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Abstract: Investigations have shown that storage bugs seriously harm grains during storage. In the
interim, essential oils (EOs) have been proven to be a good botanical pesticide. The anti-Lasioderma
serricorne properties of Elsholtzia ciliata essential oil, which was obtained by steam distillation, were
evaluated using DL-limonene, carvone, and their two optical isomer components using contact,
repelling, and fumigation techniques. Simultaneously, the fumigation, contact, and repellent activities
of carvone and its two optical isomers mixed with DL-limonene against L. serruricorne were evaluated.
The results showed that E. ciliata, its main components (R-carvone, DL-limonene), and S-carvone
exhibited both fumigations (LC50 = 14.47, 4.42, 20.9 and 3.78 mg/L) and contact (LD50 = 7.31, 4.03,
28.62 and 5.63 µg/adult) activity against L.serricorne. A binary mixture (1:1) of R-carvone and DL-
limonene displayed an obvious synergistic effect. A binary mixture (1:1) of carvone and its two
optical isomers exhibited an obvious synergistic effect, too. Furthermore, the repellent activity of the
EO, carvone, and its two optical isomers, DL-limonene, and a combination of them varied. To stop
insect damage during storage, E. ciliata and its components can be utilized as bio-insecticides.

Keywords: Elsholtzia ciliata; Lasioderma serricorne; essential oil; carvone; DL-limonene; insecticidal
activity; synergistic effect; optical isomer; bio-insecticides

1. Introduction

Lasioderma serricorne, which belongs to Coleoptera, is a destructive storage pest in trop-
ical and subtropical areas of the world, as well as the most widespread warehouse pest [1].
Because of its complicated eating habits, strong fecundity and ability to hide easily in small
sizes, it is difficult to prevent and it results in serious economic loss to agriculture [2,3].
Apart from harming many other stored food products and herbs, L. serricorne can also
infect tobacco, ultimately leading to a decrease in the quality of cigarettes [4]. At present,
the commonly used method for preventing warehouse pests is to use chemical pesticide
(phosphine) fumigation [5]. Chemical pesticides undoubtedly have a potent poisonous im-
pact, but over time, the misuse of high concentrations of phosphine pesticides can result in
major problems, such as drug resistance, pesticide residues, environmental contamination,
and other lethal repercussions [6]. For instance, research has linked the risk of adult cancer
to the usage of pesticides [7]. Therefore, looking for a new kind of pesticide to replace
chemical pesticides is extremely urgent.

Essential oils (EOs) are complex mixtures of volatile organic compounds produced as
secondary metabolites in plants [8]. The composition of essential oils is mainly represented
by mono- and sesquiterpene hydrocarbons and their oxygenated (hydroxyl and carbonyl)
derivatives [9]. Plant isolates contain elements that are poisonous, ovicidal, repellant,
and antifeedant to insects. Numerous mechanisms, including touch, ingestion, and the
fumigant effect, can cause toxicity [10,11]. Currently, there have been many studies on
the contact, fumigation, and repellant activities of essential oils against L. serricorne. The
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literature has reported that Ajania salicifolia essential oil presented clear fumigant activity
(LC50 = 26.60 mg/L) and contact toxicity (LD50 = 25.66 µg/adult) against L. serricorne [12].
Liang et al. [13] reported that the median lethal dose of Ajania potaninii essential oil in
L. serricorne adults was 22.79 µg/adult; the experimental results of the fumigation activity
of A. potaninii against L.serricorne adults showed that the median lethal concentration was
41.05 mg/L [13]. Also, Ajania Tenuifolia essential oil showed potential fumigant toxicity with
LC50 values of 25.67 mg/L and certain contact toxicity with LD50 values of 17.56 µg/adult
against L. serricorne [14]. Adult L. serricorne may be avoided by essential oils from eucalyptus
and grapefruit at a concentration of 1 µL/L, with repellent rates of 94.67 and 94.56%,
respectively [15].

The genus Elsholtzia Willd. of Lamiaceae comprises about 40 species that occur in the
tropics, Southern Africa, and subtropics of Asia [16]. EOs of Elsholtzia fruticosa are a valuable
development of insecticide resources because of the volatile properties and the fact that the
smell is easy to diffuse. According to existing research reports, the main components of the
aerial parts at the flowering stage of E. ciliata essential oil were dehydroelsholtzia ketone
(26.5%), carvone (16.6%), elsholtzia ketone (14.6%), and limonene (4.1%) [17]. However,
our preliminary research results in the laboratory indicate that carvone and limonene are
the two main components of the E. ciliata essential oil, with percentages of 31.6% and
22.1%, respectively. The flavoring chemical limonene is frequently found in foods like
fruit juices, soft drinks, and pudding [18]. Limonene is a monoterpene hydrocarbon with
two optically active forms, D- and L-limonene. It is a relatively stable terpene that can be
racemized to dipentene through heating [19]. Carvone is a monoterpene ketone synthe-
sized by the methylerythritol phosphate pathway in plastids via geranyl-pyrophosphate
through an intermediate like limonene or β-pinene in some microorganisms and plants [20].
Meanwhile, carvone is also a common component that exists in the EOs of caraway, dill,
and spearmint seeds. What is more, it is often used as an additive in pesticides, food,
feed, and veterinary medicine [21]. Carvone has two structures, R-carvone and S-carvone,
respectively (Figure 1).
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Figure 1. Two structures of carvone.

Some studies have shown that E. ciliata has an insecticidal effect [17]. For example,
the EOs of Elsholtzia fruticosa have been proven to have obvious nematicidal activities
against Ditylenchus destructor (LC50 = 0.18, 0.46, 0.66, and 0.38 mg/mL) [22]. It has been
found that the E. ciliata essential oil has a strong contact toxicity action against T. castaneum
adults and larvae [10]. Additionally, the fumigant toxicity of E. ciliate EOs against Liposcelis
bostrychophila has been shown. R-carvone is the active ingredient in E. ciliate essential oils
against Liposcelis bostrychophila. The LC50 of contact toxicity was 57.0 µg/cm2, and the
fumigant toxicity was 417.4 mg/L, respectively [23]. Thus, it is also necessary to identify
the insecticidal activity of compounds in the E. ciliata essential oil against L. serricorne.

The mixture of two components is often used for research as one of the ways to improve
insecticidal activity. Additionally, the combination of pesticides is a part of programs for
both integrated pest management (IPM) and insect resistance management (IRM) [24].
Combination pesticide use has been rising in China, making up an estimated 34% of all
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currently authorized pesticide products [25]. For its use, it is crucial to ascertain the ideal
ratio and research the processes of carvone and limonene’s synergy.

This study assesses the toxicity of EO and its primary E. ciliata components against
L. serruricorne for the first time. Simultaneously, research was conducted on the synergistic
impact of carvone and its two optical isomers mixed with DL-limonene against L. serricorne.
The results proved the control effects of E. ciliata and the main constituents against storage
insect pests to provide a basis for the green control of storage pests.

2. Results
2.1. Chemical Composition Analysis by GC-MS

Preliminary study findings from our lab show that the E. ciliata leaf produced around
0.36% (V/m) of essential oil. In total, 16 distinct chemical components were found using the
GC-MS method. The three main chemical components identified were limonene (22.1%),
α-humulene (15.5%), and carvone (31.6%) (Table 1). Among the chemical components of
E. ciliata, terpenoids are the main components, which make E. ciliata have more obvious
insecticidal activity. According to published research, terpenoids’ constituents are fast-
acting neurotoxins that affect insects [26]. Furthermore, as carvone and limonene are both
members of the terpenoids family, these volatiles may contribute significantly to the death
rates of pests. Since carvone and DL-limonene are E. ciliata’s two primary active volatiles,
they combine to show notable efficacy against pests. Thus, their bioefficacy against pests
(L. serricorne) was examined.

Table 1. The major chemical constituents of E. ciliata leaf oil *.

Number Constituent Retention
Time/Min (Rt) Ri ** Relative Content

(%)

1 Limonene 4.464 1040 22.1
2 β-ocimene 4.654 1061 4.1
3 Carvone 7.366 1216 31.6
4 Dehydroelsholtzia ketone 8.104 1277 14.9
5 (E)-β-caryophllene 10.077 1414 2.9
6 α-humulene 10.397 1450 15.5

* date from reference [10]. ** RI (retention index) as determined on an HP-5MS column using the homologous
series of n-hydrocarbons.

2.2. Fumigant Toxicity

Table 2 displays the E. ciliata EO and its primary ingredients’ efficacy in fumigating
L. serricorne. The essential oil of E. ciliata, R-carvone, S-carvone, and DL-limonene showed
obvious fumigation activity against L. serricorn with LC50 of 14.47 mg/L air, 4.42 mg/L
air, 3.78 mg/L air and 20.90 mg/L air, respectively. R-carvone’s fumigation activity was
approximately 4.73 times greater than DL-limonene’s, suggesting that it may have been
the main element of the E. ciliata EO responsible for the toxicity of the fumigation against
L. serricorne. Phosphine showed obvious fumigation activity against L. serricorn with
LC50 of 0.08 mg/L air. Although the fumigation activity of the E. ciliata EO and its main
components against L. serricorne was lower than that of positive control phosphine, it had
certain advantages compared with other compounds in terms of fumigation activity against
L. serricorne.

2.3. Contact Toxicity

The contact activity of E. ciliata EO and its main components on L. serricorne is shown
in Table 2. The essential oil of E. ciliata, R-carvone, S-carvone and DL-limonene showed
remarkable contact toxicity against L. serricorn with LD50 of 7.11 µg/adult, 4.03 µg/adult,
5.63 µg/adult and 28.62 µg/adult, respectively. Furthermore, the contact activity of R-
carvone was about 7.10 times greater than that of DL-limonene and about 1.77 times
greater than that of the E. ciliata EO, which clearly shows that there is no pattern of
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one compound being obviously stronger or weaker than the other against the same insect
species regarding fumigant toxicity and contact activity. From the data of the contact activity
experiment, comparing the negative control to the LD50 of pyrethrins is 0.24 µg/adult, the
contact activity of E. ciliata EO and its main components demonstrated less toxicity against
L. serricorne adults. However, the essential oil of E. ciliata has higher contact toxicity against
adult L. serricorne compared to other essential oils described in the literature. In addition,
the result showed that the contact toxicity of R-carvone and S-carvone against L. serricorne
is nearly similiar to LD50 of 4.03 µg/adult and 5.63 µg/adult.

Table 2. Fumigant toxicity and contact toxicity of E. ciliata EO and its main constituents against
L. serricorne adults.

Experiment Treatment LC50
(mg/L Air)

95% FL
(mg/L Air) Slope ± SE Chi Square p Value

Fumigant
toxicity

E. ciliata EO 14.47 13.14~15.87 8.33 ± 1.40 8.44 0.98
R-carvone 4.42 3.41~5.14 6.11 ± 1.52 2.9 0.89
S-carvone 3.78 3.38~4.61 5.02 ± 1.59 2.44 0.93

DL-limonene 20.9 15.79~26.43 0.21 ± 0.05 1.92 0.96
Phosphine * 0.08 0.07~0.11 4.06 ± 0.31 6.27 0.97

Contact
toxicity

Treatment LD50
(µg/Adult)

95% FL
(µg/Adult) Slope ± SE Chi Square p Value

E. ciliata EO 7.13 6.30~8.12 1.29 ± 0.18 6.68 0.92
R-carvone 4.03 3.20~4.81 2.17 ± 0.54 0.73 0.99
S-carvone 5.63 4.83~6.72 1.91 ± 0.39 1.75 1.00

DL-limonene 28.62 23.23~35.05 0.24 ± 0.05 2.03 0.96
pyrethrins 0.24 0.16~0.35 1.31 ± 0.20 17.36 0.8

Phosphine * date from reference [13].

2.4. Repellency Activity

Figures 2 and 3 display the results for the repulsive outcomes. The findings demon-
strated that varying degrees of repellent action against L. serricorne were present in EO,
R-carvone, S-carvone, DL-limonene, and their combinations at the testing concentrations.
S-carvone and its mixture with R-carvone (1:1) had PR values ranging from 40–90%, at the
same level as DEET, and demonstrated considerable insect repellent action when admin-
istered at all tested dosages. At 2 h after exposure, EO, DL-limonene, and a combination
of R-carvone and DL-limonene (1:1) all showed only marginal repellent efficacy against
L. serricorne. Most notably, at the lowest testing concentration, S-carvone exhibited strong
repellent activity (30 and 20%, respectively) against L. serricorne at 2 h after exposure.
According to PR values, R-carvone and S-carvone mixtures (1:1) performed better after
4 h after exposure than EO and other compounds at 78.63 and 15.73 nL/cm2, respectively.
Regardless of whether exposed for 2 or 4 h, the repellent rate of S-carvone is always higher
than that of R-carvone. But when R-carvone is mixed with DL-limonene, the repellent
rate significantly decreases. It is speculated that DL-limonene may have a reducing effect
on the efficacy of carvone. Numerous variables, like the sensitivity of the insects, the
testing concentration, and the length of exposure, had an easy time influencing the variety
of the repellent function. Therefore, more research is required to fully understand the
repelling effect.

2.5. Synergism of the Two Main Compounds R-Carvone and DL-Limonene against L. serricorne

Table 3 shows the fumigation activity and contact toxicity of R-carvone and DL-
limonene mixed in different ratios against the L. serricorne. As the two most abundant
compounds in E.ciliata essential oil, R-carvone was additive with DL-limonene when mixed
in natural ratios (3:2, R = 1.11) as well as other ratios (1:1, R = 1.36). In particular, an
R-carvone combination with DL-limonene showed a significant increase in its activity over
DL-limonene. This is consistent with previous results showing that the activity of synergism
is somewhere in between the activity of R-carvone and DL-limonene. Two binary blending
ratios’ contact toxicity to L. serricorne was assessed. Table 3 also shows how the two mixing
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ratios worked together. Among the two mixtures, all showed additive effects (the ratio was
1:1 and 3:2). It can be deduced that there were different levels of sensitivity for L. serricorne
because of the test sample.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 2. Percentage repellency (PR) of EO, R-carvone, S-carvone, DL-limonene and its mixture 
isolated from the E. ciliata against L. serricorne at 2 h after exposure. Differences between PR values 
of EO and DEET at the same concentration were determined by t-test (p < 0.05). 

 
Figure 3. Percentage repellency (PR) of EO, R-carvone, S-carvone, DL-limonene and its mixture 
isolated from the E. ciliata against L. serricorne at 4 h after exposure. Differences between PR values 
of EO and DEET at the same concentration were determined by t-test (p < 0.05). 

2.5. Synergism of the Two Main Compounds R-Carvone and DL-Limonene against L. serricorne 
Table 3 shows the fumigation activity and contact toxicity of R-carvone and DL-

limonene mixed in different ratios against the L. serricorne. As the two most abundant 
compounds in E.ciliata essential oil, R-carvone was additive with DL-limonene when 
mixed in natural ratios (3:2, R = 1.11) as well as other ratios (1:1, R = 1.36). In particular, an 
R-carvone combination with DL-limonene showed a significant increase in its activity over 
DL-limonene. This is consistent with previous results showing that the activity of 
synergism is somewhere in between the activity of R-carvone and DL-limonene. Two 
binary blending ratios’ contact toxicity to L. serricorne was assessed. Table 3 also shows 
how the two mixing ratios worked together. Among the two mixtures, all showed additive 
effects (the ratio was 1:1 and 3:2). It can be deduced that there were different levels of 
sensitivity for L. serricorne because of the test sample. 

  

Figure 2. Percentage repellency (PR) of EO, R-carvone, S-carvone, DL-limonene and its mixture
isolated from the E. ciliata against L. serricorne at 2 h after exposure. Differences between PR values of
EO and DEET at the same concentration were determined by t-test (p < 0.05).

Molecules 2024, 29, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 2. Percentage repellency (PR) of EO, R-carvone, S-carvone, DL-limonene and its mixture 
isolated from the E. ciliata against L. serricorne at 2 h after exposure. Differences between PR values 
of EO and DEET at the same concentration were determined by t-test (p < 0.05). 

 
Figure 3. Percentage repellency (PR) of EO, R-carvone, S-carvone, DL-limonene and its mixture 
isolated from the E. ciliata against L. serricorne at 4 h after exposure. Differences between PR values 
of EO and DEET at the same concentration were determined by t-test (p < 0.05). 

2.5. Synergism of the Two Main Compounds R-Carvone and DL-Limonene against L. serricorne 
Table 3 shows the fumigation activity and contact toxicity of R-carvone and DL-

limonene mixed in different ratios against the L. serricorne. As the two most abundant 
compounds in E.ciliata essential oil, R-carvone was additive with DL-limonene when 
mixed in natural ratios (3:2, R = 1.11) as well as other ratios (1:1, R = 1.36). In particular, an 
R-carvone combination with DL-limonene showed a significant increase in its activity over 
DL-limonene. This is consistent with previous results showing that the activity of 
synergism is somewhere in between the activity of R-carvone and DL-limonene. Two 
binary blending ratios’ contact toxicity to L. serricorne was assessed. Table 3 also shows 
how the two mixing ratios worked together. Among the two mixtures, all showed additive 
effects (the ratio was 1:1 and 3:2). It can be deduced that there were different levels of 
sensitivity for L. serricorne because of the test sample. 

  

Figure 3. Percentage repellency (PR) of EO, R-carvone, S-carvone, DL-limonene and its mixture
isolated from the E. ciliata against L. serricorne at 4 h after exposure. Differences between PR values of
EO and DEET at the same concentration were determined by t-test (p < 0.05).

Table 3. Fumigation toxicity and contact toxicity of R-carvone and DL-limonene mixture against
L. serricorne.

Experiment Volume
Ratio

Observed LC50
(mg/L air) Slope ± SE p Value Expected LC50

(µg/Adult) R a Note

Fumigant
toxicity

1:1 5.38 1.39 ± 0.33 1 7.32 1.36 Additive
3:2 5.82 1.91 ± 0.34 0.53 6.46 1.11 Additive

Contact
toxicity

Volume
Ratio

Observed LD50
(µg/Adult) Slope ± SE p Value Expected LD50

(µg/Adult) R a Note

1:1 14.4 0.53 ± 0.13 0.93 7.33 0.51 Additive
3:2 9.547 0.70 ± 0.15 0.66 6.14 0.64 Additive

a The effect of mixtures was defined as synergistic when R > 1.5; additive when 0.5 ≤ R ≤ 1.5; antagonistic when
R < 0.5.

2.6. Synergetic Effect of Carvone Optical Isomers against L. serricorne

Table 4 shows the fumigation activity of R-carvone and S-carvone mixed in ratio (1:1)
against the L. serricorne. Table 4 shows the contact activity of R-carvone and S-carvone
mixed in ratio (1:1) against the L. serricorne. Especially, R-carvone in a 1:1 ratio (R value of
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3.15) combination with S-carvone showed a significantly synergistic effect. It is proved that
R-carvone mixed with S-carvone at 1:1 ratio combination was found to have a good effect
in terms of fumigant toxicity against L. serricorne. As for the contact activity, after mixing
R-carvone and S-carvone in the ratio (1:1), as shown in Table 4, we found that the R value
was 0.98, suggesting an addictive effect (0.5 ≤ R ≤ 1.5). Moreover, although the mixture of
the two components did not show a synergistic effect, there was no obvious antagonistic
interaction among the tested compounds. Therefore, it is expected to develop a new type
of botanical pesticides with insecticidal effects on L. serricorne.

Table 4. Fumigation toxicity and contact toxicity of R-carvone and S-carvone mixture against
L. serricorne.

Experiment Volume
Ratio

Observed LC50
(mg/L Air) Slope ± SE p Value Expected LC50

(µg/Adult) R a Note

Fumigant
toxicity 1:1 1.30 3.60 ± 0.99 1 4.08 3.15 Synergistic

Contact
toxicity

Volume
Ratio

Observed LD50
(µg/Adult) Slope ± SE p Value Expected LD50

(µg/Adult) R a Note

1:1 4.80 1.99 ± 0.49 0.59 4.70 0.98 Synergistic
a The effect of mixtures was defined as synergistic when R > 1.5; additive when 0.5 ≤ R ≤ 1.5; antagonistic when
R < 0.5.

3. Discussion

Different bioactivities of essential oils and their constituents have been used for phar-
macological, therapeutic, aromatic, or cosmetic reasons. They are also regarded as a
solution for the management of insect pests in stored goods [27]. In this study, the bioactiv-
ities and synergistic effect of EO isolated from E. ciliata and its main components against
L. serricorne were researched. The results showed that E. ciliata and its main components
(R-carvone, DL-limonene) exhibited repellency, fumigation and contact activity. S-carvone,
an optical isomer of R-carvone, also exhibited similar properties. Furthermore, R-carvone
and DL-limonene exhibited synergistic contact activity at a natural ratio of 3:2 in essential
oil. In addition, a binary mixture (1:1) of carvone’s two optical isomers exhibited both
fumigant toxicity and contact toxicity.

The terpenoids investigated here were mostly the insecticidal components of EOs. Ac-
cording to literature reports, as typically volatile and fairly lipophilic substances, monoter-
penoids can enter insects and affect their physiological processes [28]. They have fumigant
qualities due to their high volatility, which may be important for the control of stored-
product insects [29]. Despite much study, phosphine fumigation is still necessary to control
L. serricorne [30]. The actions of their constituent parts determine the insecticidal activity of
EOs. Even so, the essential oil’s fumigant efficacy against L. serricorne was less potent than
that of the widely used fumigant phosphine. However, in comparison to other essential
oils used in earlier studies, such as the essential oils of Ajania salicifolid and Ajania potaninii,
which had LC50 values of 24.29 mg/L air and 28.67 mg/L air, respectively, and the essential
oil of Agastache foeniculum (Lamiaceae), which had an LC50 value of 21.57 mg/L air, the
essential oil of E. ciliata showed more significant fumigant toxicity [12,31,32]. It is unknown
whether physicochemical or structural characteristics enable compounds to act as repellents.
However, recent research has indicated that several characteristics, including lipophilicity,
vapor pressure, boiling temperature, molecule length, and the primary moment of inertia,
may be useful in describing repellency [33].

Moreover, the insecticidal activity of two optical isomers of carvone was also studied.
According to literature reports, the presence of terpenes and a certain degree of lipophilicity
might determine toxicity by the interactions with the membrane constituents and their
arrangement [28], and there may be some functional group that allows the substance to
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penetrate the stratum corneum and achieve its targets [34]. Additionally, because carvone is
an oxygenated monoterpene, it may contain a toxin that affects pests’ nervous systems [35].

We speculate that the contact and fumigation toxicity of essential oils may be attributed
to the synergistic effect of the total activity of pure ingredients. As varied mixing ratios of the
separate ingredients may have a synergistic, additive, or antagonistic effect, the ratio may
have an impact on the interaction. It is obvious from our experimental data that the toxicity
of the mixtures, including R-carvone and DL-limonene, showed an arresting increase
compared with DL-limonene, but we found that the LD50 values of these mixtures are
higher than those of R-carvone. Thus, we can presume that R-carvone plays an important
role in the mixtures, deciding the additive effect of the mixtures including R-carvone and
DL-limonene. At the same time, the activity of the EO is a result of all the components
contained in the EO. Thus, it can be inferred that this is why the fumigation and contact
activity of E. ciliata EO are weaker than those of R-carvone. From the perspective of
repellency, the mixture of R-carvone and DL-limonene is lower than that of monomers
R-carvone or S-carvone. One possible reason may be that DL-limonene weakens the
positive effect of R-carvone. On the other hand, the effects of R-carvone and DL-limonene
may be similar, so their combination reduces the contact toxicity of R-carvone. Although
the combination of the two components did not show a synergistic effect, there was no
significant antagonistic interaction between the test substances.

It is worth mentioning that in E. ciliata from different regions, the content of the in-
gredients contained in ciliata varies. For example, the E. ciliata essential oil derived from
the Mao’er Mountain of Northeastern China mainly stimulated dihydroelsholtzia ketone
(68.4%) and elsholtzia token (25.2%) [36]. The use of EO products not from China as a repel-
lent may not result in a positive effect. In addition, α-humulene also has insecticidal activity
against L. sericorne. You et al. isolated α-humulene from Murraya microphylla branches and
leaves, and exhibited the strongest contact activity against L. sericorne, showing an LD50
value of 13.1 µg/adult [37]. R-carvone displayed 2.5 times stronger contact toxicity (no
overlap in LC50 values) than E. ciliata crude essential oil against booklice (L. bostrychophila),
and dehydroelsholtzia ketone (LC50 151.5 mg/cm2) showed the same level of toxicity as
the essential oil [20].

From the standpoint of contact toxicity, the EOs from the species reported here are
more environmentally friendly. Secondly, their combined use ensures the presence of
multiple molecules that can reduce any potential resistance-related issues linked to the use
of individual compounds when used as repellents. Overall, the results of this study indicate
that E. ciliata has a promising future as a bio-insecticide or environmentally friendly pest
deterrent for grain and warehouse storage.

4. Materials and Methods
4.1. Plant Material and EO Isolation

E. ciliata was collected from Longxi City (35◦10′ N latitude, 104◦27′ E longitude,
altitude 1880 m) in the Gansu Province of China. The plant species were identified by
Dr. Liang, J.Y. (College of Life Science, Northwest Normal University) and then deposited
at the Herbarium of College of Life Science, Northwest Normal University. With plant
samples of 200 g crushed, the minced sample was connected to the distillation unit, then
condensed and maintained for 6 h. Anhydrous sodium sulphate was used to remove excess
water after isolation. The resulting dehydrated essential oil was then stored in a dark and
airtight glass bottle for refrigeration at 4 ◦C.

4.2. Essential Oil Chemical Characterization Using GC-MS

The gas chromatography–mass spectrometry (GC-MS) technique was employed to
unveil the phytochemical constituents of the E. ciliata essential oil [10]. The GC-MS
analysis was run on an Agilent 6890 N gas chromatograph connected to an Agilent
5973 N mass selective detector (Agilent Technologies, Santa Clara, CA, USA). They were
equipped with a gas chromatography–flame ionization detector (GC-FID) and an HP-5MS
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(30 cm × 0.25 mm × 0.25 µm) capillary column. The essential oil sample was diluted in
n-hexane to obtain a 1% solution. The injector temperature was maintained at 250 ◦C with
the volume injected being 1 µL. The flow rate of carrier gas (helium) was 1.0 mL/min, with
the mass spectra scanned from 50 to 550 m/z.

Based on RI, the chemical constituents were identified by comparing them with n-
alkanes as a reference. The components of the essential oil were identified by matching
their mass spectra with various computer libraries (Wiley 275 libraries, NIST 05, and RI
from other literature, Hoboken, NJ, USA) [38].

4.3. Insects

L. serricorne were fed in a constant treatment at 30 ± 1 ◦C, and the relative humidity
was 70–80%. The insects were inoculated into a glass container containing wheat flour
mixed with yeast (10:1, w/w). All adults used in the experiment were considered to be at
an adult stage after an eclosion time of 1~2 weeks.

4.4. Fumigant Toxicity

Liu and Ho’s study looked at the fumigant toxicity of the plant’s E. ciliata EO and
monomeric chemicals against L. serricorne [39]. Ten selected test insects were placed in an
empty glass bottle with a diameter of 2.5 cm, 5.5 cm high, and a volume of 25 mL. The EO
was diluted with n-hexane to obtain five concentration gradients. Diluted liquids of 10 µL
were injected into the filter paper (2.0 cm2). After 20 s, the bottle was put in an incubator
after the cap was secured to create an airtight chamber within. In this study, n-hexane
was used as a negative control. Moreover, phosphine was used as a positive control. Each
concentration was repeated 5 times. The test insects died after 24 h, and the mortality
and corrected mortality were estimated after being seen and recorded. The median lethal
concentration (LC50) was calculated by using probit analysis (SPSS 22.0).

4.5. Contact Toxicity

Contact toxicity of the E. ciliata essential oil isolated from the plant and monomeric
compounds against L. serricorne were investigated by Liu and Ho’s [38] method. The EO
was diluted with n-hexane to obtain five concentration gradients. Insects were paralyzed
by using ice packs, and then 0.5 µL diluted liquids were applied to the dorsal thorax of the
insects. Ten selected test insects were placed in an empty glass bottle with a diameter of
2.5 cm, 5.5 cm high, and volume of 25 mL. In this study, n-Hexane was used as a negative
control. Moreover, pyrethrins were used as positive controls. Each concentration was
repeated 5 times. After 24 h, the death of the test insects was observed and recorded. The
insects were touched with a brush many times; if the insect did not respond, it was dead.
The mortality and corrected mortality were calculated. The median lethal concentration
(LD50) was calculated by using probit analysis (SPSS 22.0).

4.6. Repellency Activity

Repellant activity was evaluated using the previously described methodology [40].
The EO, its commercially available compounds (carvone, DL-limonene), and a mixture
of carvone and DL-limonene were dissolved in n-hexane to prepare five concentrations
(78.63, 15.73, 3.15, 0.63, 0.13 nL/cm2). Petri dishes with a 9 cm diameter were utilized
as test tubes. Two equal pieces of filter paper with a diameter of 9 cm were cut out.
The filter paper was divided in half and covered with 500 µL of a testing solution on
one half, and the same amount of n-hexane on the other half as a negative control. The
filter paper was split in half, flattened, and spread out at the bottom of the Petri dish
after spontaneously volatilizing. The Petri dishes were filled with the insects. To ensure
that the insects were organically spread, the Petri dishes were then covered with a lid.
For each of the five times each treatment was applied, twenty insects were used. N,N-
Diethyl-3-methylbenzamide (DEET), a commercial repellent, and n-hexane were used as
the positive and negative controls, respectively. The L. serricorne individuals still present
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in the treatment group were counted after 2 and 4 h, and the repellence rate was then
determined. The value of percent repellency (PR) was calculated using the following
formula: PR (%) = [(Nc − Nt)/(Nc + Nt)] × 100.

Nt is the number of insects present in the treated half, whereas Nc is the number
of insects present in the negative control half. The average repellent rate was rated by
reference at the same time [41], as shown in the table below. With Tukey’s HSD test at
p < 0.05, PR values were converted into arcsin square root values and submitted to one-way
analysis of variance (ANOVA).

4.7. Synergistic Experiment

According to Tak et al.s’ evaluation method for mixtures [42], assuming that the half-
lethal concentrations of A and B are determined by the virulence of a and b, the potential
synergistic interactions between two major compositions carvone and DL-limonene could
be evaluated. A concentration was selected with 1:1 and the main compositions of essential
oils with their natural proportion were 3:2. The contact toxicity and fumigant toxicity
methods were selected as before. Five repetitions were carried out for each treatment, and
a blank control was set. After 24 h, mortality was recorded; LD50 values were estimated
as well. By comparing the synergy ratios, the effects of the combinations were classified
as synergistic, additive, or antagonistic. Wadley’s statistical model suggests that [35] the
expected LD50 value of the mixture was calculated from the following equation [43]:

Expected LD50 =
ana + b + c + . . . + n

a
LD50(a)

+ b
LD50(b)

+ c
LD50(c)

+ . . . + n
LD50(n)

where a represents the amount of compound A in the mixture and LD50 (a) represents the
actual LD50 value for compound A. The following was determined for the values of R,
which represent the relationships between the chemicals in the mixture:

R =
expected LD50
observed LD50

Values of R > 1.5 indicated the synergistic action between the compounds of the
mixture against L. serricorne, whereas values of 1.5 ≥ R > 0.5 or R ≤ 0.5 were considered to
show additive or antagonistic interaction against L. Serricorne, respectively.

4.8. Chemicals

Pyrethrins were purchased from Dr. Ehrenstorfer GmbH, Augsburg, Germany with
a concentration of 27%. Phoxim was purchased from Dr. Ehrenstorfer GmbH, Augsburg,
Germany with a purity of 98.0%. R-carvone were purchased from Tokyo Chemical Industry
Co., Ltd., Tokyo, Japan, with a purity of 99%. S-carvone was purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd., Shanghai, China, with a concentration of 97%.
DL-limonene was purchased from Beijing Yinokai Technology Co., Ltd., Beijing, China,
with a purity of 95.0%.

5. Conclusions

In comparison to pyrethrins and phosphine, the EOs from E. ciliata, as well as its
primary constituents, have a greater ability to operate as fumigants and contact toxins
against L. serricorne. R-carvone and DL-limonene together in a 3:2 ratio provide an ef-
fective repellant. It is strongly recommended to combine these EOs in formulations of
bio-insecticides that are favorable to the environment.
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