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Abstract: Halogen-free organophosphorus flame retardants have promising application prospects
due to their excellent safety and environmental protection properties. A cobalt-coordinated cyclic
phosphonitrile flame retardant (Co@CPA) was synthesized via a hydrothermal method using hex-
achlorocyclotriphosphonitrile (HCCP), 5-amino-tetrazolium (5-AT), and cobalt nitrate hexahydrate
(Co(NO3)2·6H2O) as starting materials. The structure was characterized using Fourier transform
infrared (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscopy
(SEM), and thermogravimetric analysis (TGA). Thermoplastic polyurethane (TPU) composites were
prepared by incorporating 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphame-10-oxide
(ODOPB), Co@CPA, and silicon dioxide (SiO2) via melt blending. The flame-retardant performance
and thermal stability of the TPU composites were evaluated through limiting oxygen index (LOI),
vertical combustion (UL-94), TG, and cone calorimetric (CCT) tests. SEM and Raman spectroscopy
were used to analyze the surface morphology and structure of the residual carbon. A synergistic
flame-retardant effect of ODOPB and Co@CPA was observed, with the most effective flame retardancy
achieved at a TPU:ODOPB:Co@CPA:SiO2 ratio of 75:16:8:1. This composition exhibited an LOI value
of 26.5% and achieved a V-0 rating in the UL-94 test. Furthermore, compared to pure TPU, the com-
posite showed reductions in total heat release, CO production, and CO2 production by 6.6%, 39.4%,
and 48.9%, respectively. Our research findings suggest that Co@CPA demonstrates outstanding
performance, with potential for further expansion in application areas. Different metal-based cyclic
phosphonitrile compounds are significant in enriching phosphorus-based fine chemicals.

Keywords: hydrothermal; cobalt coordinated; limiting oxygen index; organophosphorus; metal-
based cyclic phosphonitrile

1. Introduction

Thermoplastic polyurethane (TPU), also referred to as polyurethane rubber, is clas-
sified under the thermoplastic elastomer (TPE) category [1–3]. Its notable characteristics
include elasticity, wear resistance, chemical stability, and plasticity, which have led to
its extensive utilization in industries such as aerospace, automotive, and marine [4–6].
However, TPU is an extremely flammable material, The molten droplets generated during
the combustion process not only spread the fire but also release a significant amount of
toxic and harmful gases, such as CO, HCN, NOx, etc. This poses a serious limitation on the
application of TPU [7–9]. Inorganic flame retardants are commonly utilized in polymer for
their non-flammable nature and high specific heat capacity, but their compatibility with
TPU materials is lacking, necessitating the addition of large quantities, ultimately leading
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to a reduction in the mechanical properties of the polymer [10,11]. Halogen flame retar-
dants offer excellent flame-retardant properties for TPU materials with minimal addition
amounts, high compatibility, and no reduction in material mechanical properties. However,
the combustion of halogenated flame retardants can produce various carcinogenic toxic
substances like polybrominated dibenzo-p-dioxins and dibenzofurans, posing significant
health risks [12,13].

In comparison, organophosphorus flame retardants exhibit high flame-retardant ef-
ficiency for TPU materials and good compatibility and produce non-toxic, pollution-free
combustion by-products. These organophosphorus flame retardants have been extensively
researched and widely utilized in flame-retardant TPU materials [14,15]. Cyclotriphosp-
hazene and its derivatives, which are based on a phosphorus–nitrogen skeleton, exhibit
remarkable thermal stability and structural diversity. The presence of the phosphorus–
nitrogen skeleton in their structure allows for a conjugation effect, resulting in exceptional
chemical stability and resistance to oxidation even after prolonged exposure to air [16–20].
Studies indicate that coordination compounds formed by combining these derivatives
with metals not only display high thermal stability but also effectively suppress the re-
lease of heat and smoke during material combustion [21–24]. Metal elements can catalyze
dehydration and chain breakage of the polymer matrix, leading to the formation of a
stable carbon layer that effectively suppresses heat and smoke release during combustion.
However, the poor compatibility between metal compounds and organic polymer materi-
als results in inadequate dispersion of the former within the polymer matrix, leading to
a deterioration in the mechanical properties of the polymer material and hindering the
achievement of the desired flame-retardant performance [25–29]. As a result, researchers
have recently turned their attention to metal–organic coordination compounds; these com-
pounds, with organic ligands, not only exhibit excellent compatibility with polymers but
also provide flame-retardant properties due to the flame-retardant elements present on
the organic ligands [30–33]. Xilei Chen and colleagues utilized a copper metal–organic
framework (MOF-Cu) for flame-retardant modification of thermoplastic polyurethane
elastomer (TPU) composite materials. Their study revealed that the combined application
of MOF-Cu with TPU resulted in a synergistic effect, leading to a substantial enhancement
in flame-retardant performance. This study suggests that a composite material consisting
of thermoplastic polyurethane (TPU), a copper metal–organic framework (MOF Cu), and
ammonium polyphosphate (APP) exhibits the most effective flame-retardant properties
with a limiting oxygen index (LOI) of 27%. Among these components, APP is a commonly
used phosphorus-based flame retardant [34]. Therefore, the combination of metals with
phosphorus-based flame retardants shows promising flame-retardant capabilities.

In this study, a metal coordination compound was synthesized by combining cobalt
and cyclic phosphazene using a hydrothermal method. The compound’s structure and
properties were analyzed through FTIR, 1H-NMR, and TG techniques. TPU composite
materials were fabricated, and their flame-retardant properties, combustion behavior, and
mechanical properties were investigated. The surface morphology and structure of the
combustion products were also analyzed. The results indicate that the combination of
cobalt with organic ligands in Co@CPA effectively suppressed the heat release and smoke
release of composite materials. The successful modification of CPA with cobalt effectively
reduced the fire risk and increased the safety of composite materials. These research
findings will provide valuable guidance and reference for the widespread adoption of
flame-retardant modification.

2. Experimental Section
2.1. Synthesis of Flame Retardants

We weighed 0.8675 g (0.0025 mol) of hexachlorocyclotriphosphonitrile (HCCP) and
dissolved it in 50 mL of acetonitrile. Next, we weighed 1.275 g (0.015 mol) of 5-amino-
tetrazolium (5-AT) and dissolved it in 50 mL of deionized water. Both solutions were
combined in a three-necked flask and stirred continuously at 50 ◦C until the solution
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became clear. Then, we added 0.6 g (0.015 mol) of solid NaOH and let the reaction proceed
for 6 h. The resulting solution was rotary evaporated and vacuum-dried at 100 ◦C for 12 h.
Subsequently, the methanol solution was stirred, filtered to separate NaCl solid, and then
distilled to obtain the intermediate triphosphazene-co-5-aminotetrazolium (CPA). The CPA
was vacuum-dried at 80 ◦C for 12 h. The synthesis route is illustrated in Figure 1.
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Figure 1. Synthetic route of CPA.

We weighed 3.1956 g (0.005 mol) of CPA and 4.365 g (0.015 mol) of cobalt nitrate hex-
ahydrate and placed them in a high-pressure reactor sealed with polytetrafluoroethylene.
Next, we added 50 mL of deionized water to dissolve the mixture. Then, we weighed
1.2 g (0.03 mol) of NaOH solid and stirred it until the solution changed to an orange-red
color. We introduced a specific amount of nitrogen gas and transferred the reactor to an
electric constant-temperature drying oven. We allowed the reaction to proceed at 180 ◦C
for 12 h, followed by centrifugation and three washes with deionized water. Finally, we
vacuum-dried at 100 ◦C for 12 h to obtain the final product Co@CPA. The synthesis route is
illustrated in Figure 2.
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2.2. Preparation of TPU Composite Materials

TPU composite materials were prepared through physical melt blending. Initially, we
dried TPU, ODOPB Co@CPA, and SiO2 for 12 h and set them aside. Due to the hygroscopic
nature of Co@CPA, it should be promptly utilized. The detailed experimental procedure
involved setting the temperature of the torque rheometer to 150 ◦C, adjusting the speed
to 60 r/min, setting the temperature of the flat vulcanization machine to 160 ◦C, heating
and mixing an appropriate amount of TPU for 3–4 min, adding ODOPB according to the
formula in Table 1, and mixing Co@CPA, SiO2 for 10–15 min to ensure full melting of the
flame retardant with TPU, resulting in TPU composite material. The composite material
was then crushed with a grinder, evenly laid in a mold, and hot-pressed and shaped using
a flat vulcanization machine for 10~15 min. After cooling to room temperature, the sample
was removed, cut, and polished. Standard samples for vertical combustion, ultimate
oxygen index, and cone calorimetry were prepared using the aforementioned methods.
Mechanical performance test samples were prepared using an injection molding machine.



Molecules 2024, 29, 1869 4 of 12

Table 1. Formula of TPU and TPU composite materials.

Num. w(TPU)/% w(Co@CPA)/% w(ODOPB)/% w(SiO2)/%

TPU0 100 N/A N/A N/A
TPU1 88 12 N/A N/A
TPU2 75 N/A 25 N/A
TPU3 75 12 12 1
TPU4 75 8 16 1

3. Results and Discussion
3.1. Characterization of CPA

As depicted in Figure 3a, 5-amino-tetrazolium (5-AT) exhibit characteristic peaks at
-NH- and -NH2 absorption peaks between 3000 and 3500 cm−1, N=N and C=N absorption
peaks at 1664 cm−1, and C-N absorption peaks at 1062 cm−1. The characteristic peaks of
hexachlorocyclotriphosphonitrile (HCCP) remain almost unchanged. This allows for the
determination of the structure of the intermediate CPA.
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In Figure 3b, a unique set of absorption peaks at 6.4, corresponding to the absorption
peak of H on -NH2, is observed at the chemical shift δ. This further confirms the substitution
reaction between 5-AT and HCCP involving -NH- and P-Cl and supports the high purity
of the synthesized intermediate CPA.

3.2. Characterization of Co@CPA

Utilizing carbon flakes as a background, the sample Co@CPA was analyzed to examine
specific areas on the surface. Figure 4a displays the morphology and chemical composition
of Co@CPA through a microscopic map of the selected area. The hierarchical image in (b)
reveals a relatively uniform distribution of elements such as Co, C, N, and P. Furthermore,
elements Co, C, N, and P are individually represented in the distribution maps (c), (d),
(e), and (f) for this specific area. The mapping element analysis results reveal a uniform
distribution of Co, C, N, and P elements across the system, suggesting effective coordination
between Co and CPA. This led to the formation of a uniform Co@CPA structure with
clear hierarchy.

The TG and DTG curves were generated in a high-purity nitrogen atmosphere with a
heating rate of 10 ◦C/min (Figure 5). The TG curve indicates that the thermal degradation of
Co@CPA can be categorized into three main stages. The initial stage at 100 ◦C is attributed to
the vacuum drying of Co@CPA, with weight loss likely due to the evaporation of absorbed
water molecules. The second stage, occurring between 300 and 400 ◦C, corresponds to
the primary thermal decomposition process of the Co@CPA compound, possibly resulting
from the breakage of chemical bonds between CPA and Co metal. The third stage, observed
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between 400 and 650 ◦C, signifies the completion of the thermal degradation process of
Co@CPA. Notably, the residual carbon content at 800 ◦C is 35.48%. These findings provide
additional evidence that CPA and Co elements are effectively coordinated, forming a
complex with a distinct heat difference value.
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3.3. Performance Testing of TPU and Its Composite Materials

Table 2 presents the ultimate oxygen index and vertical combustion data for TPU
and its composite materials. The data reveal that pure TPU material has an LOI value of
18% and did not achieve any classification in the UL-94 test. During testing, a substantial
number of molten droplets were produced, leading to ignition of the degreased cotton
below, accompanied by a significant emission of black smoke. Upon testing with a certain
quantity of Co@CPA, the LOI value of the TPU composite material increased to 19.5%, still
not attaining a UL-94 grade, but with a notable reduction in droplet formation. Furthermore,
the LOI value of the TPU composite material containing ODOPB additive was only 20%.

The addition of a single flame retardant did not achieve the desired effect on TPU.
However, the composite flame retardant consisting of 12% Co@CPA, 12% ODOPB, and 1%
SiO2 significantly increased the LOI value of TPU and achieved a V-0 level in the UL-94
test. When the ratio of Co@CPA to ODOPB was 1:2, the LOI of the composite material
reached 26.5% and achieved V-0 level without dripping. Compared to pure TPU materials,
the limiting oxygen index increased by 38.9% and 47%. This improvement is attributed to
the metaphosphoric acid produced by the thermal decomposition of Co@CPA and ODOPB
during combustion, which enhances dehydration and carbonization of the char-forming



Molecules 2024, 29, 1869 6 of 12

agent. The metal oxides generated cover the material’s surface, preventing the transfer of
heat and combustible substances, thus enhancing the material’s combustion performance.
The cobalt ions exposed after the Co@CPA skeleton collapse catalyze the TPU matrix
into carbon, and the porous metal oxide (Co3O4) formed during combustion inhibits the
exchange of oxygen and degradation products, enhancing the flame-retardant performance
of the TPU composite material.

Table 2. Flame retardancy test of TPU and TPU composites.

Num.
Flame-Retardant Performance Testing

LOI/% UL-94 Molten Drop

TPU0 18.0 ± 0.2 NR Yes
TPU1 19.5 ± 0.2 NR Yes
TPU2 20.0 ± 0.1 NR Yes
TPU3 25.0 ± 0.3 V-0 No
TPU4 26.5 ± 0.1 V-0 Yes

Note: NR represents no level and cannot pass UL-94 testing.

In order to further study the impact of Co@CPA and ODOPB on the thermal stability
of TPU, thermogravimetric analysis was conducted to assess the stability of TPU and its
composites at elevated temperatures. Figure 6 illustrates that pure TPU undergoes one-step
degradation at high temperatures, with an initial decomposition temperature (T−5wt%) of
275.25 ◦C and complete decomposition at 800 ◦C, leaving almost no residual carbon. Both
the TG curves of TPU composites and pure TPU display one-step degradation, showing
similar decomposition behavior. Table 3 reveals that the addition of Co@CPA results in a
slight increase in the initial decomposition temperature (T−5wt%) and maximum weight
loss temperature (Tmax) of TPU composites, with Tmax ranking as TPU2 > TPU4 > TPU3
> TPU1 > TPU. At 800 ◦C, TPU3 shows a 524.1% increase in residual carbon compared
to pure TPU, while TPU4 increases by 451.2%, indicating the high thermal stability and
catalytic carbonization effect of Co@CPA in combination with ODOPB. These findings
suggest that a 1:2 ratio of Co@CPA to ODOPB significantly enhances the thermal stability
of TPU, surpassing pure TPU in terms of thermal degradation rate and carbonization.
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Table 3. Thermogravimetric test data of TPU and TPU composite materials.

Sample T−5wt%/◦C Tmax/◦C Residue at 800 ◦C/wt%

TPU0 275.25 328.03 3.57
TPU1 275.25 358.18 16.86
TPU2 288.93 407.25 9.65
TPU3 273.67 367.27 22.15
TPU4 276.89 374.00 19.68
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The HRR (heat release rate), THR (Toal Heat Release), and thermal weight loss curves
of TPU composite materials are illustrated in Figure 7, with specific data provided in Table 4.
Pure TPU exhibited violent burning at 38 s, reaching a pk-HRR value of 1453.6 kW/m2,
THR of 99.59 kW/m2, MARHE (maximum average heat release rate) of 570.32 kW/m2,
av-COY of 0.33 kg/kg, and av-CO2Y of 7.55 kg/kg. The inclusion of 12% ODOPB and
12% in TPU3 Co@CPA with 1% SiO2 led to a pk-HRR value of 304.95 kW/m2, THR of
98.91 kW/m2, and MARHE of 438.62 kW/m2. These values represented a 79%, 0.68%, and
23% increase, respectively, compared to pure TPU. Flame retardants were observed to play
a significant role in the combustion process of materials. With 16% ODOPB and 8% in
TPU4 Co@CPA, the values of 1% SiO2, the pk-HRR, THR, MARHE, av-COY, and av-CO2Y
decreased significantly to 318.38 kW/m2, 93.05 kW/m2, 392.82 kW/m2, 0.20 kg/kg, and
3.86 kg/kg, respectively. Compared to pure TPU, these values decreased by 78.1%, 6.6%,
33.1%, 39.4%, and 48.9%, respectively.
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Table 4. The cone calorimeter data of TPU and TPU composites.

Num.
TTI/ THR/ pk-HRR/ av-COY/ av-CO2Y/ av-EHC/ MARHE/

s (MJ/m2) (kW/m2) (kg/kg) (kg/kg) (MJ/kg) (kW/m2)

TPU0 38 99.59 1453.6 0.33 7.55 27.43 570.32
TPU3 20 98.91 304.95 0.23 4.96 29.44 438.62
TPU4 20 93.05 318.38 0.20 3.86 27.31 392.82

Test results indicated that TPU4 exhibited lower total heat release and average effective
combustion heat compared to TPU3, with reduced average yields of CO and CO2. TPU4
demonstrated a positive impact on the heat release of toxic smoke in comparison to TPU3.
Further evaluation of the fire safety of TPU included the calculation of MARHE, revealing
a significant reduction in MARHE value for TPU4 compared to pure TPU and TPU3.
This suggested that increasing the proportion of ODOPB in Co@CPA was associated with
slowing down the combustion rate and enhancing the flame-retardant properties of TPU
composite materials. Based on the flame-retardant performance tests conducted, it can be
concluded that the TPU4 formula sample exhibited the most effective flame-retardant effect
on TPU composite materials.

The macroscopic morphology of residual carbon after cone calorimetry testing is
illustrated in Figure 8, showing the residual carbon of TPU and its composite materials. In
the image, pure TPU is shown to have burned completely with minimal residual carbon,
while the addition of Co@CPA to TPU composite materials containing ODOPB and SiO2
resulted in a significant increase in residual carbon thickness post cone calorimetry testing.
Figure 8b1,b2 demonstrate that the residual carbon of TPU3 composite material, with a
1:1 ratio of ODOPB addition, is coated with a blue substance on the surface, identified
as CoSiO3, indicating a synergistic effect between ODOPB, SiO2 and Co@CPA during
TPU combustion. On the other hand, Figure 8c1,c2 reveal that TPU4 composite material,
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with a 1:2 ODOPB addition ratio, exhibits a denser and harder residual carbon layer post-
combustion, acting as an effective physical barrier to heat, oxygen, and combustible gases
within the TPU matrix for improved flame retardancy.
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The SEM image in Figure 9 displays residual carbon in TPU composite material fol-
lowing a cone calorimetry test, revealing the micro surface of the carbon layer. In Figure 7a,
the carbon layer surface of TPU3 composite material exhibits some agglomerates and lacks
a dense structure. In contrast, the carbon layer surface of TPU4 composite material in
Figure 9b appears denser and smoother, both providing insulation and effectively prevent-
ing the exposure of combustible gases. Therefore, the relationship between ODOPB and
Co@CPA indicates that an increased proportion can enhance the flame retardancy of TPU.
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The D peak (1350 cm−1) is an absorption peak resulting from defects in the carbon
atom lattice, while the G peak (1580 cm−1) is formed by in-plane stretching vibration of
carbon atom sp2 hybridization. The ID/IG ratio represents the peak intensity relationship
between the D peak and the G peak. Thermogravimetric and cone calorimetry analysis
of TPU suggests that pure TPU leaves minimal residual carbon post-high-temperature
thermal decomposition. Figure 10a,b illustrate the addition of 12% ODOPB and 12%
Co@CPA to TPU residue with 1% SiO2, as well as the addition of 16% ODOPB and 8%
Co@CPA to TPU residue with 1% SiO2. The Raman spectrum of TPU residual carbon
in Figure 10a displays a strong peak at 400–700 cm−1, characteristic of Co3O4 crystal
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Raman. In Figure 10b, TPU4 exhibits an ID/IG value of 3.56, indicating higher carbon layer
graphitization with lower values. This suggests that a 1:1 ratio of Co@CPA to ODOPB
is not conducive to TPU carbonization, while the addition of ODOPB promotes TPU
carbonization. ODOPB, in conjunction with Co@CPA, can synergistically enhance the flame
retardancy of TPU materials.
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The mechanical property test results of TPU and its composite materials are illustrated
in Figure 11. Pure TPU exhibits a tensile strength of 26.5 MPa, a peak force of 252.1 N,
and a tensile strain rate at break of 1631.1%. The incorporation of flame retardants affects
the material’s mechanical properties to some extent, resulting in reductions in tensile
strength, peak force, and tensile strain rate at break for the composite material. The
magnitude of this reduction diminishes with higher ODOPB content. This phenomenon is
primarily due to the embrittlement caused by the introduction of metal elements, which
ODOPB mitigates. Research findings indicate that optimal mechanical properties of the
TPU composite material are achieved when the total flame-retardant content is 25% and the
ODOPB to Co@CPA ratio is 2:1. Furthermore, the material exhibits good flame-retardant
properties, expanding its potential applications.
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4. Conclusions

A cobalt-containing organometallic complex, Co@CPA, was successfully synthesized
and found to enhance the flame-retardant properties of TPU. The optimal flame-retardant
effect was achieved at a TPU:ODOPB:Co@CPA:SiO2 ratio of 75:16:8:1, resulting in a LOI
value of 26.5% and UL-94 V-0 rating. Compared to pure TPU, the composite material
showed reductions of 6.6% in total heat release, 39.4% in CO production, and 48.9%
in CO2 production. Residual carbon analysis indicated a denser microstructure in the
TPU composite with flame retardants. The char residue layer exhibited a high degree of
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graphitization, effectively protecting the matrix. Overall, a synergistic effect was observed
in Co@CPA in reducing heat release, inhibiting smoke generation, and promoting the
formation of the char residue layer. This effect has been proven to enhance the flame
retardancy of TPU.

The study focuses on a single metal-based cyclic phosphoronitrile compound that
must be combined with other compounds to effectively act as a flame retardant. Future
research should investigate the varying flame-retardant effects of different metal-based
cyclic phosphoronitrile compounds (e.g., Mn, Sb, Zn) on diverse materials. Our research
findings suggest that Co@CPA exhibits outstanding performance, with potential for further
expansion in application areas. Different metal-based cyclic phosphoronitrile compounds
hold significance in enriching phosphorus-based fine chemicals.
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