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Abstract: Neuromuscular blocking agents (NMBAs) are routinely used during anesthesia to relax
skeletal muscle. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels; NMBAs
can induce muscle paralysis by preventing the neurotransmitter acetylcholine (ACh) from binding
to nAChRs situated on the postsynaptic membranes. Despite widespread efforts, it is still a great
challenge to find new NMBAs since the introduction of cisatracurium in 1995. In this work, an
effective ensemble-based virtual screening method, including molecular property filters, 3D phar-
macophore model, and molecular docking, was applied to discover potential NMBAs from the
ZINC15 database. The results showed that screened hit compounds had better docking scores than
the reference compound d-tubocurarine. In order to further investigate the binding modes between
the hit compounds and nAChRs at simulated physiological conditions, the molecular dynamics
simulation was performed. Deep analysis of the simulation results revealed that ZINC257459695
can stably bind to nAChRs’ active sites and interact with the key residue Asp165. The binding free
energies were also calculated for the obtained hits using the MM/GBSA method. In silico ADMET
calculations were performed to assess the pharmacokinetic properties of hit compounds in the human
body. Overall, the identified ZINC257459695 may be a promising lead compound for developing
new NMBAs as an adjunct to general anesthesia, necessitating further investigations.

Keywords: NMBAs; pharmacophore model; molecular docking; molecular dynamics; virtual screening

1. Introduction

Neuromuscular blocking agents (NMBAs), commonly referred to as muscle relaxants,
are frequently used to facilitate tracheal intubation and provide skeletal muscle relax-
ation during surgery or mechanical ventilation [1]. There are two primary categories of
NMBAs, defined according to their blocking mechanisms: depolarizing and nondepolariz-
ing agents [2]. Succinylcholine is the only available depolarizing NMBAs still in clinical
use. Due to its rapid onset and short duration, the utility of succinylcholine is limited by
mechanism-related side effects, such as myalgia, hyperkalemia, and malignant hyperther-
mia [3,4]. The majority of currently used NMBAs are nondepolarizing blockers (Figure 1),
classified structurally into benzylisoquinolines (e.g., cisatracurium and mivacurium) and
aminosteroids (e.g., rocuronium, vecuronium, pipecuronium, and pancuronium). Non-
depolarizing blockers are characterized by two quaternary ammonium groups, and the
distance between the two protonated nitrogen atoms is approximately 14 Å [5], corre-
sponding to a 10-atom separation (“14-Å rule” or “10-atom rule”) [6]. The nondepolarizing
NMBAs inhibit nicotinic acetylcholine receptors (nAChRs) located postsynaptically on
skeletal muscle membranes, thereby inducing skeletal muscle relaxation [5].

Molecules 2024, 29, 1955. https://doi.org/10.3390/molecules29091955 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29091955
https://doi.org/10.3390/molecules29091955
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0009-0007-3440-1653
https://doi.org/10.3390/molecules29091955
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29091955?type=check_update&version=2


Molecules 2024, 29, 1955 2 of 17Molecules 2024, 29, 1955 2 of 18 
 

 

 
Figure 1. The chemical structures of marketed NMBAs. 

Muscular nAChRs are ligand-gated pentameric ion channels physiologically 
activated by acetylcholine (ACh), and the activation of nAChRs initiates the electrical 
signal that triggers action potentials, leading to muscle contraction [7]. As shown in Figure 
2A (PDB ID: 7SMS), muscular nAChRs structurally consist of five protein subunits 
organized around a central pore: with two alpha (2α) subunits, one beta (β) subunit, and 
one delta (δ) subunit, accompanied by either an epsilon (ε) or a gamma (γ) subunit, 
depending on the developmental stage of the muscle [8,9]. The adult muscle receptors 
have an epsilon subunit, whereas in infants the gamma type is present [10]. Each muscular 
nAChR has two binding pockets for ACh in the extracellular domain, which are located 
at the interfaces of the α-δ and α-ε(γ) subunits [11]. In these pockets, electron-rich amino 
acid residues (e.g., tyrosine, tryptophan) can interact electrostatically with the positively 
charged ammonium group of ACh [12,13]. The nondepolarizing NMBAs act as 
competitive antagonists and impede the interaction between ACh and nAChRs through 
occupying the ACh binding sites, thereby preventing the opening of the channel (Figure 
2B). In fact, positive charges at the quaternary ammonium sites of NMBAs mimic the 
quaternized nitrogen atom of ACh, which is the structural reason for the attraction of these 
compounds to muscular nAChRs [14,15]. 

 

Figure 1. The chemical structures of marketed NMBAs.

Muscular nAChRs are ligand-gated pentameric ion channels physiologically activated
by acetylcholine (ACh), and the activation of nAChRs initiates the electrical signal that
triggers action potentials, leading to muscle contraction [7]. As shown in Figure 2A (PDB
ID: 7SMS), muscular nAChRs structurally consist of five protein subunits organized around
a central pore: with two alpha (2α) subunits, one beta (β) subunit, and one delta (δ)
subunit, accompanied by either an epsilon (ε) or a gamma (γ) subunit, depending on
the developmental stage of the muscle [8,9]. The adult muscle receptors have an epsilon
subunit, whereas in infants the gamma type is present [10]. Each muscular nAChR has two
binding pockets for ACh in the extracellular domain, which are located at the interfaces of
the α-δ and α-ε(γ) subunits [11]. In these pockets, electron-rich amino acid residues (e.g.,
tyrosine, tryptophan) can interact electrostatically with the positively charged ammonium
group of ACh [12,13]. The nondepolarizing NMBAs act as competitive antagonists and
impede the interaction between ACh and nAChRs through occupying the ACh binding
sites, thereby preventing the opening of the channel (Figure 2B). In fact, positive charges at the
quaternary ammonium sites of NMBAs mimic the quaternized nitrogen atom of ACh, which
is the structural reason for the attraction of these compounds to muscular nAChRs [14,15].
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Currently, muscle relaxation remains a mainstay of modern anesthesia and inten-
sive care [16,17]. NMBAs are used to ease tracheal intubation and to decrease the doses
of the general anesthetics [18,19]. Other uses include in acute respiratory distress syn-
drome (ARDS) [20], elevated intracranial pressure (ICP) [21], and therapeutic hypothermia
(TTM) [22]. To meet different pharmacological needs, a variety of structurally diverse
compounds have been reported as potential NMBAs [14,23–25]. However, the progress in
NMBAs development has been impeded since the discovery of cisatracurium over 25 years
ago. High-throughput screening techniques, especially computer-aided virtual screening,
have been widely employed for the discovery of lead molecules with new scaffolds of
specified targets from large chemical databases [26]. These computer-assisted design meth-
ods can be classified as ligand- and structure-based virtual screening approaches [27,28].
The ligand-based virtual screening (LBVS) methods, including pharmacophore modeling
and qualitative structure–activity relationships (QSAR), focus on comparative molecular
similarity analysis of compounds with unknown and known activity [29,30]. The structure-
based virtual screening (SBVS) method, such as molecular docking, is an effective tool to
discover putative targets for a particular ligand [31]. Up to now, hundreds of compounds
with neuromuscular blocking activities have been reported by many research groups
(Table S1). Furthermore, high-resolution cryo-EM structures of muscle-type nicotinic re-
ceptor with d-tubocurarine have recently been solved (PDB ID: 7SMS) [32]. Therefore, in
this study, molecular property filtering and 3D pharmacophore modelling were applied
as ligand-based screening techniques to identify compounds with similar characteristics
to known neuromuscular blockers. Subsequently, structure-based docking studies were
conducted to assess their binding affinities and poses. As shown in Figure 3, the three
virtual screening methods were combined to discover potential NMBAs from ZINC15
database. Moreover, molecular dynamics simulation was applied to investigate the stability
of the complexes and the mechanism of interaction between nAChRs and hit compounds
at physiological conditions.
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2. Results
2.1. Molecular Property Filters

Muscle relaxants are mainly quaternary ammonium compounds with a large molecular
size, making them unique among the drugs associated with disease [33]. For this reason,
classical screening strategies, such as the Lipinski’s rule of five, may not be appropriate for
the discovery of promising lead molecules. Therefore, a dataset of 294 reported compounds
with neuromuscular blocking activities was initially compiled from the earlier literature
(Table S1). Then, three key properties (molecular weight, charge, and logP) of compounds
in the NMBAs database were calculated using the ChemDraw software (Version 18.2). The
997 million compounds in the ZINC15 database were filtered as preliminary screening
based on the 3 properties. As we can see in Figure 4A, compounds in the database have
large molecular weights, with only a few less than 400 Da, so a filter was applied to
exclude compounds with a molecular weight below this threshold. Given that NMBAs
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are primarily composed of bis-quaternary ammonium salts, as shown in Figure 4B, 93.9%
of compounds in the database are double-charged cationic molecules. Consequently, all
double positively charged compounds were selected to ensure that the molecules had
desirable physicochemical properties as drug molecules. Figure 4C shows that the majority
of compounds with calculated logP values fall within the range of −4 to 4; a third filter was,
therefore, employed to exclude the compounds with logP values outside of this window.
The filtration resulted in obtaining nearly 562 thousand compounds from the ZINC15
database in SDF format. In addition, the compounds were minimized using MOE software
(Version 2019.01) and then selected for virtual screening through the pharmacophore model.
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2.2. Pharmacophore Modelling

A pharmacophore is a representation of steric and electronic features required for
interaction with a macromolecular target, which results in a pharmacological response [34].
We developed a ligand-based pharmacophore model in MOE based on the six marketed
nondepolarizing NMBAs mentioned in Figure 1. The selection of these compounds to
build the pharmacophore model was based on their high potency and structural diversity.
The 3D pharmacophore was generated by the flexible alignment of all six structures, and
the 3D features that they shared were identified through the pharmacophore consensus
module [35]. The common 3D pharmacophore model is composed of four hydrophobic
groups (F1, F2, F3, F4), one aromatic ring (F5), and two cations (F6, F7). In addition, previous
study has indicated that the distance of the two quaternized N atoms falling in between 11
and 14 Å is desirable for maximizing bioactivity [6,12]. As shown in Figure 5, the distance
between F6 and F7 falls between 11.7 and 15.3 Å, which was in compliance with the “14-Å
rule”. The model offered a molecular framework for the virtual screening of databases
utilizing suitable pharmacophore features (Figure 5). A total of 562 thousand chemical
compounds selected from the ZINC15 database were screened through the generated 3D
pharmacophore model. As a result of pharmacophore-based virtual screening, 2476 hit
molecules were identified to fit the pharmacophore features.
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2.3. Molecular Docking

Molecular docking provides important data in rational drug design, which can predict
the binding affinities, spatial orientation, and predominant binding modes of the small
molecule drug candidates to the active site of target proteins [36]. In this investigation, we
employed structure-based virtual screening approach that involves a docking simulation
of 2476 molecules identified through the pharmacophore model into the active pocket of
nAChRs (PDB ID: 7SMS) [32]. Muscular nAChRs contain two binding sites in the extracellu-
lar domain (ECD), which are located at the α-γ and α-δ (infant) or α-δ and α-ε (adult) sub-
unit interfaces, respectively [8]. As shown in Figure 6, the transmembrane domain (TMD) of
each subunit comprises four helices, M1-M4, with M2 lining the ion channel and M4 being
most peripheral [32]. The intracellular domain (ICD) of each subunit is formed by a partially
ordered loop between the M3 and M4 helices: an amphipathic MX helix following M3, and a
long helix called MA that leads into and is continuous with M4. The MA helices form a bun-
dle at their N-termini and frame lateral portals for ion flux [37]. We performed molecular
docking simulations of the compounds binding to the nAChRs α-δ site because it is present
in both these nAChR subtypes [38]. The computationally derived potential hits, along with
the binding energy values, were shown in Figure 6. As lower binding energy corresponds
to a higher binding affinity, four compounds, namely ZINC257357801, ZINC257459695,
ZINC8926303, and ZINC1293069436, emerged as the best compounds with better scoring
energies (−8.60 kcal/mol, −8.52 kcal/mol, −8.36 kcal/mol, and −8.25 kcal/mol, respec-
tively) than the standard compound d-tubocurarine (−8.14 kcal/mol).
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The four compounds with desired properties were selected as potential NMBAs by
the ensemble-based virtual screening strategy. The molecular interactions between the
hits and nAChRs produced by MOE are displayed in Figure 7. Through the analysis of
the cryo-EM structure, we found that the quaternized NH group of d-tubocurarine can
form hydrogen bonds with the key residue Asp165 (Figure S1), which played important
roles in binding. As shown in Figure 7A, residue Asp165 formed a hydrogen bond with
the dimethylamino group of ZINC257357801, and residues of Cys192 and Trp149 formed
hydrogen bonds with the hydrogen atom on the hydroxyl group in the middle and right
side, respectively. The residue Tyr198 formed a Pi-H bond with the ethyl group, and
residue Trp57 formed a Pi-cation with the quaternized nitrogen atom of the ring. For
ZINC257459695, as shown in Figure 7B, residue Asp165 formed a hydrogen bond with the
hydrogen atom of the pyrrolidine ring, residue Cys192 formed a hydrogen bond with the
oxygen atom on the carbonyl group, and residue Asp180 formed a hydrogen bond with
the methyl ester at the right end. For ZINC8926303, residues of Asp165 and Ile148 formed
hydrogen bonds with hydrogen atoms on two terminal quaternary ammonium groups,
residue Tyr190 formed a Pi-H bond with the piperazine ring, and residue Tyr198 formed
a Pi-H bond with the ethyl group in the right side. For ZINC1293069436, residue Asp59
formed a hydrogen bond with the hydrogen atom on the methylene group, residue Tyr198
formed a hydrophobic interaction with the benzene ring, and residue Met163 formed a Pi-H
bond with the pyrazole ring. Obviously, it was evident from Figure 7 that ZINC257357801,
ZINC257459695, and ZINC8926303 could interact with the key residue Asp165 in the active
site of nAChRs. Therefore, the stability and molecular interaction pattern of these three hits
and d-tubocurarine at simulated physiological condition were further probed by applying
molecular dynamic (MD) simulation.
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site (PDB ID: 7SMS).
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2.4. Molecular Dynamic Simulation

In this section, we conducted a molecular dynamics simulation to investigate the
flexibility and solvation effect of biomolecular systems. To this end, we ran 25,000 ps molec-
ular dynamics production runs on the 3 hit candidates (ZINC257357801, ZINC257459695,
and ZINC8926303) and the reference compound (d-tubocurarine). The MD trajectories
were analyzed by the flowing parameters: root mean square deviation (RMSD), root
mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area
(SASA), hydrogen bonds (H-bond), dynamic cross-correlation matrix (DCCM), and binding
pattern analysis.

2.4.1. Structural Deviation and Compactness Analysis

The structural deviation and stability were measured by the RMSD and SASA, and
the fluctuation was assessed by RMSF, and the compactness was measured by Rg. From
the observation of the RMSD graph presented in Figure 8A, all the protein–ligand entities
showed steady and stable behavior throughout the simulation time; the RMSD fluctuated
around by 0.15–0.35 nm. However, in the same simulation time, the ZINC257459695 graph
line showed much stable behavior as compared to other complexes, which remained steady
and stable at an RMSD value of around 0.18 nm. The RMSD graph lines of ZINC257357801,
ZINC8926303, and d-tubocurarine displayed an increasing trend, with RMSD values rang-
ing from 0 to 0.34 nm from 0 to 5000 ps. The overall RMSD graphs results showed stable
behavior in the backbone of all docked complexes.
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The root mean square fluctuation calculates the fluctuation in the individual amino
acid residues throughout the simulation process in the presence of different ligand molecules.
As represented in Figure 8B, all the promising lead molecules show a very similar RMSF
pattern with the reference compound. Some residues in the MA and M4 domains (chain A),
and MA domain (chain B) showed greater flexibility, and RMSF fluctuated between 0.11
and 0.76 nm. The α-helixes of MA and M4 are located around the frame lateral portals for
ion flux, which may be the reason for the flexibility.
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The Rg parameter was used to evaluate structural compactness of a protein–ligand in
a biological system. A stable folded structure is described by a relatively constant Rg value,
whereas an unfolded structure will cause the Rg value to fluctuate with time. As shown in
Figure 8C, the values of Rg for the four complexes fluctuated between 4.09 and 4.17 nm dur-
ing the simulation. The calculated average Rg values for ZINC257357801, ZINC257459695,
ZINC8926303, and d-tubocurarine are 4.15 nm, 4.11 nm, 4.17 nm, and 4.13 nm, respectively.
With lower Rg values compared to all other compounds, ZINC257459695-nAChRs may be
regarded as the most compact biomolecular system.

The solvent accessible surface area of protein has always been considered as a decisive
factor in protein folding and stability studies. As we can see in Figure 8D, the SASA
for the four systems showed little variation from 390 to 425 nm2, which suggested that
the four systems were relatively stable. The binding of ZINC257459695, compared to
other compounds, resulted in reduced SASA values, as the surface of the protein becomes
unexposed to the solvent after ligand binding.

2.4.2. Hydrogen Bond Analysis

The stability of the protein–ligand complex is facilitated by the formation of hydrogen
bonds between the receptor and ligand. Therefore, the total number of hydrogen bonds
were investigated in the complexes after the 25,000 ps simulation time. As exhibited in
Figure 9A,D, for the ZINC257357801 and d-tubocurarine complexes, two to three hydrogen
bonds were identified. ZINC8926303, on the other hand, was shown to form three to four
hydrogen bonds. Interestingly, for the ZINC257459695–nAChRs system, a maximum of
five hydrogen bonds were observed, which could form more hydrogen bonds than that of
the reference compound d-tubocurarine during the entire simulation period. Obviously,
the three hits could form more hydrogen bonds than the reference compound. Further-
more, through the above-detailed H-bond analysis, we can conclude that the compound
ZINC257459695 was bound to the nAChRs protein more effectively and tightly when com-
pared to the other three compounds. The results of the H-bond analysis were consistent
with the earlier analysis of RMSD and SASA metrics.

Figure 9. Number of hydrogen bonds for systems: ZINC257357801 (A), ZINC257459695 (B),
ZINC8926303 (C), and d-tubocurarine (D) systems during the MD simulations.
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2.4.3. Dynamic Cross-Correlation Map Analysis

The analysis of DCCM was to check the correlated motion of structural domains to
achieve a stable conformation of the receptor following the binding of ligands. Highly
positive sections (cyan) indicate strongly positive correlated movement of residues in
the same direction, while the negative regions (pink) represent strongly anti-correlated
motions. As illustrated in Figure 10, the binding of ZINC257357801, ZINC257459695,
ZINC8926303, and d-tubocurarine generated obvious influences on the internal dynamic
behavior of nAChRs. For the ZINC257459695 complex, both chain A and B produced
strongly positive correlated motions independently (Figure 10B). This phenomenon sug-
gested that the binding of ZINC257459695 may have resulted in conformational changes in
the protein. The ZINC257357801 complex has maximum residues in a positive correlation,
while ZINC8926303 complex residues have a slightly weaker but still positive correlation
(Figure 10A,C). From the results, it is concluded that the presence of ZINC257357801 and
ZINC8926303 induced significant correlated motions in protein, whereas slightly anti-
correlated motions are observed. The d-tubocurarine complex has the most residues in a
negative correlation, but the overall correlation between the binding site and the amino
acids has increased (Figure 10D).
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2.4.4. The Binding Modes Refined through the MD Simulations

The Gibbs free energy landscape for the four systems was displayed in Figure 11A–D.
A very weak or unstable receptor–ligand interaction can result in many minimal energy
clusters, whereas a strong and stable interaction can generate one conformation cluster
in the potential energy map [39]. As depicted in Figure 11, only a single energy minima
was found in the case of the ZINC257357801, ZINC257459695, and ZINC8926303 com-
plexes, whereas there are two energy minima found for the d-tubocurarine complex. In
addition, the narrow and shallow energy basin denotes limited structural conformation
stability. It can be observed from Figure 11 that the binding of the nAChRs protein with
ZINC257357801 and ZINC257459695 has resulted in a noticeable single narrow energy
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minima basin related to its conformational state, suggesting a stable and strong receptor–
ligand conformation. Although the d-tubocurarine complex has two energy minima, they
are completely separated from one another by an energy barrier making it less stable. This
is also in agreement with earlier RMSD, H-bond, and DCCM analysis results.

Molecules 2024, 29, 1955 11 of 18 
 

 

 
Figure 11. The Gibbs free energy landscapes of ZINC257357801 (A), ZINC257459695 (B), 
ZINC8926303 (C), and d-tubocurarine (D) systems during the MD simulations. 

Based on the calculation of the Gibbs free energy, the most stable conformations of 
each system were extracted from the lowest energy field (dark blue) to explore the key 
residues and interactions between these compounds and nAChRs. For the 
ZINC257357801 system, as shown in Figure 12A, residue Asp165 formed two different 
hydrogen bonds with the dimethylamino group. ZINC257357801 and Trp57 formed a Pi-
H interaction, and residue Trp149 formed a hydrogen bond with the hydroxyl group at 
the right end. As exhibited in Figure 12B, based on the most energetically favorable 
binding mode, residues of Asp165 and Cys193 formed two hydrogen bonds with 
ZINC257459695, while residues of Tyr198 and Trp57 were observed to form hydrophobic 
interactions. For the ZINC8926303 system, as shown in Figure 12C, ZINC8926303 formed 
hydrophobic interactions with residues of Trp149, Tyr151, and Cys193. Notably, the 
hydrogen bond between the terminal quaternary ammonium group and residue Asp165 

Figure 11. The Gibbs free energy landscapes of ZINC257357801 (A), ZINC257459695 (B), ZINC8926303
(C), and d-tubocurarine (D) systems during the MD simulations.

Based on the calculation of the Gibbs free energy, the most stable conformations of
each system were extracted from the lowest energy field (dark blue) to explore the key
residues and interactions between these compounds and nAChRs. For the ZINC257357801
system, as shown in Figure 12A, residue Asp165 formed two different hydrogen bonds
with the dimethylamino group. ZINC257357801 and Trp57 formed a Pi-H interaction, and
residue Trp149 formed a hydrogen bond with the hydroxyl group at the right end. As
exhibited in Figure 12B, based on the most energetically favorable binding mode, residues
of Asp165 and Cys193 formed two hydrogen bonds with ZINC257459695, while residues of
Tyr198 and Trp57 were observed to form hydrophobic interactions. For the ZINC8926303
system, as shown in Figure 12C, ZINC8926303 formed hydrophobic interactions with
residues of Trp149, Tyr151, and Cys193. Notably, the hydrogen bond between the terminal
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quaternary ammonium group and residue Asp165 disappeared, which could be the reason
for the decreased stability after the simulation. For the d-tubocurarine system, as displayed
in Figure 12D, the quaternized NH group acted as a hydrogen bond donor with residue
Asp165, and Tyr190 interacted with d-tubocurarine as a hydrophobic interaction.
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2.4.5. Binding Free Energy Calculation by MM/GBSA Method

To better assess the reliability of the different nAChRs–ligand complexes, the cor-
responding protein–ligand binding free energies were evaluated from the MD coordi-
nates extracted from the last 10 ns of simulation. The molecular mechanics generalized
Born surface area (MM-GBSA) method was used for the calculation. The binding free
energy ∆Gbind was comprised of the Van der Waals interaction (∆Evdw), electrostatic inter-
action (∆Eele), polar solubility energy (∆Gps), and non-polar solubility energy (∆Gnps).
Among these interactions, ∆Evdw, ∆Eele, and ∆Gnps were considered to be beneficial
for the ∆Gbind, but ∆Gps was considered to be unfavorable to the ∆Gbind. The analy-
sis of the MM-GBSA results showed that the electrostatic force of interaction is majorly
contributing in the protein–ligand binding compared to the Van der Waals force of in-
teraction. As shown in Table 1, ZINC257459695 had a maximum affinity with nAChRs,
followed by ZINC257357801 and ZINC8926303, showing −50.40 ± 3.61, −40.52 ± 5.49,
and −31.01 ± 6.22 kcal/mol, respectively. The estimated total binding energy suggested
that the ZINC257459695 has the most energetically favored binding mode as compared to
the reference, d-tubocurarine. However, compared with the cisatracurium and rocuronium,
it can be seen that the ∆Evdw and ∆Gnps of ZINC257459695 were much lower, indicating
that the two marketed NMBAs possess superior binding energy. In addition, the binding
free energy of the ZINC8926303 is the weakest. The ∆Eele of ZINC8926303 complex was



Molecules 2024, 29, 1955 12 of 17

the lowest for all three hit compounds, mainly because the ∆Gbind of the ZINC8926303 was
weaker than that of the standard d-tubocurarine.

Table 1. Binding free energy calculated by the MM-GBSA method (kcal/mol).

System ∆Gbind ∆Evdw ∆Eele ∆Gps ∆Gnps

ZINC257357801 −40.52 ± 5.49 −42.87 ± 3.28 −726.05 ± 4.22 735.10 ± 1.23 −6.70 ± 0.05
ZINC257459695 −50.40 ± 3.61 −33.82 ± 0.84 −1453.27 ± 0.09 1442.28 ± 3.51 −5.59 ± 0.00

ZINC8926303 −31.01 ± 6.22 −37.21 ± 2.20 −586.86 ± 3.01 598.35 ± 4.97 −5.28 ± 0.02
d-tubocurarine −39.57 ± 3.11 −55.84 ± 0.11 −657.70 ± 2.99 680.80 ± 0.83 −6.82 ± 0.16
Cisatracurium −66.86 ± 3.07 −92.50 ± 2.01 −669.38 ± 0.33 706.26 ± 2.30 −11.24 ± 0.08
Rocuronium −57.65 ± 2.50 −62.59 ± 1.72 −340.73 ± 1.67 353.45 ± 0.70 −7.78 ± 0.01

2.5. In Silico Pharmacokinetic Profile (ADMET)

In the pursuit of efficient drug discovery, data on absorption, distribution, metabolism,
excretion, and toxicity (ADMET) are crucial for identifying and developing novel drug
candidates [40,41]. Thus, the pharmacokinetic profile of the top three hits, along with
d-tubocurarine, cisatracurium, and rocuronium, were assessed using the PreADMET
method [42] and summarized in Table 2. The aqueous solubility of a drug is a vital
factor that can significantly affect its bioavailability, and the three hit compounds exhib-
ited moderate to high water solubility levels. Blood–brain barrier penetration was used
to evaluate the distribution of the compounds, and the BBB values for ZINC257357801,
ZINC257459695, and ZINC8926303 were 0.04, 0.11, and 0.05, respectively. During the
metabolic phase, the ZINC257357801, ZINC8926303, and rocuronium were discovered to
be inhibitors of cytochrome P450 2D6. In addition, the Ames test result of ZINC257459695
was negative, implying that it was probably unable to induce gene mutation. However, the
usage of ZINC257459695 could be limited due to its blockage of hERG channels, warranting
further optimization.

Table 2. The ADMET prediction for the investigated compounds.

Compound Buffer
Solubility 1 BBB 2 PPB 3 CYP2D6

Inhibition Ames Test hERG
Inhibition

ZINC257357801 1132 0.04 3.83 Inhibitor Non-mutagen Ambiguous
ZINC257459695 0.30 0.11 13.97 Non Non-mutagen High
ZINC8926303 88,380 0.05 19.16 Inhibitor Mutagen Ambiguous

d-tubocurarine 1.18 1.22 67.68 Non Non-mutagen High risk
Cisatracurium 0.0081 0.80 72.49 Non Non-mutagen Medium risk
Rocuronium 121.69 0.26 18.97 Inhibitor Mutagen Low risk

1 Buffer solubility: water solubility in buffer system (SK atomic types, mg/L). 2 BBB: blood–brain barrier
penetration (C.brain/C.blood). 3 PPB: plasma protein binding (%).

3. Materials and Methods
3.1. Ligand-Based Pharmacophore Generation

The alignments of six marketed NMBAs (i.e., cisatracurium, mivacurium, rocuro-
nium, vecuronium, pipecuronium, and pancuronium) were generated using the Flexible
Alignment module of the MOE (Molecular Operating Environment software, Version
2019.01) [43]. The 3D chemical structures of the NMBAs were built and energy-minimized
using the MMFF94 force field [44]. Then, small molecules were aligned by maximizing the
structural overlap of steric features while exploring alternative conformations with low
ligand strain. Finally, a collection of alignments, along with a score for each alignment, was
generated, and a final alignment with the lowest S score was obtained for the following
pharmacophore generation.

The identification of common structural features among six aligned NMBAs was
performed using a ligand-based pharmacophore approach. To generate a pharmacophore
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model with good quality, a set of pharmacophore features, namely hydrogen-bond donor
(Don), hydrogen-bond acceptor (Acc), aromatic center (Aro), hydrophobic atom (HydA),
anionic atom (Ani), and cationic atom (Cat) were mapped. The Pharmacophore Consensus
module was used to generate suggested features for a pharmacophore query from the
aligned structures, and a pharmacophore model containing seven common chemical fea-
tures was developed. Based on the pharmacophore model generated, virtual screening was
conducted using a Pharmacophore Search protocol in MOE through the EHT scheme [45].
A pharmacophore query consisting of identified pharmacophoric features was used to filter
the database of molecular conformations.

3.2. Molecular Docking

The cryo-EM structures of muscle-type nicotinic receptor (PDB ID: 7SMS, Resolution
3.18 Å) [32] were obtained from the RCSB Protein Data Bank (PDB, https://www.rcsb.
org/, accessed on 3 January 2024). As a part of preparing the target protein, the water
molecules were removed from the protein and hydrogen atoms were added to optimize
the structure by using energy minimization. For the docking parameters, we set the force
field to Amber10 and used the triangle matcher placement algorithm, which returned
thirty poses; we further used the rigid receptor refinement method, which returned five
poses [32]. The GBVI/WSA dG method was applied to score the poses in both steps [46].
The scores were generated by accounting for the individual contributions of energy terms,
including hydrogen bonds, electrostatics, and hydrophobicity. The scoring of ligands
determines which ligand pose is the most energetically favorable and ranks the library
of screened molecules to indicate which compounds are most likely to be active and
suitable for further analysis. The selected complexes were illustrated using the PyMOL
software (Version 2.5.0) [47].

3.3. Molecular Dynamics Simulation

All simulations were performed with the GROMACS 2019.6 package [48] (https://www.
gromacs.org, accessed on 2 February 2024) and were carried out using the amber99sb-ildn
force field at 298 K. General amber force field (GAFF) parameters were assigned to the
ligands [49], whereas partial charges were calculated using the AM1-BCC method [50]. All
ligand–protein complexes were placed in the cubic water-box and set to be 15 Å away from
the box edge, using a TIP3P explicit solvent model [51]. Either Na+ or Cl− ions were added
as counterions for the neutralization of the systems. A 2 fs time step of integration was
chosen for all MD simulations, and the systems were equilibrated in the NVE ensemble for
50,000 steps, followed by equilibration in the NVT ensemble for an additional 50,000 steps.
The minimized complexes were used as starting conformations for the MD simulations.
Periodic boundary conditions and particle mesh Ewald (PME) electrostatics were employed
in the simulations [52]. Finally, 25,000 ps molecular dynamics simulations were performed
at 298 K with a trajectory recording interval of 50 ps. In addition, various dynamic analysis
parameters, like RMSD, RMSF, Rg, SASA, H-bond, DCCM, and others, were carried out
using the GROMACS tool.

3.4. Binding Free Energy Calculation

The binding free energy of protein–ligand complexes of all three hits and reference
d-tubocurarine with nAChRs were calculated using the molecular mechanics generalized
Born surface area (MM/GBSA) approach [53]. The following equation was used to calculate
the binding free energy from the MD simulation:

∆Gbind = ∆EMM + ∆Gsolv (1)

where ∆Gbind denotes the binding free energy. The changes in the gas phase molecular
mechanics (∆EMM) and solvation Gibbs energy (∆Gsolv) are determined as follows:

∆EMM = ∆Evdw + ∆Eele (2)

https://www.rcsb.org/
https://www.rcsb.org/
https://www.gromacs.org
https://www.gromacs.org
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∆Gsolv = ∆Gps + ∆Gnps (3)

where ∆EMM is the sum of the changes in the Van der Waals energies ∆Evdw and the
electrostatic energies ∆Eele. The polar solvation ∆Gps was calculated using the generalized
Born model, while the non-polar solvation ∆Gnps was estimated by the solvent-accessible
surface area. The solvent dielectric constant of 78.5 and the non-polar surface tension
constant of 0.0072 kcal/mol·Å2 were used for the MM/GBSA calculations.

3.5. ADMET Property Prediction

In this section, the Pre-ADMET server application (https://preadmet.qsarhub.com,
accessed on 12 April 2024) was used to calculate ADMET parameters, such as buffer
solubility, blood–brain barrier penetration (BBB), plasma protein binding (PPB), cytochrome
P450 2D6 inhibition (CYP2D6 inhibition), Ames test, and hERG inhibition. The Pre-ADMET
approach is based on different classes of molecular parameters, which are considered for
generating quantitative structure properties.

4. Conclusions

Through the effective ensemble-based virtual screening approach, including molecular
property filters, a 3D pharmacophore model, and molecular docking, three hit compounds
were identified as potential NMBAs from the ZINC15 database. In order to further in-
vestigate the binding modes between three hits and nAChRs at simulated physiological
conditions, the molecular dynamics simulation was performed. Based on the common
results of the RMSD, RMSF, Rg, SASA, H-bond, and DCCM, ZINC257459695 displayed
stable binding patterns and was considered as a promising lead compound. Further-
more, deeper analysis of the MD results revealed that ZINC257459695 could stably bind
to nAChRs’ active site and interact with the key residue Asp165. From the MM-GBSA
analysis, the identified ZINC257459695 was the most reliable binding mode for nAChRs,
with the binding free energy of −50.40 kcal/mol. Additionally, the ADMET properties
revealed that ZINC257459695 can be further developed as potential drug candidates.
Overall, ZINC257459695, which possesses huge potential to serve as a promising lead
compound in developing novel NMBAs as an adjunct to general anesthesia, warrants
further optimization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29091955/s1, Table S1: The NMBAs database collected
from the literature and used in the molecular property filters; Figure S1: The binding modes of
d-tubocurarine observed in the cryo-EM structure (PDB ID: 7SMS).
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