

Date 2023/3/21

PID 15****36
Itinerary index 234
L1 S1 Tap-in Time To platform Boarding Time Train Departure Time
6 623 17:34:50 17:36:55 17:38:40 17:38:50
L2 S2 Train Arrival Time Alighting Time Tap-out time
6 633 17:58:56 17:59:05 17:59:59

Appendix C. The Table Presents the States of the Trajectory Calculation Results

Date 2023/3/21

PID 15****36
Itinerary index 234
OD pair Access time(s) Train ID Waiting time(s) Riding time(s) Egress time(s)
623-633 125 1222 105 1206 54
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