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Abstract: In the frame of a systematic study on the sequestering ability of natural antioxidants
towards metal cations, here the complexation of coumarin-3-carboxilic acid (HCCA) with Pb(II)
and the overall stability constants of the resulting complexes, at 37 ◦C and in 0.16 M NaClO4, are
discussed. Reaction of Pb(ClO4)2 with HCCA in an aqueous medium at a pH range from 2 to 6 and
various ratios (1:1–1:10) yielded the Pb–CCA complexes, which were characterized spectrometrically
by laser desorption ionization mass spectrometry (LD-MS). LD-MS has provided the composition
and structure of Pb–CCA species according to the speciation model proposed on the basis of the
potentiometric data. The graphic representation of the complex’s concentration curves is given by the
distribution diagram, which provides a whole depiction of the species present in the solution at the
selected pH ranges.

Keywords: Lead(II) coumarin complexes; stability constants; complexation sites; LD-MS characterization

1. Introduction

The poisoning effects caused by toxic metal ions represent one of the most important
health and social issues in industrialized and emerging countries. For this reason, they
have become an important object of study for the scientific community, which continuously
searches for methods and therapies to determine and regulate the presence of these metal
ions in humans and the environment. Among them, lead, whose toxicity has been reviewed
extensively [1–5], is a harmful metal ion causing adverse environmental and health prob-
lems. Its toxic effects arise from its multipotent involvement in interactions with enzymes
and nucleic acids, where inhibition of biochemical pathways often constitutes the source of
symptomatic physiological aberrations. The borderline “soft–hard” character of lead was
responsible for the metal ion’s interactions with biomolecules; furthermore, according to
its nature, this metal ion may fit in the binding sites of several biomolecules and adapt to
different coordination geometries [6]. As reported in the literature, Pb(II) is able to react
with mono-/poly-carboxylic acids, yielding complexes with a multitude of ligand coordina-
tion modes and high coordination numbers [7–10]. Research on chelating agents, capable
of reducing the concentration of this toxic cation, is currently insufficient, as it should be
based primarily on biological control methods and not on chemicals. Chelating agents for
specific metal ions are not necessarily the best and most common drug. Specificity, the
stability of the complex formed, and knowledge about treatment duration, temporary or
lifelong, are fundamental to the choice of chelating agent. According to the number of
coordination groups on the molecule that can simultaneously bind the target metal ion,
chelating agents can be divided into bidentate, tridentate, and polydentate.

Among oxygen-type ligands, coumarins and their derivatives have stimulated interest-
ing research due to their several properties [11–14]. Coumarins belong to a family of natural
and synthetic compounds containing a heterocycle of fused benzene and α-pyrone rings as
their core structure. Their biological properties are relevant in medicine and in the food and

Molecules 2024, 29, 1911. https://doi.org/10.3390/molecules29091911 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29091911
https://doi.org/10.3390/molecules29091911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6661-1048
https://orcid.org/0000-0002-7004-7643
https://orcid.org/0000-0003-1866-2486
https://doi.org/10.3390/molecules29091911
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29091911?type=check_update&version=1


Molecules 2024, 29, 1911 2 of 12

chemical industries [15–17] because of antioxidant activities along with anti-inflammatory
action and enzyme interactions [18,19]. However, they have not been thoroughly evaluated
for their ability to detoxify metals that are toxic to organisms and recalcitrant to the envi-
ronment. Their antioxidant capacity allows them to alleviate oxidative stress by scavenging
of free radicals and chelating metal ions. This last aspect is relevant in clinical settings
because accumulation of metal ions in the body at concentrations higher than the optimum
level can lead to metal toxicity. This is caused by metal-induced formation of reactive
oxygen species (ROS) and reactive nitrogen species (RNS), resulting in (per)oxidation of
biological molecules.

Coumarin-derived complexes can be obtained through different coordination modes
with varying spectroscopic properties and have been extensively studied for their great
therapeutic potential due to the wide spectrum of physicochemical properties and biological
activities, which can be enhanced by combining coumarin moiety with metal ions [20].

Previously, the biological action of coumarin-3-carboxylic acid (HCCA, Figure 1) has
been potentiated through complexing with metals [21].
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cations in aqueous solutions at 37 °C and in 0.16 mol L−1 [i.e., inert salt NaCl or NaClO4 
depending on specific metal ions] has been reported [22–25]. In these previous 
investigations it has been verified that, with the single exception of Fe(III), HCCA exhibits 
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at 37 °C and in 0.16 M NaClO4. This background salt was chosen to control the ionic 
strength due to its high inertia towards complexation [26]. Results are provided according 

Figure 1. Chemical structure of HCCA.

This ligand can act as a monodentate via carboxylic moiety involving one or both
oxygen atoms, as well as a bidentate ligand through the lactone and the carboxylic oxygen
to realize a high stabilized 6-membered metallocycle [22].

The complexation ability of coumarin-3-carboxylic acid towards selected metal cations
in aqueous solutions at 37 ◦C and in 0.16 mol L−1 [i.e., inert salt NaCl or NaClO4 depending
on specific metal ions] has been reported [22–25]. In these previous investigations it has
been verified that, with the single exception of Fe(III), HCCA exhibits only one mode of
binding, in which the deprotonated carboxylic group acts as a bidentate chelating ligand.

The present study aimed to investigate the formation of Pb-CCA complexes in 0.16 M
NaClO4 at 37 ◦C to determine their stoichiometry and corresponding stability constants.

Taking into account the importance of the ligand and metal ion for the human body,
these experimental conditions were chosen to reproduce the ionic strength and temperature
of biological fluids. Potentiometric measurements and laser desorption mass spectrom-
etry (LD-MS) were utilized to determine the speciation profile and coordination mode,
respectively. The paper will discuss the equilibrium behaviour and speciation model of the
complexes in an aqueous solution at various pH ranges, as well as their possible structures.

2. Results and Discussion
2.1. Potentiometric Measurements

Potentiometric measurements were performed on the Pb(II)–HCCA system to obtain
the stoichiometry of the complexes and the magnitude of the corresponding stability
constants to depict the speciation profiles. The complex formation equilibria were studied at
37 ◦C and in 0.16 M NaClO4. This background salt was chosen to control the ionic strength
due to its high inertia towards complexation [26]. Results are provided according to the
general equilibrium reported in Equation (1), which includes all the possible complexes
formed in solution:

pPb2+ + qOH− + rCCA−
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Table 1. Formation of complexes of HCCA with Pb(II) according to general Equation (1). Values of
log βpqr in NaClO4 0.16 M at 37 ◦C were obtained by numerical procedure (standard deviations are
reported as 3 σ).

(p,q,r) Complexes log βpqr ± 3σ

(1,1,1) Pb(OH)(CCA) 10.77 ± 0.01
(1,0,2) Pb(CCA)2 3.6 ± 0.2

The constants of the main cationic hydrolysis products [28] (i.e., Pb(OH)+, Pb4(OH)4
4+,

Pb3(OH)4
2+, and Pb6(OH)8

4+) and the acidic constant of the ligand [20] were kept invariant
in the numerical treatment to determine stability constants. The experimental data (CM, CL,
CA, CB, [H+]) were firstly processed by graphical procedures, which consist in a comparison
of experimental plots with model functions [29]. To explain the experimental data, the
simple hypothesis was made that the main reaction products are binary complexes and
mononuclear in metal ion, i.e., q = 0 and p = 1 in Equation (1), respectively, formed according
to equilibrium (2):

Pb2+ + r CCA−
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The validity of this assumption was tested by constructing the graph Z, which rep-
resents the average number of ligands for metal ion (Equation (3)), as a function of
log ([HCCA]/[H3O+]) from the primary data (Figure 2).

Z = (CA − [HCCA] − [CCA−])/CB (3)
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Thus, when complexes of the general formula Pb(CCA)r
(2−r) predominate, the points

Z versus log ([HCCA]/[H3O+]), at different CL and CM, should fall on a unique curve.
Most of the experimental points, registered at three different metal/ligand ratios,

fall on a unique curve which tends to 1, confirming that the coordination of ligand to
metal ion is accompanied by the loss of a single proton. However, small but systematic
deviations from the model including just one simple species were observed, confirming
that some additional complex was present. The probable composition of the complexes,
responsible for these deviations, was achieved by numerical treatment of the data set [27].
This analysis allows us to determine the stability constants of species in solution based on
the potentiometric titration data, and to minimize the error-square sum based on measured
electrode potentials. There exists a model of the equilibrium system that adequately
accounts for the experimental observations, which is specified by a set of coefficients,
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one for each species formed, and all least-squares refinements are performed in terms of
an assumed model. Examination of a series of models ought to generate that which is
closest to the true behaviour. The process of selecting the optimal model is referred to as
species selection.

Firstly, we attempted to explain the experimental data using a single complex. We found
that the best minimum was achieved with the mixed mononuclear species, Pb(OH)(CCA),
and the square error sum U was reduced by also considering the Pb(CCA)2 complex. No
other species, added to enhance the fit, were retained and therefore excluded from the
system. The distribution diagram reported in Figure 3 displays that all the complexes
reached significant percentages and started to form in the acidic pH range.
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It is evident from Figure 3 that none of the metal hydrolytic species reached significant
percentages.

2.2. Mass Spectrometry Analysis

Mass spectrometry is an instrumental technique frequently adopted to clarify struc-
tures and coordination sites in complexes in which metals can be chelated by ligands [30,31].
Ionization is a very complex phenomenon, since it could comprise the formation of pro-
tonated, deprotonated, cationized, and sometimes even radical species, affected by the
synergic effect of the matrix, solvent composition, solution pH, and acid–base properties
of the analytes [32]. Therefore, even if the study of metal–organic ligand complexes using
MALDI-TOF MS is an exciting, diverse, lively, and rather interesting area, the choice of the
matrix, the pH conditions, and the nature of the ligand deeply affect the success of the anal-
ysis. The presence of the matrix protects the analytes and improves desorption/ionization
phenomena, as well as simplifying sample preparation. Furthermore, without a matrix,
large amounts of fragmentation could be observed, which in some cases is useful for un-
derstanding the ionization behaviour of molecules, while in other cases it is a complication
for the interpretation of mass spectrometry data [33]. Metal ion–matrix complexes can be
considered as pre-formed ions and it was well established that MALDI mass spectra quali-
tatively reflect the quantity of preformed complexes in the solid target [34,35]. However,
only the complexes surviving the ionization processes can be detected and analyzed with
the mass spectrometer. Different grades of adduct generation can be observed, depending
on the amount of energy transfer to the analyte, which is usually controlled by the matrix.
The distribution of the analyte and matrix adducts proves the presence of the multi-ion
pairs in crystals on the MALDI plate and that ionization is essentially accomplished by
charge separation processes [36]. In particular, the structures of the complexes of lead ion
and coumarin-3-carboxylic acid (HCCA) were investigated by High Resolution (HR) Laser
Desorption Ionization (LD) Mass Spectrometry (MS). The use of HCCA as a ligand falls
within the specific case where the ligands also act as a matrix to promote the formation of
the ions in the source. Indeed, the ligand exhibits a highly conjugated double-bond struc-
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ture typically observed in the organic acids regularly used as a MALDI matrix. Literature
data report the use of coumarins as a matrix for MALDI-MS analysis of DNA [37] and
hydrophobic compounds, as steroids and sterols, by MALDI-FT ICR MS in positive-ion
mode [38]. Therefore, it was interesting to explore the ionization efficiency and behaviour
of the ligand with the aim of studying its chelating capabilities in more detail. Studying the
analyte alone offers several advantages: the crystal is homogeneous, spectra are simpler,
and all signals can be ascribable to the analyte. Moreover, when the analyte is a ligand,
the characterization of the interaction with a metal ion becomes more reliable. HCCA is
expected to have a higher affinity for hydrophilic compounds and to suppress dissociation
of labile regions; therefore, its behaviour in the gas phase was initially checked in LD-MS
conditions [39]. Coumarin-3-carboxylic acid is expected to form self-associated homod-
imers through π-stacking interactions [40]; indeed, in Figure 4 it is possible to note the
presence of ions, proving information on several protonated and cationized species. The
spectrum shows the formation of four cluster regions ascribable to from one to four units
of HCCA, as shown in Table 2.
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Table 2. MS ions of HCCA (LH).

Species m/z Error (ppm) Chemical Formula

[LH+K]+ 228.99 3.5 [C10H6O4K]+

200.99 3.6 [C9H6O3K]+

[LH-CO2+K]+ 184.98 3.1 [C9H6O2K]+

[2LH+K]+ 419.02 3.1 [C20H12O8K]+

[2LH-CO2+K]+ 375.03 3.0 [C19H12O6K]+

347.03 3.5 [C18H12O5K]+

[2LH-2CO2+K]+ 331.04 3.9 [C18H12O4K]+

323.09 4.0 [C19H15O5]+

303.04 3.8 [C17H12O3K]+

275.05 3.5 [C16H12O2K]+

[3LH+K]+ 609.05 5.0 [C30H18O12K]+

[3LH-CO2+K]+ 565.05 3.1 [C29H18O10K]+

537.05 3.4 [C28H18O9K]+

[3LH-2CO2+K]+ 521.06 3.5 [C28H18O8K]+

[3LH-3CO2+K]+ 477.07 3.5 [C27H18O6K]+

[4LH-CO2+K]+ 755.08 3.9 [C39H24O14K]+

647.12 3.6 [C36H23O12]+

587.13 3.1 [C35H23O9]+

The comparison of the measured experimental isotopic distribution with the theo-
retically calculated distribution of the expected summary formula suggests that the ion
clusters of m/z 228.99 ([C10H6O4K]+, [LH+K]+), 419.02 ([C20H12O8K]+, [2LH+K]+), and
609.05 ([C30H18O12K]+, [3LH+K]+) correspond to one, two and three HCCA units, respec-
tively, while the ion cluster of m/z 755.08 arises from the loss of 44 Da (CO2) from four
HCCA units ([C39H24O4K]+, [4LH-CO2+K]+). Several of the observed ion species arise from
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the loss of 44 Da (CO2), leading to the formation of the ion species reported in Table 2. It is
interesting to note that the clusters of coumarin-3-carboxylic acid show an evident stability
in the adopted experimental conditions, confirming the predicted affinity for hydrophilic
compounds.

In order to evaluate the behaviour of lead cation in the gas phase, the metal was also
studied without the ligand. Literature data report interesting examinations regarding the
gas phase ion chemistry of metal clusters [41,42]. This is mainly due to different aspects;
among others, cluster exploration could be the ideal interface between experimental and
theoretical research [43]. By studying the gas phase behaviour of metals it is possible to
collect promising information useful to understand the chemistry of metal nanoparticles,
and in this perspective the mass spectrometers are ideal reactors to study size-selected
“pure” metal clusters as well as metal compounds [44–46]. In particular, transition metals
have been the subject of intense research to evaluate their bonding, growth patterns, and the
possibility of applications in nano-technology [47]. The electronic and electric properties of
lead clusters have been studied experimentally and theoretically, including their excitation
by strong laser pulses and their mass spectrometric fragmentation [48]. Schäfer et al. [49]
reported the formation of a plasma plume by irradiating a lead rod with the focused light
of an Nd:YAG (yttrium aluminium garnet) laser. The plume, cooled down in a flow of
helium gas and condensed, was able to form clusters (Pbn). In the adopted experimental
conditions, 1 µL of a solution containing Pb(ClO4)2 was loaded on the plate and dried at
room temperature, and the LD-MS spectra were directly acquired by irradiating the crystal
with the Nd:YAG laser.

Figure 5 shows several species in the LD(+) MS of the Pb(II) system, which can be
identified by the distribution and intensity of the signals. The spectrum (Figure 5A) shows
the formation of five more intense signals. To assign the formula, each peak was evalu-
ated by comparing the measured experimental isotope distribution with the theoretically
calculated distribution of the expected summary formula. Figure 5B,C show the study
performed around the ion peak of m/z 466.92. The ion calculation results suggested two
possible formulas, ISO: [H3O3Pb2]+ and ISO: [OClPb2]+, through elemental analysis. The
assignment can be only made by considering the arrangement of the isotope masses and
the relative intensities. Comparison of the measured experimental isotopic distribution
with the theoretically calculated distribution of the expected summary formula suggests
that the ion cluster of m/z 466.92 can be assigned to [OClPb2]+. The same procedure was
followed for all observed signals and all chemical formulas are reported in Table 3.

The structure of the complexes of Pb(II) with coumarin-3-carboxylic acid were fur-
ther investigated by high-resolution (HR) laser desorption (LD) MS and MS/MS experi-
ments [31,32]. Signals corresponding to complex metal: ligand with 1:4 stoichiometry are
the most intense signals in the spectrum for the investigated systems (Figure 6). The molec-
ular masses derived from these measurements are in good agreement with the calculated
masses, within 5 ppm (Table 4).

The LD(+) MS spectrum of the Pb–HCCA system (Figure 6) shows the formation of
two more intense signals. To assign the formula, each peak was evaluated by comparing the
measured experimental isotope distribution with the theoretically calculated distribution of
the expected summary formula. In Figure 6, insets show the study performed around the
ion peaks of m/z 983.07 and 893.07. The ion calculation results suggested two possible for-
mulas ([C40H23O17Pb]+, m/z 983.07; [C40H21O17Pb]+, m/z 981.05) for the ion of m/z 983.07.
It is therefore possible to propose that this species results from the overlapping of two
isotope cluster ions of two different species, both with stoichiometry 1:4 (metal: ligand), as
shown in Table 4. Nevertheless, the stabilization of complexes with such a high number
of ligands may in part be due to π-stacking interactions between the ligand molecules.
A similar study was conducted on the ion of m/z 893.07, whose signal pattern appears
to be due to the overlapping of two different ion species (m/z 893.07, [C38H21O13Pb]+;
m/z 891.06 [C38H19O13Pb]+).
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Table 3. MS ions of PbClO4.

m/z Error (ppm) Chemical Formula

466.92 3.0 [OClPb2]+

530.90 3.1 [O5ClPb2]+

690.89 3.4 [O2ClPb3]+

754.91 3.0 [H3O8Pb3]+

914.91 3.5 [H3O5Pb4]+
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Table 4. MS and MS/MS ions of Pb–HCCA system.

m/z Error (ppm) Chemical Formula

983.08 3.5 [C40H23O17Pb]+

981.06 3.7 [C40H21O17Pb]+

893.07 3.7 [C38H21O13Pb]+

891.06 3.8 [C38H19O13Pb]+

MS/MS Fragments

m/z Error (ppm) Chemical Formula

939.08 4.1 [C39H23O15Pb]+

849.08 3.9 [C37H21O11Pb]+

621.03 3.8 [C20H13O10Pb]+

397.01 4.0 [C10H5O4Pb]+

355.03 4.2 [C9H7O2Pb]+

207.98 3.7 [Pb]•+

145.03 4.0 [C9H5O2]•+

MS/MS experiments were performed in order to assign the sites of metal coordination
and clarify the structures of the complexes. The fragmentation patterns of the ions of
m/z 983 and 893 in MS/MS analysis are similar to each other. In Figure 7 are reported the
MS/MS spectra of both ion pairs.
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Figure 7. MS/MS spectra of the ions of m/z 893.07 (A) and 983.07 (B).

The product ion of m/z 849 (Figure 7A) is formed by the neutral loss of 44 Da (CO2)
from the precursor, and the ion of m/z 621 is ascribable to the loss of two ligand units.
The most informative peaks are those of m/z 397 and 355; in both the stoichiometry is 1:1,
Pb: ligand. In particular, the ion of m/z 397.01 ([C10H5O4Pb]+) is ascribable to the species
[PbCCA]+, in which the lead ion is linked to the coumaric acid through the carboxylic
group with the assistance of the lone pair of the pyranone oxygen.

The coordination is stabilized by the formation of a six-membered cycle, which is
possible only when the carboxylate and lactone moieties are involved in the metal coordi-
nation. This is also confirmed by the neutral loss of CO2 (−44 Da) leading to the formation
of the contiguous ion of m/z 355. However, all the observed signals are ascribable to ions
containing lead cation, the only exception being the radical ion of m/z 145, which can be
only assigned to the ligand ([C9H5O2]•+). Of particular interest is the formation of the
ionic species of m/z 207.98, which is the radical cation of the metal alone. The release of
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“free metal” ([M]•+) in the experimental adopted condition is a common phenomenon and
becomes a suitable strategy to identify different metal species in environmental samples, by
LD MS/MS analysis [50]. The MS/MS spectrum of the ion of m/z 983 provides the same
information, with the only difference between the two MS/MS spectra (Figure 7A,B) being
related to the appearance/intensity of the product ions.

3. Materials and Methods
3.1. Materials and Sample Preparation

All solutions were freshly prepared with bidistilled water, freed from any organic
impurities by means of a Milli-Q system (Millipore, Burlington, MA, USA). Lead(II) per-
chlorate, perchloric acid, sodium perchlorate stock solutions, and the sodium hydroxide
titrant solutions were prepared and standardized as previously described [23,24,27]. HCCA
(Sigma, St. Louis, MO, USA, ≥99%) was kept in a desiccator over silica gel and was used
without further purification. Considering the low solubility of the ligand in water, all
the experiments were carried out by adding an exactly known and weighed quantity of
solid HCCA in the titration’s apparatus. After addition of the other reagents, the pH of
test solutions was stepwise increased by adding NaOH standard solutions. When the
complexation equilibria take place, HCCA dissolved into the aqueous medium to form
complexes with metal cation.

3.2. Potentiometric Measurements

Complexation equilibria were studied in 0.16 M NaClO4 at 37 ◦C, by measuring compe-
tition for H+ between ligand and metal cation. The acidic constants of the ligand were taken
from the literature [23]. Cell arrangement and electrodes were previously described [27].
The measurements were performed as potentiometric titrations with cell (G):

Reference Electrode/Test Solution/Glass Electrode (G) (4)

All titrations were conducted with a programmable computer-controlled data acquisi-
tion switch unit 34,970 A from Hewlett and Packard. The EMF values were measured at a
precision of 10−5 V using an OPA 111 low-noise precision DIFET operational amplifier.

The general composition of the test solution was CM M Pb(ClO4)2, CL M HCCA, CA M
HClO4, CB M NaOH, and (0.16-2CM-CA-CB) M NaClO4. Metal and ligand concentrations
ranged from (0.5 × 10−3) to (5.0 × 10−3) M and the ligand-to-metal ratio was varied
between 1 and 10. The pH ranged from 2.0 to 6.0, when the precipitation of a neutral
species takes place, and it was dependent on the specific ligand-to-metal ratio investigated.
After the addition of the reagents, the glass electrode by Metrohm acquired a constant
potential within 60 min which remained unchanged within 0.1 mV. The EMF of cell (G) can
be written, in mV, at the temperature of 37 ◦C, as Equation (5):

E = E◦ + 61.54 log [H+] + Ej (5)

where E◦ is the constant in each series of measurements and the value of Ej was taken from
the literature [23]. In the first part, E◦ was determined for each titration in the absence of
ligand and metal. In particular, the acidity of the test solution (i.e., 20 mL 0.16 M NaClO4)
was varied by adding 2.5 mL of 10 mM HClO4 titrant solution. In the [H+] range 10−4–10−2,
M constant values in the range from 310 to 350 mV, to within 0.1 mV, were calculated. In
the second part, the acidity was decreased stepwise by adding NaOH standard solution
using a manual burette. The titrant’s concentration was varied from 5.0 to 25.0 mM and
the final titrant volume from 10 to 50 mL, depending on the specific metal-to-ligand ratio
investigated. A continuous slight flow of nitrogen gas was passed through the test solutions,
stirred magnetically during titrations, to avoid oxygen interference. The cell assembly was
placed in a thermostat kept at (37.0 ± 0.1) ◦C.
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3.3. Mass Spectrometry Analysis

The free metal and ligand were first analyzed by LD-MS experiments (5800 AB SCIEX,
Darmstadt, Germany), in order to evaluate ionization behaviour. 1 mg of HCCA powder
was solubilized in 2 mL of H2O/CH3CN (4:6, v:v) and 1 µL of the solution was directly
analyzed by LD-MS. Similarly, 1mg of Pb(ClO4)2 was solubilized in H2O/CH3OH (1:1,
v:v) and then analyzed by mass spectrometry. The Pb–HCCA complexes were prepared
starting from 2mmol of ligand dissolved in a solution of H2O/CH3CN (4:6, v:v), while
a solution of one equivalent of Pb(II) was added over stirring. Complexes were not
isolated and 1 µL of the resulting reaction mixture was directly loaded on MALDI plate
and analyzed by positive-ion-mode mass spectrometry. LD-MS analyses were performed
using a 5800 MALDI TOF–TOF Analyzer (AB SCIEX, Darmstadt, Germany) equipped
with a neodymium–yttrium–aluminium–garnet laser (laser wavelength 349 nm). At least
3500 laser shots were typically accumulated with a laser pulse rate of 400 Hz in the MS
mode with a mass accuracy of 5 ppm. Each sample (free metal, free ligand, and reaction
mixture) was sampled in triplicate, and for each spot were acquired at least three spectra, for
a total of nine data points for each sample. All data presented in this work are averages of
three replicates. Calibration of the instrument was performed according to the instructions
of the manufacturer to optimize mass assignment, calibration, resolution and sensitivity.
MS/MS experiments were performed at a collision energy of 1 kV. Spectra were acquired
accumulating up to 4000 laser shots and were recorded in positive mode.

All spectra were handled using Data Explorer version 4.0; in particular, for each signal
was performed the comparison of the measured experimental isotopic distribution with
the theoretically calculated distribution of the expected summary formula.

4. Conclusions

The speciation model and the formation constants of the Pb(II)–HCCA system were
proposed on the basis of potentiometric results. Mass spectrometry was a potent tool to
explore the ionization efficiency and behaviour of the ligand with the aim of studying its
chelating capabilities in more detail. In particular, the ability of the coumarin-3-carboxylic
acid to form self-associated homodimers through π-stacking interactions was reported.
The LD-MS analysis was also adopted to evaluate the behaviour of lead cation in the gas
phase, studying the metal with and without the ligand. Metal–ligand complexes were
studied in order to provided information regarding the stoichiometry of the complexes and
the chelation site was clarified by MS/MS investigation. The most informative fragments
suggest that the metal ion is linked to the coumaric acid through the carboxylic group with
the assistance of the lone pair of the pyranone oxygen. The coordination is stabilized by
the formation of a six-membered cycle, which is possible only when the carboxylate and
lactone moieties are both involved in the metal coordination.
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