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Abstract: Multiscale nano/micro-structured surfaces with superhydrophobicity are abundantly
observed in nature such as lotus leaves, rose petals and butterfly wings, where microstructures
typically reinforce mechanical stability, while nanostructures predominantly govern wettability. To
emulate such hierarchical structures in nature, various methods have been widely applied in the
past few decades to the manufacture of multiscale structures which can be applied to functionalities
ranging from anti-icing and water–oil separation to self-cleaning. In this review, we highlight recent
advances in nano/micro-structured superhydrophobic surfaces, with particular focus on non-metallic
materials as they are widely used in daily life due to their lightweight, abrasion resistance and ease
of processing properties. This review is organized into three sections. First, fabrication methods of
multiscale hierarchical structures are introduced with their strengths and weaknesses. Second, four
main application areas of anti-icing, water–oil separation, anti-fog and self-cleaning are overviewed by
assessing how and why multiscale structures need to be incorporated to carry out their performances.
Finally, future directions and challenges for nano/micro-structured surfaces are presented.

Keywords: superhydrophobic surfaces; multiscale structures; non-metallic materials; fabrication
methods; applications

1. Introduction

A superhydrophobic non-metallic surface refers to surfaces engineered to exhibit
an extremely high water contact angle (WCA, θ) with no less than 150◦ through surface
modification techniques [1]; these surfaces play an indispensable role in our daily life
and can be found in applications across diverse sectors of daily necessities, architecture,
healthcare, textiles, transportation and environmental conservation [2–15].

The concept of surface modification to enable superhydrophobicity is derived from
the lotus effect [16]. The upper surface of the lotus leaf possesses an excellent water-
repellency property as a result of its well-organized hierarchical structures from the nano
to the micrometer scale and a wax-like coating that contributes to a large contact angle and
a small roll-off angle. This observation reveals two crucial characteristics for achieving
superhydrophobicity on a solid surface, nano/micro-structured topography and a low
surface energy [17,18]. Among them, nano/micro-structured topography pertains to the
array of concave–convex structures occurring at micro- and nano-scales, resulting in a
reduction in the contact area between the liquid and the surface. Meanwhile low surface
energy refers to a weak interactive force between surface molecules, making the surface
resistant to wetting or covering by other substances. A similar phenomenon, additionally, is
also observed on the surfaces of pitcher plants [19], water strider legs [20], rose petals [21],
rice leaves [22] and other creatures. Such findings further promote the development
and investigation of biomimetic superhydrophobic surfaces because of their outstanding
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performances and potential applications including, but not limited to, anti-icing [23,24],
anti-fogging [25,26] and self-cleaning [27,28].

Such surfaces with multiscale hierarchical structure which possess excellent superhy-
drophobicity can be theoretically well explained. As early as 1805, Young’s equation [29]
described the relationship between WCA and surface energy at the solid–liquid–gas three-
phase interface, as shown in Equation (1):

γLVcos θY = γSV − γSL (1)

where γSV , γLV and γSL represent the free energy per unit area at the solid–liquid interface,
liquid–gas interface and solid–gas interface, respectively. θY denotes the Young’s angle.
This equation indicates that a lower solid–liquid surface energy results in a higher contact
angle. However, the actual surfaces are not absolutely smooth. To better account for surface
roughness, the Wenzel model [30] and Cassie–Baxter model [31] were introduced and
widely recognized for elucidating the phenomenon of superhydrophobicity on complex
structures [32], as illustrated in Figure 1A. In practice, the actual wettability of surfaces lies
between the extremes described by the Wenzel and Cassie–Baxter models, referred to as the
mixed Cassie–Wenzel model (Figure 1A), where the liquid partially wets the rough surface
structure [33]. In such cases, the contact angle can be analyzed by Equation (2).

cos θC−W = f1(r cosθY + 1)− 1 (2)

where θC−W represents the apparent contact angle, f1 is the proportion of the contact area
between the liquid droplet and the rough surface, and r denotes the surface roughness.
Building upon the foundation of low surface energy, this model further introduces a
key parameter of superhydrophobicity, the small solid–liquid contact area, which can be
achieved by constructing multiscale nano/micro-structures on the surface. Multiscale
structures, as depicted in Figure 1B, can create more micro cavities and protrusions in
contrast to simple rough micro-structures, leading to a smaller solid–liquid contact area.
This aids in capturing more air on the surface, forming micro air pockets. Meanwhile,
nano structures with high aspect ratios are mechanically fragile [34], whereas micro-scale
protrusions have higher mechanical stability [35]. A combination of the two can create a
surface with excellent superhydrophobicity and high robustness, offering more possibilities
for surface structure design [36,37].
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Figure 1. (A) The apparent contact angle θ, and a schematic diagram of Wenzel’s model, Cassie–
Baxter’s model, and the mixed Cassie–Wenzel model. (B) A schematic diagram of the difference
between multiscale structures and single micro-structures and single nano-structures.

Superhydrophobic modification via multiscale structures is therefore the focus of
current research, with a continuous influx of novel findings. The multiscale nano/micro-
structure enhances the material surface with a higher contact angle and stronger water-
repellency. However, compared with a single structure, the preparation process of nano/
micro-structures is more complex, requiring precise processing technology and material
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design. Researchers have developed various methods such as the sol–gel technique, the
etching method, etc., to fabricate concave–convex structures occurring at micro- and nano-
scales for different applications. Substrates with diverse material compositions can be
designed and modified with multilevel nano/micro-structures to achieve superhydropho-
bicity. Non-metallic materials offer advantages such as eco-friendliness and lower costs
compared to metallic materials. The demand for superhydrophobic non-metallic surfaces
is increasing in various fields, including construction, automotive, aerospace and medical
industries. For instance, superhydrophobic modification of transparent materials like
inorganic glass or organic polymers can prevent fogging, improve self-cleaning ability
and enhance safety of use [38]. In applications involving composite materials, such as
wind turbine blades and aircraft wings, using superhydrophobicity to prevent icing has
become a recent research focus [39,40]. In the field of oil–water separation, non-metallic
materials are gradually replacing metallic ones due to their excellent corrosion resistance
and environmental friendliness, becoming the topics of current interest [41,42]. It is evident
that there is a high demand for superhydrophobic non-metallic surfaces across different
industries. Despite this demand, there exists a dearth of systematic summarization of meth-
ods for superhydrophobic surface modification with multiscale nano/micro-structures in
non-metallic materials.

Hence, this review systematically summarizes the latest research, the common methods
and the application prospects of the superhydrophobic non-metallic surfaces with nano/
micro(multiscale)-structures, as shown in Figure 2, which will make an important contribution
to the production and utilization of superhydrophobic surfaces on non-metallic materials, and
the preparation of multiscale structures on the surface of non-metallic materials.
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2. Preparation Methods of Nano/Micro-Structured Superhydrophobic Surfaces

To achieve superhydrophobic surfaces with unique wettability and structures, a va-
riety of techniques have been employed. Previous research has mainly concentrated on
enhancing superhydrophobicity. However, with the development of technology, besides
superhydrophobicity, people have started to pay more attention to the overall performance
of superhydrophobic surfaces, such as robustness and large-scale preparation. Conse-
quently, higher demands are being placed on the preparation technology. In this section,
the preparation techniques of non-metallic surfaces with multiscale nano/micro-structures
are mainly concerned. Various common techniques are introduced respectively, which
can be mainly divided into physical and chemical methods [44,45]. Physical methods
include etching, molding and physical vapor deposition (PVD) to form microscopic and
nano-scale structures on the material surfaces through precision machining or by using
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a stencil [46,47]. Chemical methods include the sol–gel method, chemical vapor depo-
sition (CVD) and electrochemical deposition (ECD), which change the surface energy
and structure by depositing or synthesizing compounds on the surfaces [48–50]. These
methods can be applied individually or in combination to meet the needs of multiscale
nano/micro-structured superhydrophobic surfaces for different applications.

2.1. Sol–Gel Method

The sol–gel method stands as a prevalent technique for the preparation of wet chemical
materials [51]. In this process, the precursor undergoes hydrolysis in the liquid phase,
leading to the formation of a gel system through the condensation polymerization of
colloidal particles [52,53]. Then, the nano-particles in the gel system can be adsorbed
on the substrate, forming a thin film combined with the surface of the substrate mate-
rial [54–56]. Another way is to manage the gel system by using heat treatment to obtain
treated nano-particles [57] and then cover the surface by using physical methods such
as the spraying method or the dip-coating method. The schematic diagrams of the two
routes are shown in Figure 3. In addition, the superhydrophobic properties can also be
further enhanced or functionalized through chemical modification. The sol–gel method
offers a well-established route for creating superhydrophobic surfaces on non-metallic
substrates [58]. Despite limitations in morphology controllability through spraying or
dipping [59,60], it still provides a versatile platform for doping new materials and is com-
patible with various substrates [61–63], enhancing the possibilities of the surface design.
Nonetheless, due to its numerous advantages, the sol–gel method remains one of the
important methods for preparing superhydrophobic surfaces with multiscale structures on
non-metallic materials.
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Superhydrophobic surfaces with different non-metallic compositions can be facilely pro-
duced by the sol–gel method. For example, silica and titania coatings are common materials
used for superhydrophobic surface modification through the sol–gel method [64–68]. By
means of the classical Stöber process [52,69–73], as depicted in Figure 4A, Heiman-Burstein
et al. [74] achieved a superhydrophobic coating by modifying silica nano-particles through
the in situ addition of long-chain alkyl silane co-precursors, in combination with tetraethyl
orthosilicate (TEOS). They discovered that when the alkyl length exceeded ten carbons,
a superhydrophobic coating could be achieved, showcasing a raspberry-like hierarchical
morphology. The direct condensation of silica nano-particles (NPs) on the substrate surface
results in covalent bonding between the TEOS/alkyl silane systems and compatibilized
(oxygen-treated) substrates. This covalent bonding facilitates the attachment of the silane-
treated particles to the substrate, enhancing the coating’s durability. Wang et al. [75] also
prepared silica modified cellulose fibers via a modified Stöber method, obtaining a hierar-
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chical superhydrophobic surface with a WCA up to 151.3◦. As for the titania coating, Hu
et al. [76], inspired by the reversible swelling ability of cured rubber, immersed the swollen
silicone rubber (SR) in a tetrabutyltitanate (TBT) solution (precursor of sol–gel). The precursor
moved into the SR and came into contact with the catalyst, resulting in the generation of TiO2
particles in the crosslinking network of SR. The TiO2 particles grew gradually and formed a
texture of multiscale roughness on the SR surface, which is shown in Figure 4B, with a WCA
and a roll-off angle of 158.6◦ and 6.5◦. The embedding of TiO2 particles in SR enhanced the
mechanical durability of the superhydrophobic surfaces compared to samples prepared by
conventional sol–gel methods. Nasiri Khalil Abad et al. [77] also designed a Cd-Si co-doped
TiO2 thin film, in which titania nanoparticles were synthesized by the sol–gel method. The
results illustrate that the increasing calcination temperature triggered the agglomeration of
particles, which induced a WCA of nearly 168◦ on the surface.
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The gel can also serve as a functional adhesive material, adhering other nano-particle
fillers to the surface [78,79]. The combination of the two forms of nano/micro-structures
induced superhydrophobicity on the surface. Zhou et al. [80] prepared the siloxane zwitte-
rionic compound (GPAC) through a modified sol–gel method, mixing it with carnauba wax
micro-particles to obtain a clear colloidal suspension (W-GPAC). The wax displayed a spher-
ical structure with large pores throughout the surface. Meanwhile, the GPAC sol showed
a wrinkled structure, and the “close-packed” layered structure could be observed in the
W-GPAC composite, which could be beneficial due to its durability and good mechanical
property. Experimental tests indicate that the surface’s WCA can reach 170◦, demonstrating
outstanding superhydrophobicity. Meanwhile, the amine group within the W-GPAC sol can
form hydrogen bonds with the substrate, while 3-Glycidyloxypropyltrimethoxysliane(KH-
560) facilitates excellent adhesion through a coupling reaction during the coating’s curing
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process. These mechanisms collectively enhance the adhesion between the coating and the
substrate. Likewise, Patra et al. [81] used silica as a nano-particle filler, mixed it in the gel
system with 1H,1H,2H,2H-perfluoro-octyltriethoxysilane (FTS), and deposited it onto the
substrate to form nano/micro-structures.

In recent years, significant advancements in achieving high superhydrophobicity have
been demonstrated by superhydrophobic coatings prepared via the sol–gel method. Re-
searchers in the field are now gradually exploring methods to enhance the robustness and
durability of these coatings, such as physical methods (e.g., embedding) and chemical
methods (e.g., bonding). This provides a new idea for subsequent research on multiscale su-
perhydrophobic surfaces and further improves the reliability of superhydrophobic coatings.

2.2. Etching Methods

Etching methods are a common technique utilized for the preparation of multiscale-
structured superhydrophobic surfaces [82] which can precisely control the surface structure
and morphology by etching the substrate, such as through chemical etching, laser etching,
electrochemical etching and plasma etching [83–85]. To achieve superhydrophobicity, the
etched substrates are then modified by low-surface-energy materials [46]. It should be
mentioned that chemical etching and electrochemical etching are mainly applied to metallic
materials, so they are not discussed in this work. In contrast, physical etching methods
such as laser etching and plasma etching are generally used for non-metallic materials, so
they are discussed in detail as follows.

2.2.1. Laser Etching Method

The laser etching method [86] works by directing a high-energy laser beam onto the
material surface, causing a series of reactions such as melting and vaporization under
the action of photoelectric or photothermal effects and finally forming rough multiscale
nano/micro-structures. Due to the excellent controllability of laser etching, this method
can be used to etch nano/micro-structures on thin surfaces [87], such as the oxidized
graphene film [88] and the polydimethylsiloxane (PDMS) film [89]. For example, when
the oxidized graphene film was overlaid on a fabric surface and subjected to double-
laser interference ablation, graphene nano-structures were generated by deoxygenation
at the ablated locations (Figure 5A). This, in conjunction with the larger micrometer-scale
structures of the underlying fabric, forms a nano/micro-multiscale graphene surface,
resulting excellent superhydrophobicity [88].

The size and shape of multiscale nano/micro-structures can be controlled by changing
the laser parameters or by controlling the position, energy and frequency of the laser etching.
Thus, columnar, channel, stepped and other different pattern structures are prepared on
the substrate surfaces [89–91]. Fang et al. [92] used femtosecond laser ablation technology
to construct a micro-groove array structure on the surface of PDMS and further introduced
nano/micro-step structures (Figure 5B) by adjusting the laser etching times at different
positions. Wang et al. [93], inspired by the nano/micro-structures on the surface of Oxalis
corniculata Linn., used an ultraviolet (UV) laser (355 nm) and CO2 laser (10.64 µm) to
etch polyimide (PI) films sequentially, and a jigsaw-like micro-structure was obtained (Fig-
ure 5C). The structure and porous graphene constituted the three-dimensional multiscale
structure of the surface, and a multiscale biomimetic graphene surface was obtained.

2.2.2. Plasma Etching Method

Plasma etching utilizes high-frequency glow discharge reactions, activating reaction
gases into reactive particles that diffuse to the etching site. Upon inter-reacting with the
etched material, volatile by-products are generated and eliminated subsequently, achieving
the purpose of etching [45,94,95]. Compared to laser ablation methods, plasma etching has
higher dimensions but lower precision, often requiring the assistance of surface molds or
oxide layers [35]. Ko et al. [96] proposed a one-step approach using metallic mesh masking.
Through a plasma selective etching process assisted by double-scale etching mold, they
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prepared a layer-structured superhydrophobic surface (Figure 5D). By controlling the gap
distance between the substrate and the metallic mesh, the dual-scale etching masking
effect was achieved, achieving a water contact angle of up to 164.1◦. Zhang et al. [97]
developed superhydrophobic cotton fabric through a process involving oxygen plasma
etching followed by the application of a hydrophobic suspension containing SiO2 nano-
particles via spraying. The SiO2 nanoparticles were deposited on the fiber, which together
with the uniform strip grooves created by plasma etching contributed to a dual-scale rough
structure on the fabric surface.
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Etching methods have high processing precision and good controllability, which
can accurately control the surface microscopic shape and prepare complex multiscale
nano/micro-structures [85,98], thus improving the superhydrophobicity, and they are
suitable for a variety of non-metallic materials. However, the equipment is expensive and
the processing cost is high [50], which is not suitable for industrial large-scale production.
Among them, plasma etching is more efficient than laser etching, while laser etching is
more environmentally friendly [46].

2.3. Molding Method

The molding method [99–101] involves depositing the target material on the natural
or artificial template to reproduce the rough structure of the template. As early as 2009,
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researchers attempted to use the molding method to prepare superhydrophobic surfaces
and successfully obtained polymer surfaces with a contact angle of 167◦ [102]. In recent
years, the micro-structure of superhydrophobic surfaces prepared by the molding method
has gradually developed from single-scale roughness to a double-scale micro-structure to
enhance the mechanical durability of the surface. And the multiscale superhydrophobic
surface can be produced on a large scale. The key with the molding method is the prepara-
tion of defect-free molds, which can be typically achieved through methods such as etching
or 3D printing.

Photolithography [103] and chemical etching [104] are common methods for making
molds. The specific scale molds are produced by photoetching or chemical etching, and
then, the required raw materials are affixed to the mold surface, resulting in the creation of
a superhydrophobic surface with a nano/micro-structure. As shown in Figure 6A, Choi
et al. [105] proposed a directional photofluidization imprint lithography (DPIL) method,
in which polydisperse orange 3 (PDO 3) and bisphenol A-type epoxy resin were used
as raw materials to make thin-film materials and then silicon molds of different scales
were prepared by photolithography. The raw materials were polymerized and cured in
different molds many times, following by being bonded to the surface of the film to form
the multiscale nano/micro-structure. As shown in Figure 6B, a two-step template approach
was used to create flexible molds with hierarchical nano/micro-structures on the surface,
with anodic porous alumina serving as a starting material. On the surfaces of tubular
substrates and convex lenses, ordered pillar arrays with hierarchical nano/micro-structures
may be created by photo-nanoimprinting utilizing the acquired flexible molds [106]. In
recent years, with the development of 3D printing technology, researchers have tried to use
this method to make molds [107]. Li et al. [108] prepared a silicone hot film with elasticity
and shape memory at a high temperature in the 3D printing mold, and made T-shaped
grooving on it. The perfluoropolymer material coated on any surface was pressed with
the mold at 280 ◦C, resulting in a multiscale superhydrophobic structure of the monolithic
perfluoropolymer surface (MPS) with a contact angle up to 160◦ (Figure 6C).
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Chemical Society, Copyright 2022 RSC Publishing, Copyright 2023 Elsevier, respectively.



Molecules 2024, 29, 2098 9 of 26

In addition to the above methods for preparing templates, some researchers have
directly used existing materials with rough surface structures as templates, such as stainless
steel mesh [109], woven fiber cloth [110], etc. As shown in Figure 7A, He et al. [109] used
stainless steel mesh as a template and silicone rubber as a raw material, and transferred the
structure of the stainless steel mesh to the surface of the silicone rubber through the template
method to build a surface structure. Then, the surface coating structure was constructed by
spraying aluminum nitride (AlN) particles on the surface of silicone rubber. A multiscale
rough structure surface with excellent superhydrophobicity was obtained. Some people
have also used natural superhydrophobic materials, such as lotus leaves [111–113], rose
petals [114], etc. As show in Figure 7B, using the lotus leaf as a template, Li et al. [112]
imprinted the micro-scale pillars of the lotus leaf onto the PDMS resin. Then, the micro-scale
pillar structure was transferred to the proton exchange membrane (PEM) surface by using
a thermal imprinting procedure to obtain a surface with a micron structure. Finally, a
secondary nano-structure was formed by using etching technology, and the surface with a
multiscale nano/micro-structure was obtained.
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The molding method can also be applied to surfaces with complex shapes. It is rel-
atively simple and does not require the precise control of reaction time [115,116]. The
emphasis is on the quality of the molds, as a high-quality mold can produce multiple
samples, enabling large-scale batch production of superhydrophobic surfaces and reducing
manufacturing costs and time [106,117,118]. Nonetheless, the high cost of mold preparation
and the risk of damaging surface micro-structures during the mold–material separation
process, coupled with the insufficient precision of most mold fabrication methods, pose
challenge in achieving a one-step formation of nano/micro-structured multiscale superhy-
drophobic surfaces. We still need other methods to enrich the nano-structure of the surface
produced by molding.

2.4. Deposition Methods

There are many deposition methods for preparing superhydrophobic surfaces with
multiscale structures, among which physical vapor deposition (PVD), chemical vapor depo-
sition (CVD) and electrochemical deposition (ECD) can be used to construct structures on
non-metallic surfaces [50,119,120]. When the superhydrophobic modification is carried out
by using deposition methods, two steps are generally needed: one is the design of the surface
nano/micro-structure; the other is the modification by low-surface-energy substances.
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2.4.1. Physical Vapor Deposition (PVD)

PVD is a process in which solid materials are atomized or vaporized, and deposited
on the substrate surface to form thin films with thicknesses ranging from atomic lay-
ers to several micrometers [121,122]. PVD processes are often conducted in a vacuum,
plasma or electrolytic environment, which can minimize gas contamination during the
deposition process. In accordance with the deposition steps, Li et al. [123] employed
a plasma spray system to deposit Samaria-doped ceria (SDC) at a low pressure on a
ceramic substrate. And the surface was secondarily modified by stearic acid or 1,1,2,2-
tetrahydroperfluorodecyltrimethoxysilane (FAS) (Figure 8A). Gao et al. [124] employed
multiarc ion plating to prepare ultrathin titanium-based hard coatings on the substrate,
which were then modified by perfluorodecyltriethoxysilane (PFDS). In both cases, multi-
scale nano/micro-structured superhydrophobic surfaces with a water contact angle of 150◦

could be achieved (Figure 8B).

2.4.2. Chemical Vapor Deposition (CVD)

The main difference between chemical vapor deposition, chemical bath deposition
and electrochemical deposition is the different environment in which the chemical reaction
takes place. CVD mainly uses one or several vapor compounds or elements containing
thin-film elements to chemically react together on the surface of substrate to produce a thin
film [45,125]. Commonly used deposition materials include carbon nanotubes [126,127],
SiO2 [128,129], TiO2 [130], PDMS [131,132] and so on. For example, Tombesi et al. [133] used
aerosol-assisted chemical vapor deposition (AACVD) to fabricate SiO2 nano-particle films
with dual-scale roughness on glass substrates. The films had excellent superhydrophobicity
and transparency.

2.4.3. Electrochemical Deposition (ECD)

Electrochemical deposition is a coating technology in which a redox reaction occurs
under the action of an applied electric field [120,134]. Therefore, the deposited surface
needs to have a certain conductivity, and carbon-based materials and silicon-based ma-
terials are usually used as substrates for electrochemical deposition in the field of non-
metals. For example, Xie et al. [135], after hydrophilic treatment of the carbon cloth
surface, deposited a polypyrrole nano-wire array on the surface through electrochemical
deposition, carbonized it at a high temperature and finally modified it with 1H,1H,2H,2H-
perfluorodecyltrimethoxysilane (FAS-17) with a low surface energy to obtain a super-
hydrophobic photothermal carbon-based material with a cascade nano/micro-structure
(Figure 8C). When a silicon-based material is used as the substrate, the surface oxide
layer needs to be removed in order to ensure the conductive effect. Using methanol as a
carbon source, graphene-doped metal cobalt [136] or metal nickel [137] was used for electro-
chemical deposition on the surface of silicon to obtain doped graphene/metal carbon films
(Figure 8D). Under SEM, it was observed that graphene and metal combined to form a nano-
and multiscale composite interface, thus forming a well-structured nano/micro-structure.

The deposition method for preparing multiscale nano/micro-structured superhy-
drophobic surfaces is simple, reproducible, cost-effective and well developed [44,138].
It does not require complex equipment and is more suitable for large-area surface treat-
ment [50,120,139]. Moreover, compared to the sol–gel method, it is easier to control the
surface morphology. But the deposition method is constrained by the substrate surface.
For example, electrochemical deposition is only applicable to conductive non-metallic
materials, and its durability is inferior to etching methods.
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the dip-coating method [154,155] and so on. As shown in Figure 9A, Gan et al. [140] used 
a sequential electrospinning and electrospraying method to fabricate composite mem-
branes of polystyrene-block-poly (ethylene-co-butylene)-block-polystyrene (SEBS) and 
fluorinated polyhedral oligomeric silsesquioxane-block-polystyrene (FPOSS-PS). The 
composite membranes with hierarchical geometries and low-surface-energy modifica-
tions had excellent superhydrophobicity, flush resistance and anti-adhesion properties. 

In addition, there are some newly invented methods as well. Chen et al. [156] pressed 
orange peel into a powder after drying, carbonization at a high temperature, mixing with 
zinc chloride, grounding and treatment at a high temperature to obtain superhydropho-
bic/superoleophilic carbon derived from orange peel, which has a layered structure with 

Figure 8. A schematic diagram of the preparation process of (A) the self-assembled films on the
SDC coating surface by using stearic acid and FAS in the PVD method [123], (B) the preparation
of an F-TNTs/TiN composite coating by using the PVD method [124], (C) the preparation of pho-
tothermal superhydrophobic materials by using the ECD method [135] and (D) the preparation of
the superhydrophobic G-Co/a-C:H film by using the ECD method [136]. Reprinted with permission
from [123,124,135,136], Copyright 2017 Springer Nature, Copyright 2023 Elsevier, Copyright 2021
American Chemical Society, Copyright 2018 John Wiley and Sons, respectively.

2.5. Other Methods

In addition to the above-discussed sol–gel method, molding method, etching method
and deposition method, there are some other methods that can prepare multiscale-structured
superhydrophobic surfaces of non-metallic materials, such as the electrospinning
method [140–145], the self-assembly method [146–150], the spraying method [151–153], the
dip-coating method [154,155] and so on. As shown in Figure 9A, Gan et al. [140] used a
sequential electrospinning and electrospraying method to fabricate composite membranes
of polystyrene-block-poly (ethylene-co-butylene)-block-polystyrene (SEBS) and fluorinated
polyhedral oligomeric silsesquioxane-block-polystyrene (FPOSS-PS). The composite mem-
branes with hierarchical geometries and low-surface-energy modifications had excellent
superhydrophobicity, flush resistance and anti-adhesion properties.
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process of superhydrophobic SiRF materials [158]. Reprinted with permission from [140,156–158],
Copyright 2020 Elsevier, Copyright 2023 Elsevier, Copyright 2023 Springer Nature, Copyright 2021
American Chemical Society, respectively.

In addition, there are some newly invented methods as well. Chen et al. [156] pressed
orange peel into a powder after drying, carbonization at a high temperature, mixing with
zinc chloride, grounding and treatment at a high temperature to obtain superhydropho-
bic/superoleophilic carbon derived from orange peel, which has a layered structure with a
nano-fold surface and an ordered graphene layer, and has excellent electrical conductivity
and excellent oil–water separation characteristics (Figure 9B). Gu et al. [157] proposed a
cell composed of hard porous diatomite micro-shells and releasable nano-seeds, which
can simultaneously confer the multiphase repulsion and ultralong effectiveness of super-
hydrophobic coatings without requiring a complex structure and manufacturing process
(Figure 9C). Zhang et al. [158] created a mechanically strong and superhydrophobic surface
on PDMS foam by using a flame-induced pyrolysis (FIP) strategy. It only took 1~6s in the
ultrafast FIP process to build a strong special wavy rough nano/micro-structure on the
surface of the silicone rubber foam (SiRF) material to achieve superhydrophobic surface
characteristics (Figure 9D).

3. Application

The technology of multiscale superhydrophobic modification of non-metallic surfaces
is rapidly gaining prominence, and researchers are making unremitting efforts to achieve
innovative applications in various fields, including architecture, transportation, healthcare
and energy. Here, we summarize several representative applications of nano/micro-
multiscale superhydrophobic modifications of non-metallic surfaces, including pollution-
resistant, self-cleaning, microfluidics and anti-icing applications, which can demonstrate
its importance and widespread applicability across multiple fields, and offer readers a
comprehensive view of this technology for a better understanding [49,50,120,159–161].
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3.1. Anti-Icing

Ice accretion on surfaces tends to cause equipment overload and operational damage.
Furthermore, the excessive accumulation of ice, followed by the shedding of ice, may result
in abnormal service conditions, potentially causing severe safety incidents and economic
losses [162]. These disasters occur in numerous fields, such as aviation, power production,
building construction and transportation [163–167]. In view of these security risks and
energy waste issues, the superhydrophobic modification of material surfaces has become a
potential solution to anti-icing issues in recent years [168,169]. The characteristics of a low
surface energy, high contact angle and low roll-off angle exhibited by superhydrophobic
surfaces can effectively prevent the condensation of water vapor from the air on the surface
of equipment and expedite the rolling of water droplets, thereby preventing or delaying
icing [163,170,171].

The icing time and ice adhesion strength are two important indicators for evaluat-
ing the anti-icing performance of superhydrophobic surfaces [172]. Numerous studies
have confirmed that non-metallic superhydrophobic surfaces with nano/micro-structures
can prolong the icing time and reduce the ice adhesion strength [173,174], and superhy-
drophobic surfaces with different nano/micro-sizes exhibit varying delaying effects on
icing time [175]. He et al. [109] prepared a multiscale superhydrophobic surface on rub-
ber by using the molding method, and the icing time increased by 3.6 times at −10 ◦C,
as is shown in Figure 10A. Treating carbon fiber-reinforced polymer (CFRP) and poly-
methyl methacrylate (PMMA) with laser etching could also produce superhydrophobic
surfaces with nano/micro-structures, and the test results of icing delay time further sup-
port that superhydrophobic surfaces can extend the ice formation time by more than three
times [176–178]. Wang et al. [179] also prepared a superhydrophobic coating on glass slides
by using the spraying method, reducing the ice adhesion strength from 1473 ± 74 kPa
for the substrate to 194 kPa for the coating, which can be tested by the device depicted in
Figure 10B.
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Usually, multiscale superhydrophobic surfaces are combined with other anti-icing or
de-icing methods to further enhance the capability of ice prevention, such as the photother-
mal method [135,180–182] and the electrothermal method [155,183]. When combined with
thermal methods, the superhydrophobic layer can remain unfrozen for a long time at a
low temperature or cause the ice layer to melt into liquid and rapidly detach in order to
prevent recondensation.
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3.2. Water–Oil Separation

With the rapid development of the energy industry and catering industry, more and
more waste oil is produced and discharged into water, resulting in many environmental
and water issues [184–186]. By adjusting the nano/micro-structure of non-metallic surfaces
to create different contact angles with water and oil, efficient water–oil separation can be
achieved [1]. The principle of water–oil separation through the use of superhydrophobic
materials and a comparison of the contact angle are shown in Figure 11.

Different non-metallic multiscale superhydrophobic materials have been proposed
and applied for water–oil separation. Fabrics have a micro-fiber structure, which helps in
the formation of small pores and channels for liquid [187]. They are also environmentally
friendly and reasonably priced. If the surface undergoes superhydrophobic modification,
they are highly suitable as a filtration material for water–oil separation [188–190]. Polylactic
acid (PLA) is a degradable and environmentally friendly material that can be directly loaded
or grown with nano-structures on non-woven fabric made of PLA [191,192]. Coating PLA
nanospheres mixed with dioxane on non-woven fabric [193] can also impart excellent
hydrophobic and oleophilic properties, completing the water–oil separation process. Other
processing methods, such as functionalizing polyacrylonitrile (PAN) non-woven fabric
(NWF) with iron hydroxide nano-particles and the in situ deposition of the iron palmitate
complex nano/micro-particles, can achieve a water–oil separation efficiency very close to
100% based on the multiscale nano/micro-structures [194]. These validate the potential
application of superhydrophobic fabric with multiscale nano/micro-structures in the field
of water–oil separation. Polymer membranes [195] and SiC membranes [196,197] can also
satisfy the necessary requirements. By using the molding method or the deposition method,
the surface can be endowed with nano/micro-structures, exhibiting excellent water–oil
separation efficiency. Interestingly, materials commonly found in daily life with loose and
porous structures, such as orange peels [156] and cigarette filters [198], can be potential
choices for preparing water–oil separation materials.
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3.3. Anti-Fog

Fogging commonly arises when humid air encounters surfaces or equipment with
a lower temperature [199]. For surfaces such as glass or transparent polymers, fogging
will reduce light transmission and have adverse effects on daily life and industrial pro-
duction [200]. Superhydrophobic modification of transparent surfaces, which can achieve
anti-fogging, plays a vital role in the areas where it is needed, reducing the impact of
surface liquids on performance.

Transparent surfaces modified with different materials to form nano/micro-structures
for anti-fogging have been widely researched in the past few decades. Nano-sized titanium
dioxide [201] or silicon dioxide [26,202] are both good choices as surface modification
materials, as they both have a certain degree of light transmission. For example, by loading
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2–3 nm titanium dioxide particles onto silica micro-particles, a robust transparent coating
with good anti-fogging properties can be prepared [203], as is shown in Figure 12A, and
it also has excellent self-cleaning properties. With the help of mold imprinting [204] or
laser pulse deposition [205], multiscale titanium dioxide structures can be created on trans-
parent surfaces, endowing the coating with excellent superhydrophobic properties while
maintaining a light transmittance of over 90% by adjusting the spacing of the nano/micro-
structure, achieving a transparent surface with anti-fogging functions. Other materials like
bio-inspired ZnO micro-spheres [25] or ZnO nano-particles [206] can also be employed for
surface modification to achieve an exceptional light transparency and anti-fog performance
of transparent superhydrophobic surfaces.

It should be mentioned that employing etching or molding methods can endow the
transparent materials’ own surface with superhydrophobicity. For example, it was reported
that a method combining colloidal lithography and self-assembly engineered hierarchical
conical structures achieved superhydrophobicity, which provided a WCA of 175.3◦ and low
contact angle hysteresis (2.7◦) [207]. Figure 12B illustrates the anti-fog performance of this
surface, showing that even under high-humidity conditions, the text below remains clearly
visible compared to the untreated surface. Solidifying the transparent materials on molds
with multiscale nano/micro-structures, directly forming films with superhydrophobic
properties, can also achieve surfaces with an excellent anti-fog performance [208,209].
A previous report demonstrates that UV-curable polymers can be initially cured into a film
on a transparent surface and then treated by multiple curing steps to generate nano/micro-
level roughness, achieving superhydrophobicity with a contact angle of 172◦. Lenses
treated by such materials, as shown in Figure 12C, can still maintain good transparency in
high-temperature water vapor environments, showing excellent anti-fog properties [210].
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Figure 12. (A) Multifunctional nano-coatings of dendritic porous silica nano-particles (DPSNs)
@X% TiO2 with tunable sizes of TiO2 nano-particles (NPs), with the outcome of an enhanced anti-
fogging property [203]. (B) An illustration of the fabrication procedure for combining colloidal
lithography and self-assembly engineered hierarchical conical structures and the performance of
anti-fogging [207]. (C) The results of hierarchical superhydrophobic polymer (HSP) films fabricated
by using photopatterning with a sandpaper template, and the results of anti-fogging tests [210].
Reprinted with permission from [203,207,210], Copyright 2020 Elsevier, Copyright 2023 Elsevier,
Copyright 2019 Elsevier, respectively.

3.4. Self-Cleaning

There is an old saying in China which is as follows: “Lotus unsullied from mud, wash
clean without demon”. A surface which has self-cleaning properties can clean its surface
itself without any external source, while superhydrophobic surfaces provide a self-cleaning
function for pollutants due to its low roll-off angle [59,211–214]. Briefly, self-cleaning is
achieved through the combination of rainwater and a specific tilt angle when there is dust,
microorganisms and other stains deposited on the surface of a superhydrophobic coating.
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In the laboratory, the self-cleaning process can be simulated by dripping water onto the
inclined sample surface, as shown in Figure 13A. Such self-cleaning superhydrophobic
surfaces find versatile applications in daily life, including car windshields, windows,
glass doors, skyscrapers, solar panels, fabrics, sports shoes, metals, paper, sponges, wood,
marble and so on [160,215]. It was reported that a superhydrophobic self-cleaning surface
based on two types of silica nano-particles with distinct morphologies can remove the
fluorescent particles accumulated on the surface due to rolling water droplets [216], as
shown in Figure 13B. Constructing multiscale structures on fabrics can also help to achieve
self-cleaning functionalization, which can reduce detergent waste, time and labor [217,218].
Pakdel et al. [219] used TiO2 particles in the hydrothermal method, followed by nitrogen
doping to obtain N-doped TiO2, which resulted in flower-like structures on the surface.
Through a facile dip-coating method, the particles composed of PDMS were applied on the
cotton fabric, forming a nano/micro-structure with commendable self-cleaning properties,
as illustrated by Figure 13C.
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3.5. Other Applications

Due to the diverse types and wide range of applications of non-metallic materials,
in addition to the four main directions mentioned above, superhydrophobic non-metallic
surfaces can also be used in other applications such as microfluidics, food packaging, stain
resistance [220], UV resistance [67,221] and so on, with the experimental results of these
applications shown sequentially in Figure 14.

In the field of microfluidics, micro-droplets have important applications in areas such
as drug release, virus detection and catalysts due to their small volume, large surface
area, fast speed, high throughput, and uniform size [222,223]. Superhydrophobic surfaces,
with their extremely small roll-off angles, can achieve efficient manipulation of droplets
by designing a directional superhydrophobic surface so that the droplet can have a small
roll-off angle in a specific direction [92,224], or by adjusting the contact angles at specific
locations on the surface to make the droplet come into contact with the surface at selected
positions [225].
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Figure 14. A summary of the non-metallic superhydrophobic surface, with the test result of (A) con-
trolling the micro-liquid flow direction due to the directional superhydrophobic surface [224]; (B) the
residue of yogurt after pouring, compared with commercial packaging [86]; (C) the stain resistance of
pristine and silica nanoparticle-coated cashmere fabrics [220]; and (D) the pristine wood and coated
wood within 18 days (taken every 3 days) after UV irradiation [67]. Reprinted with permission
from [67,86,220,224]. Copyright 2021 Springer Nature, Copyright 2021 Springer Nature, Copyright
2020 Elsevier, Copyright 2020 American Chemical Society, respectively.

In the field of food packaging, such as milk containers, residue inside the container
during pouring will lead to food waste. Edible wax materials are treated and sprayed on
the surface of elastic films, presenting a multiscale structure with wrinkles, resulting in
extremely high contact angles for common beverages such as cola, milk and juice [226].
Beyond that, using magnetic particles to form a multiscale nano/micro-structured conical
array on the surface of PDMS, with edible wax vapor sprayed on it, can achieve complete
pouring of yogurt inside the container [86].

4. Conclusions

This paper offers a comprehensive summary of recent research on superhydrophobic
modification of non-metallic material surfaces using multiscale nano/micro-structures. It
mainly introduces various preparation methods, including the sol–gel method, molding
method, etching method, deposition method, etc. Moreover, a summary is provided for the
basic principles, preparation processes, research status, and advantages and disadvantages
of these methods. It also shows the practical applications of superhydrophobic modification
of non-metallic surfaces, such as anti-icing, oil–water separation, self-cleaning, etc. All
of these have excellent application prospects by utilizing the performance advantages of
superhydrophobicity according to specific needs.
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Although superhydrophobic surfaces with multiscale nano/micro-structures have
better durability than those with single-level nano-structures, the performance may decline
over time, especially when encountering harsh environments such as dusty weather, ex-
tremely low temperatures and high-humidity conditions. Moreover, the preparation of
multiscale nano/micro-structured surfaces generally requires multiple steps, posing chal-
lenges for the reproducibility of the process, and consequently hindering future large-scale
applications in the engineering field. Hence, future key research priorities of non-metallic
multiscale superhydrophobic surfaces for practical applications should focus on material
designs with high durability and preparation techniques that are easy, easily scalable,
effective and cost-efficient. The prospect of the preparation of multiscale nano/micro-
structures also involves the integration of multiple disciplines, including materials science,
nano-technology, surface science and other fields, which will provide us with a deeper
understanding and means to control the surface properties of materials. This will allow
non-metallic materials to play a more important role in scientific research and industrial
applications, laying a solid foundation for future technology and innovation.
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