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Abstract: The current study comprehensively investigates the adsorption behavior of chromium
(Cr(III)) in wastewater using Algerian kaolinite clay. The structural and textural properties of the
kaolinite clay are extensively characterized through a range of analytical methods, including XRD,
FTIR, SEM-EDS, XPS, laser granulometry, N2 adsorption isotherm, and TGA–DTA. The point of zero
charge and zeta potential are also assessed. Chromium adsorption reached equilibrium within five
minutes, achieving a maximum removal rate of 99% at pH 5. Adsorption equilibrium is modeled
using the Langmuir, Freundlich, Temkin, Elovich, and Dubinin–Radushkevitch equations, with
the Langmuir isotherm accurately describing the adsorption process and yielding a maximum
adsorption capacity of 8.422 mg/g for Cr(III). Thermodynamic parameters suggest the spontaneous
and endothermic nature of Cr(III) sorption, with an activation energy of 26.665 kJ/mol, indicating the
importance of diffusion in the sorption process. Furthermore, advanced DFT computations, including
COSMO-RS, molecular orbitals, IGM, RDG, and QTAIM analyses, are conducted to elucidate the
nature of adsorption, revealing strong binding interactions between Cr(III) ions and the kaolinite
surface. The integration of theoretical and experimental data not only enhances the understanding
of Cr(III) removal using kaolinite but also demonstrates the effectiveness of this clay adsorbent for
wastewater treatment. Furthermore, this study highlights the synergistic application of empirical
research and computational modeling in elucidating complex adsorption processes.

Keywords: chromium; adsorption; kaolinite; DFT; COSMO-RS; quantum theory of atoms in
molecules (QTAIM)
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1. Introduction

Water pollution remains a critical global challenge impacting both the economic and
social sectors, notably affecting public health and agricultural quality. Environmental
concern arises from the contamination of water bodies by a large variety of pollutants,
including natural and anthropogenic heavy metals, toxic compounds, and persistent or-
ganic pollutants. The widespread nature of these contaminants poses significant risks,
necessitating urgent attention and effective remediation strategies to safeguard water qual-
ity and public health [1,2]. As the industrial and agricultural sectors evolve, they release
various pollutants into the environment, including organic and inorganic substances, heavy
metals, and other harmful compounds. Heavy metals, known for their persistence and
non-biodegradability, can easily enter and accumulate in the food chain, posing significant
threats to natural ecosystems and human health. This contamination underscores the need
for effective environmental management and pollution control strategies [3–5].

Chromium (Cr) is a heavy metal of significant concern commonly found in water and
wastewater, primarily existing in two oxidation states: trivalent chromium (Cr(III)) and
hexavalent chromium (Cr(VI)) [6,7]. Although Cr(VI) is well-known for its acute toxicity,
high mobility, and carcinogenicity, posing substantial threats to public health and ecosys-
tems, the impact of Cr(III) is equally pressing but less warned. Cr(III) is essential for human
health in trace amounts but becomes harmful at higher concentrations, where it can disrupt
metabolic processes and cause renal, dermatological, and ocular damages. Moreover, Cr(III)
has been shown to adversely affect a wide range of organisms, including plants, fish, and
crustaceans, at elevated levels, indicating its potential for ecological harm. This evidence
underscores the importance of focusing on Cr(III) alongside Cr(VI) for a holistic understand-
ing of chromium’s environmental impact [8,9]. While the hazards of Cr(VI) are extensively
documented, the pervasive presence of Cr(III) in environmental matrices, coupled with
its potential oxidative conversion to Cr(VI), presents a compelling case for its dedicated
investigation. Understanding the behavior, mobility, and effective mitigation strategies for
Cr(III) addresses a critical knowledge gap in environmental engineering and chromium
management practices [10]. Accordingly, this research aims to deepen the understanding
of Cr(III)’s environmental dynamics and to develop more precise and efficient treatment
methodologies. Such advancements align with Environmental Protection Agency (EPA)
standards, which regulate total chromium concentrations in drinking water, highlighting
the necessity of addressing all chromium species comprehensively [6,10].

Dedicated research in this area is still necessary for developing effective water treat-
ment methods to mitigate the risks posed by chromium pollution. In recent years, many
different techniques have been tested for Cr removal from water, which revealed both
advantages and limitations. One of the most popular methods involves the use of activated
carbon, which is a very effective and versatile adsorbent due to its high surface area and
porous structure. Many different precursors can be used for the synthesis of activated
carbons, derived from both natural materials and wastes. For instance, Behloul et al. [11]
have explored innovative adsorbents, such as those derived from cotton fiber waste. How-
ever, activated carbon can be costly and may require complex agents for optimal perfor-
mance [12]. Despite these drawbacks, activated carbon offers profitability, availability, and
high efficiency, often reaching up to 100% effectiveness in removing heavy metals. The
effectiveness of adsorption largely depends on the choice and preparation of cost-effective
and eco-friendly adsorbents [13,14]. Alternatives like chitosan, alginate-based materials,
and various plant wastes have been investigated for their adsorptive properties, despite
some limitations like pH dependence or limited affinity for certain dyes [15,16]. Researchers
like Rouibah et al. [17,18] and Thabede et al. [19] have utilized plant-based adsorbents for
effective heavy metal removal, demonstrating the potential of these sustainable materials in
water purification processes [20]. More recently, studies by Rasheed et al. [21], Putz et al. [22],
and Coi et al. [23] have demonstrated enhanced adsorption capacities, particularly for the
removal of chromium pollutants, using mesoporous silica-based inorganic sorbents. These
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findings underscore the importance of ongoing research efforts in identifying novel adsorbents
and refining existing methodologies for effective chromium remediation.

Clay, a naturally occurring material on the earth’s surface, is composed of a blend
of water, alumina, and silica along with eroded rock particles. Its abundance and cost
effectiveness make it an appealing solution for environmental remediation. In particular,
kaolin clay boasts a significant alumina content of 38 wt.%, with only trace amounts of
other elements such as potassium oxide (K2O), sodium oxide (Na2O), and iron oxide
(Fe2O3), each constituting less than 0.5 wt.%. Recognized for its adsorptive capabilities,
when subjected to specialized treatment, kaolin displays an increased surface area and
pore volume. This enhancement bolsters its role as an economical and potent adsorbent.
Studies highlight kaolin’s ability to effectively remove a diverse array of contaminants
from wastewater, including both heavy metals and organic pollutants [24,25]. Tailoring
kaolin through various modifications, e.g., with phosphoric acid, has shown to heighten
its selectivity and adsorption efficiency, marking its versatility in managing industrial
effluents. Specific research instances, such as Mustapha et al.’s [26] work, have utilized
kaolin to extract multiple pollutants from tannery effluents, demonstrating its high surface
area’s contribution to pollutant removal. Similarly, El-Rabiei et al. [27] employed kaolin for
the extraction of heavy metals like iron, copper, chromium, and zinc, with notable efficacy
in zinc removal. Furthermore, Kaibo et al.’s [28] innovative approach to kaolin modification
has shown promising results in selectively adsorbing rare earth elements from mining
wastewater. These findings underscore kaolin’s potential as a customizable and effective
adsorbent in wastewater treatment applications.

The current study delves into the adsorption of Cr(III) using kaolin clay sourced
from the Tamazert region in Algeria. The choice of Cr(III) as the target pollutant stems
from the analysis of industrial discharges from a tannery situated in the town of Jijel
(Algeria), where Cr2O3 is commonly used as a tanning agent. Investigation revealed a
significant presence of Cr(III) in these discharges, leading to pollution in the bay of Jijel
(Algeria). Given the substantial environmental impact of Cr(III) pollution in our region, this
research aims to contribute to environmental protection efforts and enhance the quality of
industrial discharges. By exploring the adsorption of Cr(III) using appropriate adsorbents,
we strive to develop effective remediation strategies capable of mitigating pollution caused
by industrial activities, thereby safeguarding the environmental integrity of our region and
promoting sustainable industrial practices.

To comprehensively understand the adsorption process, we conducted a thorough
examination of the clay’s structural and textural properties using a range of analytical tech-
niques. These techniques included X-ray diffraction (XRD), Fourier-transform infrared spec-
troscopy (FTIR), scanning electron microscopy coupled with energy dispersive spectroscopy
(SEM-EDS), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET)
surface analysis. Moreover, further aspects were investigated by laser granulometry and
thermogravimetric-differential thermal analysis (TGA–DTA) alongside the assessment of
the point of zero charge (PZC) and zeta potential. This comprehensive characterization was
pivotal in determining the adsorption equilibrium and delineating the optimal conditions
for maximum Cr(III) removal. In addition, by integrating density functional theory (DFT)
with the atoms in molecules framework, we offer a novel approach to decode the adsorp-
tion process at both the macroscopic and molecular levels. The synergy of experimental
procedures with advanced computational techniques such as the conductor-like screening
model for real solvents (COSMO-RS), independent gradient model (IGM), reduced den-
sity gradient (RDG), and quantum theory of atoms in molecules (QTAIM) analyses also
enabled us to unravel the complex interaction mechanisms between Cr(III) ions and kaolin,
providing deep insights into the nature and strength of intermolecular forces.
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2. Results and Discussions
2.1. XRD and FTIR Characterization

The recorded XRD diffractogram presented in Figure 1a reveals the presence of three
crystalline phases: (1) kaolinite (JCPDS PDF 14-0164) Al2O3, 2SiO2, 2H2O, or Si2Al2O5OH4;
(2) quartz SiO2 (JCPDS PDF 46-1045); and (3) muscovite(mica) (JCPDS PDF 07-0032). Mus-
covite is a silicate clay mineral with the chemical formula KAl2(OH, F)2 [AlSiO3O10]. Table 1
presents the dhkl values of the three phases identified for the main characteristic peaks.
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Figure 1. Structural characterization of kaolin: X-ray diffraction patterns of kaolin (a) and FTIR
spectrum of kaolin after and before Cr3+ adsorption (b,c).

Table 1. Intense diffraction peaks of the three phases.

Minerals Kaolinite Quartz Muscovite

Plan 0 0 1 0 0 2 2 0 1 131 1 0 1 0 0 2 0 0 4 1 1 4

dhkl (Å) 7.15 3.56 2.56 2.34 3.34 10.03 4.98 3.23

2θ (◦) 12.36 24.92 34.96 38.36 26.60 8.8 17.76 27.52

The IR spectrum of kaolin (Figure 1b) confirms the predominance of the kaolinite
phase. Four OH-stretching vibration modes typical of well-crystallized kaolinite were
observed [29,30]. The band located at 3621 cm−1 corresponds to the internal OH groups,
located between the octahedral and tetrahedral sheets, while those located at 3699, 3668,
and 3655 cm−1 are linked to external OH groups [31]. The valence vibrations of adsorbed
water molecules are represented by the existence of a tiny band at 3461 cm−1. At 1636 cm−1,
the deformation peak corresponding to the HOH bonds is found. Si–O bond-stretching
vibrations are manifested by the intense peaks at 1115 cm−1 (in longitudinal mode), 1003,
and 1025 cm−1 (in plane). The peak at 1025 cm−1 is characteristic of the Si–O bonds of
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muscovite [32], which is in perfect coherence with the results of the XRD analysis. Si–O–Al
bonds are characterized by the existence of two bands at 796 and 755 cm−1. The peak
detected at 912 cm−1 is characteristic of the vibrational deformation of the OH groups inside
the Al–OH bonds. A peak at 535 cm−1 attributed to Al–O–Si (Al octahedron) deformation
vibrations and another at 467 cm−1 attributed to Si–O–Si bond deformation vibrations was
also observed.

Finally, there are no notable bands in the IR spectrum that correspond to organic
matter. In addition, the FTIR analysis was further examined after chromium adsorption.
As shown in Figure 1c, the location of the peaks after adsorption did not change; however,
the peak intensities decreased, which confirms an ion exchange between Cr3+ and the OH
group and surface complexation between Cr3+ and Al and Si on the surface of the clay [33].

2.2. SEM-EDS Characterization

Figure 2 depicts the morphology of the Tamazert kaolin. Kaolin is composed of
compacted clusters taking the form of sheets and needles of micrometric sizes (from 1 to
9 µm); the laminated structure is a characteristic of well-crystallized kaolinite. However,
the texture study by SEM with the practiced enlargement did not allow us to highlight the
porous structure of the support. Elemental composition of the kaolin, as determined by EDS
spectroscopy, is depicted in Figure 3. Additionally, the ceramics unit of El Milia Company
conducted a comprehensive chemical analysis of the kaolin using X-ray fluorescence (XRF),
the results of which are presented in Table 2. This analysis revealed a high content of
SiO2 and Al2O3, underscoring their dominance in the kaolin’s composition, as referenced
in [34]. These results are consistent with the EDX analysis, which showed a Si/Al mass
ratio greater than one. This demonstrated that kaolinite (Al2O3, 2SiO2, 2H2O), an essential
mineral of kaolin, was predominant. It also indicated the presence of silicas in the form of
quartz or phyllosilicates of type (2:1), and the XRD analysis revealed that it is muscovite.
EDS measurement also revealed the presence of carbon at a significant atomic percentage.
The presence of carbon can be partly linked to the organic compounds contained in clay
soil. The ignition loss of KT2 kaolin was 10.5% (pure kaolin weight loss = 13.95%), which
can explain the existence of organic compounds in the material. In addition, we found that
our support contained iron and traces of chromium.
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Figure 3. Kaolin EDS microanalysis.

Table 2. Chemical composition of kaolin [34].

Compound SiO2 Al2O3 Fe2O3 TiO2 CaO MgO K2O Na2O Ignition Loss

% weight 49.30 33.5 1.59 0.24 0.08 0.40 2.75 0.09 10.5

2.3. Laser Diffraction Particle Size Analysis

Figure 4 displays the results of the kaolin particle size analysis, and particle diameters
ranged from 1.16 to 100 µm. According to the particle size distribution curve, two pop-
ulations could be identified based on their particle diameters of 2.8 and 10 µm (bimodal
distribution with a focal length of 300 mm). These outcomes line up with SEM observations
of the support texture. A decreased focus distance resulted in a different form of the particle
size curve, which indicated the presence of particles between 0.35 and 1 µm in size. Table 3
lists the particle size quantities, including the volume diameters D10 and D90, the median
diameter D50, and the Sauter average D (3.2).



Molecules 2024, 29, 2135 7 of 27

Molecules 2024, 29, x FOR PEER REVIEW 7 of 27 
 

 

  
(a) (b) 

Figure 4. Particle size distribution of kaolin: (a) focal distance of 300 mm and (b) focal distance of 45 
mm. 

2.4. XPS Analysis 
The surface composition of kaolin was obtained by XPS analysis. The survey of kaolin 

is given in Figure 5, whereas the binding energy and atomic % of the elements identified 
are reported in Table 4. Silicon, oxygen (which had the largest concentration), aluminum, 
iron, and potassium were the constituent elements of the kaolin surface. The presence of 
carbon was also revealed, which is consistent with the EDS study. The carbon content 
indicates the rate of organic matter in the examined surface layer. The Al 2p, Si 2p, O1s, 
as well as C1s peaks were subjected to additional fitting procedures to shed light on the 
possible bonds in the studied kaolin sample, as illustrated in Figure 6. The Al 2p photoe-
lectron line consisted of two peaks situated at 74.4 eV and 75.1 eV (Figure 6a). They could 
be associated with Al–O and Al–OH bonds. In the spectra of Si 2p (Figure 6b), three peaks 
were found at 103.2 eV, 102.2 eV, and 100.2 eV. The peak at 102.2 eV belonged to kaolinite, 
while the one at 103.2 eV confirmed the presence of quartz. The third peak with the lowest 
intensity could be associated with the existence of a small amount of SiOx or SiC for-
mation. The O 1s line was resolved into three contributions attributed to Al–O and Al–OH 
bonds at about 531.3 eV, Si–O bonds at 532.2 eV, and quartz at about 533 eV (Figure 6c). 
All of this is in agreement with the previously reported results for kaolinite and similar 
samples [35]. 

Finally, we also focused on the C1s peak, which displayed a complex nature. The 
outcome of the fit is illustrated in Figure 6d. Within this spectrum, we successfully identi-
fied Si–C, C–C/C–H, C–O, and C=O bonds. Specifically, the peak associated with C–C and 
C–H bonds represented adventitious carbon, originating from surface impurities of hy-
drocarbons, as detected in all samples during XPS analysis. 

 
Figure 5. XPS survey spectra of kaolin. 

Figure 4. Particle size distribution of kaolin: (a) focal distance of 300 mm and (b) focal distance of
45 mm.

Table 3. Particle size distribution results.

Estimated Diameters (µm) Focal Distance = 300 mm Focal Distance = 45 mm

D10 2 1.59

D50 8.32 8.25

D90 32.01 33.68

D (3.2) 13.26 3.96

2.4. XPS Analysis

The surface composition of kaolin was obtained by XPS analysis. The survey of kaolin
is given in Figure 5, whereas the binding energy and atomic % of the elements identified are
reported in Table 4. Silicon, oxygen (which had the largest concentration), aluminum, iron,
and potassium were the constituent elements of the kaolin surface. The presence of carbon
was also revealed, which is consistent with the EDS study. The carbon content indicates
the rate of organic matter in the examined surface layer. The Al 2p, Si 2p, O 1s, as well as
C 1s peaks were subjected to additional fitting procedures to shed light on the possible
bonds in the studied kaolin sample, as illustrated in Figure 6. The Al 2p photoelectron line
consisted of two peaks situated at 74.4 eV and 75.1 eV (Figure 6a). They could be associated
with Al–O and Al–OH bonds. In the spectra of Si 2p (Figure 6b), three peaks were found
at 103.2 eV, 102.2 eV, and 100.2 eV. The peak at 102.2 eV belonged to kaolinite, while the
one at 103.2 eV confirmed the presence of quartz. The third peak with the lowest intensity
could be associated with the existence of a small amount of SiOx or SiC formation. The O
1s line was resolved into three contributions attributed to Al–O and Al–OH bonds at about
531.3 eV, Si–O bonds at 532.2 eV, and quartz at about 533 eV (Figure 6c). All of this is in
agreement with the previously reported results for kaolinite and similar samples [35].
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Table 4. Chemical composition of the surface of kaolin.

Element Binding Energy (eV) Atomic %

O 1s 532.3 71.88

Si 2p 103 8.31

Al 2p 74.8 3.59

C 1s 285 8.21

Fe 2p 712.4 3.24

K 2p 294.7 4.77
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Finally, we also focused on the C 1s peak, which displayed a complex nature. The
outcome of the fit is illustrated in Figure 6d. Within this spectrum, we successfully iden-
tified Si–C, C–C/C–H, C–O, and C=O bonds. Specifically, the peak associated with C–C
and C–H bonds represented adventitious carbon, originating from surface impurities of
hydrocarbons, as detected in all samples during XPS analysis.

2.5. Specific Surface Area and Porous Structure

The specific surface area, total pore volume, and average pore diameter of kaolin
were determined using nitrogen gas adsorption–desorption isotherms analyzed by the
BET method. These textural properties are summarized in Table 5, with Figure 7 depicting
the corresponding pore size distribution. From the BET analysis, the specific surface area
was found to be 18.376 m2/g, and the total pore volume was measured at 0.09376 cm3/g.
The average pore diameter was 20.4 nm, suggesting a predominance of larger mesopores.
Figure 7 provides further insight, showing a bimodal pore size distribution with a marked
peak at approximately 2 nm, which corresponded to a mesopore-rich population, and
evidence of micropores under 2 nm in diameter. This bimodal distribution is significant, as it
suggests that kaolin possesses a hierarchical porosity that could be advantageous for various
adsorption processes, including the adsorption of Cr(III) ions from aqueous solutions.

Table 5. Textural characteristics determined from N2 adsorption–desorption.

Method Specific Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore Diameter
(nm)

BET 18.376 0.09376 20.4
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2.6. TGA-DTA

Kaolin’s TGA–DTA thermal study clearly demonstrated that mass loss occurred in
two stages, as presented in Figure 8. The first stage corresponded to a mass loss of 0.58% at
low temperatures (about 60 ◦C) due to hygroscopic water desorption and demonstrated
the hydrophilic character of clay. The second mass loss, approximately 9.56%, occurred
around [400–600 ◦C] and was proportional to the loss of OH ions from the structure. This
corresponded to the loss of the constituent water (crystalline water) by a diffusion process
as well as the transformation of kaolin into metakaolin via the following reaction:

Al2O3, 2SiO2, 2H2O → Al2O3, 2SiO2 + 2H2Ovap (1)
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The dehydroxylation of kaolin took place at a lower temperature than that of pure
kaolinite (515 ◦C), which suggests the presence of a significant amount of adsorbed water
in the interlayer space of kaolinite.

2.7. pHPZC Determination

The pH of a solution in equilibrium with a material whose total surface charge is zero
is defined as the point of zero charge (PZC). It might reflect the complete absence of a
charge or the precise compensation of positive and negative charges. The zero charge point
of kaolin was discovered to be 1.63 (Figure 9a). Thus, for pH values less than pHPZC, by
consuming the solution’s protons, the surface of the support becomes positively charged,
resulting in a less acidic solution. For higher values, the surface becomes negatively charged
as a result of the release of these protons, resulting in a more acidic solution.
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2.8. Zeta Potential

A particle’s zeta potential is an estimate of the global charge that the particle obtains
in the liquid medium. As a result, the stability of emulsion and suspension dispersions
is heavily dependent on this potential, the magnitude of which gives an indication of the
repulsion force present and allows for the prediction of particle stability. A suspension
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with a zeta potential lower than + (or −) 10 mV is often unstable, and the particles tend to
gather and flocculate. A value greater than + (or −) 20 mV indicates the relative stability of
the particles [36], which repel each other and cannot stick together, while a value greater
than + (or −) 30 mV gives them good stability.

More broadly, it is widely believed that the higher the zeta potential, the more stable
the emulsion particles become, and the lower the zeta potential, the closer they are to
particle aggregation. Figure 9b illustrates the findings of this investigation. Unlike the
other physico-chemical characteristics (specific surface area, size, shape, formula), the zeta
potential is not fixed. It is unique in that it varies depending on the particle’s environment.
The pH of the medium, as demonstrated in our work, is a significant component that can
alter the zeta potential of the particles. When the pH rises, the zeta potential of the support
drops. The surface charge explains these values for kaolin. The latter was observed on
the layer side faces (positive, negative, or neutral charge) and the basal surface (always
negative). The basal and lateral surfaces were about identical in size. When the pH was
reduced, protonation of the OH carried on the lateral surfaces reduced the negative charge,
and thus the zeta potential decreased. The best stability was obtained at pH 5.

2.9. Chromium Adsorption Study
2.9.1. Effects of Contact Time and Initial Concentration

Figure 10a depicts the influence of contact time on the Cr(III) adsorption on kaolin
at a concentration of 10 mg/L. After 15 min, equilibrium was reached, and 99.11% of
the chromium was adsorbed. This finding demonstrates kaolin’s high affinity for Cr(III).
The influence of the initial concentration of Cr(III) for concentrations of 5, 20, 40, 50, and
75 mg/L was investigated under the same conditions, also showing the great affinity of
Kaolin for the cation (Figure 10b). Indeed, increasing the concentration of Cr(III) reduced
the retention rate, but adjusting the concentration from 5 to 50 mg/L kept it within the range
[97–100%]. However, at a higher concentration of 75 mg/L, it reached 95%. Furthermore,
for the various concentrations examined, adsorption was found to be relatively rapid.
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2.9.2. Effect of pH

Figure 11a illustrates the effect of solution pH, which demonstrates that increasing the
pH from 1 to 6 enhances the Cr(III) adsorption capacity, but a further increase determines
a non-monotonous decline, as previously established by many authors. For instance,
Dakiky et al. [37] investigated Cr(III) adsorption on various supports and determined that
maximum adsorption occurs at a pH of 5. Activated carbon extracted from agricultural
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waste in several studies, such as Fahim et al. [38], and from industrial waste, such as
the one investigated by Mohan et al. [39], showed similar results. The rise in adsorption
removal in the pH range 1–6 could be explained on the one hand by an increase in the
clay’s cation exchange capacity as a result of Si–OH and Al–OH groups hydrolysis [40] or
by a decrease in the occurrence of competition between the H+ protons and the Cr3+ cation
on the negatively charged support’s adsorption sites. Rivera-Utrilla and Sanchez-Polo [41]
investigated the distribution of Cr(III) species in an aqueous solution as a function of pH
and obtained the following results:

• At pH 2, chromium is found only in its cationic form Cr3+ (hexahydrate).
• At pH 4, the predominant species are Cr3+ (61.16%) and Cr(OH)2+ (38.60%).
• At pH 6, chromium is found in the form of Cr(OH)2+ (60.61%), Cr(OH)2+ (38.24%),

Cr3+ (0.96%), and Cr(OH)3 (0.19%).
• For pH values higher than 7, Cr(OH)3 and Cr(OH)4− species emerged, and the ad-

sorption capacity decreased.
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At last, by varying the pH, the following equations [41,42] are taken into account:

SiOH + Cr3+ → SiOCr2+ + H+ (2)

SiOH + Cr3+ + OH− → SiOCr+ + H2O (3)

SiOH + Cr3+ + 2OH− → SiOCr+(OH)2 (4)

SiOH + Cr3+ + 4OH− → SiOCr+(OH)4+
4 (5)

The transition from the formation of SiOCr2+ species in a relatively acidic medium
to SiOCr+, then SiOCr+(OH)2, and finally SiOCr+(OH)4+

4 in a relatively neutral medium
can thus be noted. In this study, the optimal pH was set at 5, since the zeta potential study
showed that the best stability of kaolin particles was obtained at this pH value.

2.9.3. Effect of Solid–Liquid Ratio

The results of the effect of this parameter, illustrated in Figure 11b, show on the one
hand that kaolin is a very effective adsorbent for trivalent Cr and on the other hand that
adsorption removal increases with adsorbent concentration. Indeed, the percentage of
removal increases from 91.91% for a ratio of 1 to 97.96% for a ratio of 5 (g/L) and reaches
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99% for higher values. As previously stated, this phenomenon is explained by an increase
in the amount of accessible adsorption sites on the surface of the support.

2.9.4. Effect of Ionic Strength

In general, the influence of ionic strength is defined by the nature of the adsorbate, the
adsorbent as well as the chemical agents used (NaCl, KCl, NaNO3, CaCl2, and so on) and
their concentrations. As a result, ionic strength can either reduce or increase the rate of
adsorption. At an initial pH of 5, different quantities of NaNO3 nitrate were added to the
system to investigate the effect of ionic strength on the Cr(III) adsorption on kaolin. The
obtained findings are shown in Figure 12. The graphs for 10−3 and 10−2 M concentrations
are precisely superimposed on the kaolin alone, demonstrating that the addition of NaNO3
at low concentrations did not affect the adsorption process. By raising the salt concentration,
the adsorption rate was reduced by 5% within the first few minutes. Changes in the pH
of the suspended particles, which impact the diffuse layer, are commonly linked to this
inhibition [43]. The pH of the solution decreased as the concentration of the salt increased,
which explains, on the one hand, the decrease in adsorption capacity. Based on the double
layer theory, increasing the ionic strength for pH > pHPZC values reduces the potential
of the diffuse layer and the forces of attraction between the surface and the specifically
adsorbed ions [44–47]. As a result, the thickness of the double layer that surrounds the
kaolin particles is assumed to have decreased as the ionic strength increased, and thus the
adsorption rate was reduced.

Molecules 2024, 29, x FOR PEER REVIEW 13 of 27 
 

 

 
Figure 12. Ionic strength’s effect on the adsorption capacity of adsorbent under constant conditions: 
pH = 5, T = 22 °C, V = 300 rpm, and r = 10 g/L. 

2.10. Effect of Temperature and Thermodynamic Studies 
The thermodynamic parameters ∆G0, ∆H0, and ∆S0 of the Cr(III) adsorption equilib-

rium on kaolin were calculated by Equations (6) and (7). Figure 13a illustrates the temper-
ature’s effect on adsorption, and Figure 13b shows the variation of the adsorption constant 
as a function of temperature. The calculated parameters are listed in Table 6. 

∆G0 =  −𝑅𝑅𝑅𝑅 ln 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 (6) 

ln 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 =
∆S0

𝑅𝑅
−
∆H0

𝑅𝑅𝑅𝑅
 (7) 

 

  
(a) (b) 

Figure 13. (a) Temperature’s effect for the conditions C0 = 10 mg/L, pH = 5, V = 300 rpm, and r = 10 
g/L and (b) variation of the adsorption constant of Cr(III) as a function of temperature. 

Table 6. Thermodynamic parameters relating to Cr(III) adsorption on kaolin. 

T (K) ΔG0 (kJ.mol−1) ΔH0 (kJ.mol−1) ΔS0 (J. K−1. mol−1) 
295 −11.567 

71.783 283.916 303 −14.244 
313 −16.606 

The retrieved results allowed drawing the following conclusions: 
• The negative values of ∆G0 show that the adsorption of Cr(III) on Tamazer kaolin is 

spontaneous. 

Figure 12. Ionic strength’s effect on the adsorption capacity of adsorbent under constant conditions:
pH = 5, T = 22 ◦C, V = 300 rpm, and r = 10 g/L.

2.10. Effect of Temperature and Thermodynamic Studies

The thermodynamic parameters ∆G0, ∆H0, and ∆S0 of the Cr(III) adsorption equi-
librium on kaolin were calculated by Equations (6) and (7). Figure 13a illustrates the
temperature’s effect on adsorption, and Figure 13b shows the variation of the adsorption
constant as a function of temperature. The calculated parameters are listed in Table 6.

∆G0 = −RTln kads (6)

ln kads =
∆S0

R
− ∆H0

RT
(7)
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Table 6. Thermodynamic parameters relating to Cr(III) adsorption on kaolin.

T (K) ∆G0 (kJ·mol−1) ∆H0 (kJ·mol−1) ∆S0 (J·K−1·mol−1)

295 −11.567

71.783 283.916303 −14.244

313 −16.606

The retrieved results allowed drawing the following conclusions:

• The negative values of ∆G0 show that the adsorption of Cr(III) on Tamazer kaolin
is spontaneous.

• As the temperature gets higher, the values of ∆G0 become more negative, indicating
that adsorption is more favorable at higher temperatures. Furthermore, the positive
value of the enthalpy proves that the adsorption is endothermic and also favored
by the rising temperature. In fact, several studies have demonstrated that the Cr(III)
adsorption on kaolinite is endothermic [45,48].

• The high value of the enthalpy suggests the occurrence of chemical adsorption. How-
ever, it is reported in the literature that if ∆G0 values are below 18 kJ·mol−1 (absolute
value), the adsorption process is dominated by a physisorption [48]. Thus, the adsorp-
tion of Cr(III) may be interpreted as physisorption complemented by chemisorption
on the kaolin surface.

• The increase in the degree of freedom of the adsorbed species, as well as the rise in
disorder at the solid–adsorbate interface, explains why entropy is positive.

The activation energy (Ea) is a crucial thermodynamic quantity that can be empirically
measured by computing the kinetic rate constants at different temperatures. The empirical
law of Arrhenius is represented in terms of the kinetic constant k:

k = Aexp
(
−Ea

RT

)
(8)

where A is a pre-exponential or frequency factor, R is the perfect gas constant
(R = 8.314 J·mol−1·K−1), T is the absolute reaction temperature, and Ea is the activation
energy. The plot lnk2 vs. (1/T) allows for calculating the activation energy Ea. The activa-
tion energy value reveals the nature of the phenomenon. A value of Ea = 25.665 kJ·mol−1

was obtained, indicating a predominant chemical adsorption phenomenon [49]. When the
value of Ea < 40 kJ·mol−1, the process is generally controlled by the diffusion phenomenon,
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whereas values of Ea > 40 kJ·mol−1 imply that the adsorption is governed by a chemical
process. This suggests that the adsorption of Cr(III) on kaolin is governed by a diffusion
phenomenon in the pores.

2.11. Adsorption Isotherm Study

Figure 14 represents the isotherm of adsorption of Cr(III) on kaolin at an ambient
temperature (T = 22 ◦C) by a classic form of Langmuir isotherm of type (L) having the
highest possible adsorption capacity of 7.10 mg/g. The adsorption isotherm of Cr(III) on
kaolin was analyzed using a variety of models, including Langmuir, Freundlich, Temkin,
Elovich, and Dubinin–Radushkevitch. All the calculations carried out for the various
models tested are given in Table 7.
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Table 7. Adsorption isotherm parameters.

Models Parameters
R2

Langmuir qm (mg/g) b (mL/µg)

Type I 6.571 1.977 0.9958

Type II 8.422 1.151 0.9807

Freundlich
Kf (mg/g) (µg/mL) 1/n

0.9835
3.603 0.56

Temkin
KTem (L/g) BT (kJ/mol)

0.9495
21.502 1.624

Elovich
qm (mg/g) KE (L/mg)

0.9485
3.618 2.031

Dubinin–Radushkevich
qm (mg/g) K (mol2/kJ2)

0.9262
5.601 0.041

• Langmuir’s model gives a good representation of the Cr(III) isotherm (R2 > 0.98). The
applicability of both of these versions suggests good adsorption at low concentrations.

• The separation factor RL ranges between 0.06 and 0.14, indicating that adsorption is
favorable. The value of RL is given by the equation:

RL =
1

(1 + bCe)
(9)



Molecules 2024, 29, 2135 16 of 27

Table 8 provides a comprehensive compilation of studies investigating the removal
of Cr(III) using different adsorbents. The data presented in the table demonstrate that the
equilibrium data were effectively fitted to the Langmuir isotherm model, underscoring
its applicability to describe the adsorption behavior of chromium across various adsor-
bent materials.

Table 8. Comparative analysis of maximum Langmuir adsorption capacities of Cr(III) for various adsorbents.

Adsorbent Initial pH Langmuir Adsorption Capacity
qmax (mg/g) Ref.

Pomelo fruit peel 5 11.3–12.4 Van-Phuc Dinh et al. [50]

Aluminum oxide hydroxide 3.8 3.36 Bedemo et al. [51]

Palm flower (2 types)
4.5 6.24

Elangovan et al. [52]
4.5 1.41

Kaolinite Clay 4.5–5.5 2–3.44 Turan et al. [45]

Activated carbon (2 types)
2–6 12.2

Mohan et al. [39]
2–6 39.56

Activated carbon (4 types)

- 7.08

Rivera-Utrilla et al. [41]
- 3.52

- 13.31

- 10.52

Expanded perlite 4.5 0.73 Chakir et al. [53]

Kaolinite clay 5 8.422 This study

2.12. Computational Study
2.12.1. Structural and Optimization Analysis

The detailed structural model of the investigated kaolinite surface is shown in
Figure 15, showcasing the distinct Al–O(H) and Si–O layers. The Al–O(H) layer is char-
acterized by a dense arrangement of hydroxyl groups attached to aluminum atoms, a
configuration that facilitates hydrogen bonding and contributes to the surface’s chemical re-
activity. On the other hand, the Si–O layer consists of a network of silicon-oxygen tetrahedra,
presenting a more ordered and less reactive surface [54]. These structural characteristics
are essential for understanding the surface chemistry of kaolinite, particularly how it in-
teracts with various adsorbates, including Cr(OH)3. This structural assessment, complete
with multi-angled visualizations, is critical for advancing adsorption studies and informs
subsequent COSMO-RS charge surface analyses, facilitating a deeper comprehension of the
interaction intricacies between kaolinite and adsorbed species.

The COSMO-RS model facilitates an in-depth examination of the electrostatic mapping
of the kaolinite surface in the presence of Cr(OH)3, with varying colors representing
different potential interactions, as displayed in Figure 15.

The Al–O(H) layer’s electrostatic profile is rich with both hydrogen bond donor (blue)
and acceptor (red) sites, interspersed with non-polar (green) regions (Figure 16a). This intri-
cate pattern suggests a highly interactive surface capable of forming diverse non-covalent
interactions with Cr(OH)3. Such a landscape is compatible with both physisorption, due
to the non-polar regions, and chemisorption, facilitated by the polar sites. By comparison,
the Si–O layer (Figure 16b) displays a more homogeneous green profile indicative of a
primarily physisorptive interaction potential due to its non-polar character, which is in
accordance with the experimental results reported in the thermodynamic study. The limited
red and blue areas imply fewer sites for strong directional bonding, such as hydrogen
bonds, which may lead to a weaker interaction with Cr(OH)3. The contrasting electrostatic
environments of the Al–O(H) and Si–O layers align with the hypothesis that the Al–O(H)
layer would exhibit a higher adsorption capacity and specificity for Cr(OH)3. This is due to
its ability to engage in multiple types of interactions, potentially leading to a more stable
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and selective adsorption process. These findings are significant for the engineering of
kaolinite-based adsorbents, where maximizing the adsorption capacity and selectivity for
specific contaminants is crucial. Understanding these surface interactions at a molecular
level enables the design of targeted adsorption processes and the development of kaolinite
materials with optimized properties for the removal of Cr(III) from aqueous environments.
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2.12.2. Molecular Orbital Analysis

In this study, we conducted an in-depth molecular orbital analysis to elucidate the
electronic interactions that facilitate the adsorption of Cr(OH)3 onto kaolinite, specifically
targeting the Al–O(H) and Si–O layers. The frontier orbitals, namely the HOMO and the
LUMO orbitals, were critically assessed (refer to Figure 17). These orbitals are quintessential
to predicting the chemical reactivity and interaction dynamics of the adsorbate–adsorbent
pairs, as they define the pathways for electronic transitions essential in adsorption phenom-
ena [16,55]. Figure 16 demonstrates that the Al–O(H) layer exhibited a band gap of 2.037 eV,
suggesting a higher resistance to electron transition compared to the Si–O layer’s band gap
of 1.338 eV. These band gaps reflect the reactivity potential of each layer, with a smaller
gap in the Si–O layer indicating a predisposition for electron movement and potential for
stronger chemical reactions. The HOMO is densely concentrated around the Cr(OH)3 and
the Al–O(H) layers, indicating a high likelihood for electron donation. In contrast, the
HOMO’s presence is reduced on the Si–O layer, pointing to weaker electronic interactions.
The LUMO distribution complements this, with the Al–O(H) layer showing a propensity
to accept electrons, whereas the Si–O layer’s LUMO is closely associated with the silicate
matrix, suggesting different adsorption behaviors [54,56].
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 Figure 17. Frontier orbital distributions of the structure models for the adsorbed Cr(OH)3 onto

kaolinite surface in Al–O(H) (a) and Si–O (b) layers.

These findings contribute to a detailed understanding of the electronic interactions
that dictate adsorption efficacy. A direct comparison with literature values highlights the
distinct electronic environment due to Cr(OH)3, aiding in designing tailored kaolinite for
specific adsorption tasks [57]. This molecular orbital analysis underscores the enhanced
reactivity of the Al–O(H) layer for Cr(OH)3 adsorption over the Si–O layer and suggests
strategies for improving adsorption processes for Cr(III) removal, enhancing kaolinite’s
role in wastewater treatment.
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2.12.3. Non-Covalent Interaction Analysis

The elucidation of adsorption mechanisms through the visualization of weak interac-
tions between Cr(OH)3 contaminant and kaolinite adsorbents is a pioneering approach. In
this investigation, the IGM and RDG analyses via the Multiwfn software 3.8 packages [58]
were employed to clarify the non-covalent forces involved.

Employing IGM, predicated on promolecular density, we explored both interfragment
(δg inter) and intrafragment (δg intra) interactions [56,58]. This study focuses on δg in-
ter to illuminate the interaction landscapes between Cr(OH)3 and the kaolinite surface,
modeled to account for both Al–O(H) and Si–O layers’ attachment scenario. The color-
coded isosurface transitions from blue to green to red, corresponding to the intensity of
attractive interactions. For instance, as depicted in Figure 18a,b, the substantial hydrogen
bonding interactions indicated by the pronounced blue regions in the IGM isosurface can
be correlated with the dense localization of the HOMO around the Cr(OH)3 molecule,
particularly in the Al–O(H) layer (Figure 18a). This suggests that the electronic structure
of the Cr(OH)3-kaolinite complex, as revealed by the molecular orbitals, is conducive to
strong hydrogen bonding [59–62].
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Moreover, the RDG analysis, which highlights significant electron density peaks and
therefore strong hydrogen bonding at the Al–O(H) interface, aligns with the higher band
gap energy observed for this layer. This implies that while the electron transfer may be
less frequent due to the higher energy barrier, the interactions that do occur are likely to be
more stable, as evidenced by the strong hydrogen bonds [63]. In particular, RDG analysis,
showcasing notable electron density peaks at the Al–O(H) interface with Cr(OH)3, aligns
with the higher band gap energy of this layer. This implies that, while electron transfer
may be less frequent due to the increased energy barrier, the interactions that do occur
tend to be more stable, as evidenced by the significant hydrogen bonding. The observed
peak in electron density at sign(λ2)ρ values around −0.04 and −0.05 a.u. (Figure 18d)
indicates robust attractive interactions, likely hydrogen bonds, more intense than those at
the Si–O sites.

This finding not only validates the presence of substantial bonding interactions but
also highlights the differing adsorption capacities between the Al–O(H) and Si–O layers
in kaolinite. Such insights are pivotal for comprehending the adsorption mechanism
and tailoring adsorbents effectively. Consequently, IGM and RDG analyses present a
detailed portrayal of the Cr(OH)3 adsorption mechanism, predominantly driven by vdW
interactions, complemented by hydrogen bonds at critical stages, with steric effects playing
a supplementary role. This granular insight is invaluable for the development of advanced
adsorbent materials, enhancing the efficiency of wastewater treatment solutions.

2.12.4. Topology Analysis

Bader’s QTAIM theory is widely utilized to probe the nature of interactions within a
variety of molecular systems. It offers a detailed analysis of bonding through real-space
functions, particularly electron density at bond critical points (BCPs) [64,65]. QTAIM’s
ability to discern between strong and weak molecular interactions renders it indispensable
for experimental researchers exploring host–guest molecular systems. In this study, the
QTAIM analysis offers an insightful examination of the interactions between Cr(OH)3 and
the kaolinite surface.

As illustrated in Table 9 and Figure 19, QTAIM reveals the complex bonding within
the Cr(OH)3-kaolinite adsorption system, particularly within the Al–O(H) and Si–O layers.
The analysis not only underscores the diversity in bond strength, as indicated by the
electron density and Laplacian values at bond critical points (BCPs), but also delineates the
character of these interactions, such as hydrogen bonding and van der Waals forces. For
example, BCP 252 in the Al–O(H) layer reveals a significant interaction between Cr(OH)3
and kaolinite, characterized by its electron density value, indicative of a potential hydrogen
bond crucial for adsorption [16]. This nuanced understanding of molecular interactions
obtained from QTAIM metrics provides a robust framework for designing optimized
kaolinite-based adsorbents for environmental applications, particularly for the removal of
chromium pollutants from water. This research contributes novel perspectives to the field
of adsorption science, paralleling the significance of kaolinite studies involving a variety
of other compounds, such as amino alcohol [57], 2-phosphonobutane-1,2,4-tricarboxylic
acid [66], ciprofloxacin [60], asphaltene [67], bisphenol A, and bisphenol S [59].
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Table 9. Topological features of interaction sites (in atomic units) at selected bond critical
points (BCPs).

BCP X–Y ρ(r) ∇2ρ(r) G(r) V(r) EHB |V(r)|/G(r) H(r)

Cr(OH)3
. . .Al–O(H) layer

252 32(H)–142(H) 0.003220 0.010300 0.001910 −0.001260 −0.000629 −0.659686 0.000543
308 64(H)–140(O) 0.007270 0.016300 0.003490 −0.002920 −0.001460 −0.836676 0.000593
310 33(H)–137(Cr) 0.005640 0.007260 0.001720 −0.001630 −0.000816 −0.947674 −0.000164
337 67(H)–143(H) 0.008760 0.026200 0.005440 −0.004320 −0.002160 −0.794118 0.001245
363 138(O)–130(H) 0.006970 0.016300 0.003450 −0.002820 −0.001410 −0.817391 0.000688
379 141(H)–94(O) 0.003480 0.012300 0.002280 −0.001480 −0.000742 −0.649123 0.000752

Cr(OH)3
. . .Si–O layer

312 142(H)–81(O) 0.011400 0.033100 0.007160 −0.006060 −0.003030 −0.846369 0.001401
346 50(O)–143(H) 0.013900 0.042100 0.009330 −0.008120 −0.004060 −0.870311 0.001570
409 114(O)–141(H) 0.013300 0.039800 0.008780 −0.007610 −0.003800 −0.866743 0.001648

3. Materials and Methods
3.1. Kaolin Preparation

Tamazert kaolin, from the Tamazert region, situated 14 km from El-Milia in the Jijel
region (Northeast Algeria), was provided by the Algerian Kaolin Society’s El-Milia kaolin
complex (SOALKA, El-Milia, Algeria). KT2 is the commercial name for this compound. To
raise the amount of kaolinite in this product, wet particle size separation was used. Kaolin
was also exposed to the following physical treatments before to be used as an adsorbent:

• Drying with a Memmert oven (Schwabach, Germany) set to 110 ◦C;
• Grinding with a Rescht PM 100 electric grinder (San Diego, CA, USA);
• Sieving with sieves of precise diameter (0.06 mm);
• Storage in a desiccator.

3.2. Characterization of Kaolin

The XRD analysis was performed on a powder diffractometer with the Bragg–Brentano
geometry (θ, 2θ configuration): BRUKER-AXE D8-ADVANCE model (Bruker, Billerica,
MA, USA). A copper anticathode powered at 40 kV and 40 mA generated the X-rays. A
curved graphite back monochromator separates the Cu radiation Kα1 (Kα1 = 1.5406 Å) and
Kα2 (Kα2 = 1.54439 Å). The data were obtained over a 2θ range from 5 to 60◦ with a step
of 0.04.

A PERKIN-ELMER spectrometer (Waltham, MA, USA) was used for the FTIR investi-
gation of kaolin. The spectra were taken in the mid-infrared spectrum, with wave numbers
(υ = 1/λ) ranging from 4000 to 400 cm−1 on pellets made by dispersing 4 mg of the support
in 100 mg of KBr. HITACHI 4100S scanning electronic microscopy (SEM, Tokyo, Japan)
with an analyzer EDS was used for the morphology study and the elementary analysis
of the kaolin. The sample was ground as fine particles and mechanically dispersed on an
electrically conductive carbon tape, which was placed on an aluminum disc. Kaolin particle
size analysis was performed using a Malvern Mastersizer X Ver 2.15 laser particle sizer
(Malvern Instruments Ltd., Malvern, UK). The measurements were carried out at a source
wavelength of 2.40 mm and focal lengths of 300 and 45 mm, allowing for the analysis of
particles with diameters ranging from 1 to 600 µm and 0.1 to 80 µm. Before measurement,
the particles were dispersed in bidistilled water under the action of ultrasound for 30 s. A
LEYBOLD HERAEUS LHS10 spectrometer (Cologne, Germany) was used for the X-ray
photoelectron spectroscopy (XPS) analysis. The experiment was done in an ultravacuum
(10−9 torr) to improve the resolution of the spectra and the sensitivity of the analysis and
to avoid surface contamination. The aluminum Kα line (13 kV, 20 mA) was employed as
an X-ray source, and electron energies were determined in the constant analyzer energy
mode. The C 1s photoelectron line at 285.0 eV was used as the binding energy reference.
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The specific surface area was calculated using a N2 adsorption–desorption isotherm at
77.3 K. The sample was first degassed at 110 ◦C for 3 h at a low pressure using a Quanta
chrome Nova Win2 instrument (Boynton Beach, FL, USA). The thermal analysis of kaolin
was carried out using a TGA CETARAM 92-16 instrument (Lyon, France). The curves
were measured in air between room temperature and 800 ◦C. The chosen temperature rise
rate was 10 ◦C·min−1. The point of zero charge pHPZC of the kaolin was established by a
method described elsewhere [68].

This method consists of introducing a fixed mass of the support into 50 mL of a
solution of potassium nitrate KNO3 (0.1 M), whose pH had been adjusted beforehand. The
mixture was subjected to agitation (500 rpm) for 24 h in a cell thermostated at 22 ◦C. After
filtration of the solution, the final pH was measured. The value of pHPZC corresponds to
the point pHfinal = pHinitial obtained from the curve (pHfinal − pHinitial) vs. pHinitial.

To evaluate the zeta potential, suspensions were prepared by introducing a fixed mass
of kaolin in the KCl solution (0.01 M), and the pH of the solutions was adjusted to the
desired level using NaOH and HCl. Solutions were then subjected to agitation for 24 h at
ambient temperature. After centrifugation (1200 rpm), the supernatant was recovered for
measurement of the zeta potential by Zetamaster Malvern Instruments.

3.3. Reagents and Solutions

All the products used were of recognized analytical quality. Chemicals used were
CrCl3·6H2O (98%, Sigma Aldrich, St. Louis, MO, USA), HNO3 (65%, Riedel-de Haen,
Buchs, Switzerland), NaOH (99%, Fluka, Honeywell, Charlotte, NC, USA), KCl (99%,
Fluka), and NaNO3 (99% EPR). A stock synthetic wastewater solution was prepared by
dissolving 1000 mg of CrCl3·6H2O in 1 L of double distilled water. Different solutions of
concentrations varying from 5 to 75 mg/L were obtained by dilution. HNO3 (0.1 M) and
NaOH (0.1 M) solutions were used to adjust the solution’s pH, measured with a Hanna
pH.211 pH meter.

3.4. Batch Adsorption Experiment

Both equilibrium and kinetic studies were carried out by mixing in beakers 1 g of
kaolin with 100 mL of Cr(III) solution at various concentrations (5, 10, 20, 40, 50, and
75 mg/L) and fixed pH (pH = 5). The samples were put in a thermostat bath and stirred at
a speed of 300 rpm. The solid–liquid separation was done using a Millipore filter (Billerica,
MA, USA, 0.45 µm), and the aliquot concentrations were then evaluated. The pH effect was
evaluated using a solution of 10 mg/L at 22 ◦C with a solid–liquid ratio fixed at 10 g/L
and varying the pH from 1 to 11. Temperature effect was studied at 5, 10, 22, 30, and 40 ◦C
and pH 5. The influence of the mass of the adsorbent was studied by mixing separately
0.1, 0.3, 0.5, 0.8, 1.2, and 1.4 g in 100 mL of a Cr(III) solution (10 mg/L) at 22 ◦C and pH 5.
The quantification of Cr(III) in the samples was achieved by using a SHIMADZU 1601
UV–visible spectrophotometer (Kyoto, Japan) following a detailed protocol. Initially, Cr(III)
ions in the solution were oxidized to Cr(VI) using a solution of potassium permanganate.
The resultant Cr(VI) ions were then complexed with 1,5-diphenylcarbazide (DPC) in an
acidic medium to form a colored complex, which is a widely recognized method for
the colorimetric determination of Cr(VI), as outlined in the ASTM D1687-17 standard
method [69]. The absorbance of this complex was measured, allowing for the accurate
determination of the Cr(VI) concentration, which was subsequently used to calculate the
equilibrium adsorption capacity q (mg/g) of the kaolin for Cr(III) (Equation (10)). The
specific procedure for preparing the DPC complex, including the concentrations of DPC and
the conditions under which the colorimetric reaction was conducted, were strictly followed
as per the standard guidelines to ensure reproducibility and accuracy of the results.

q =
C0 − Ce

m
·V (10)
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where C0 and Ce are the initial concentration and the concentration at equilibrium (mg/L),
respectively; V is the volume of the solution (L); and m is the mass of the adsorbent (g).

Adsorption isotherms were modelled by classical adsorption models: two-parameter
Langmuir model, Freundlich, Temkin, Elovich, and Dubinin–Radushkevich.

The classical Langmuir and Freundlich model equations are given by the Equations (11)
and (12):

qe =
qmaxbCe

1 + bCe
(11)

qe = K f C1/n
e (12)

where qmax (in mg/g) is the maximum adsorption capacity, b (in L/g) is the Langmuir
equilibrium constant, and Kf (in (mg/g)/(mg/L)1/n) and 1/n are the Freundlich constants.

The Elovich isotherm assumes that the adsorption takes place in multiple layers and
is expressed by Equation (13):

qe

qm
= KECeexp

1
n

(13)

where KE is the Elovich constant and qm is the maximum capacity of Elovich.
The Temkin model is applicable in the case of heterogeneous surfaces and is repre-

sented as:
qe = Btln(KtCe) (14)

where Kt (L/g) is the Temkin constant and Bt is a constant related the heat of adsorption
(kJ·mol−1).

The Dubinin–Radushkevich isotherm, which is based on the following expression, is
frequently used to determine typical porosity:

qe = qmln
(

Kε2
)

(15)

where qe is the equilibrium adsorption capacity (mg·g−1), qm is the adsorption capacity at
saturation (mg·g−1), the constant K (mole2/kJ2) gives the mean free energy, and ε is the
Polanyi potential given by the following expression:

ε = RTln
(

1 +
1

Ce

)
(16)

where R is the gas constant (8.314 J/mol·K) and T is the absolute temperature.
The pseudo-second order kinetic model is generally given by the following equation:

dqt
dt

= k2(qe − qt)
2 (17)

After integration, the linear form is given by Equation (18):

t
qt

=
1

q2
e k2

+
1
qt

t (18)

where qe and qt are the equilibrium adsorption capacity and instantaneous adsorption
capacity (mg/g), respectively, and k2 is the kinetic rate.

3.5. DFT Study

The DFT study in this research employs the M06-2X [70] functional and the TZVP
basis set [71], executed through the Turbomole software version 4.4.1 [72,73], to optimize
and analyze the adsorption system. This study extends beyond conventional DFT analyses
by incorporating advanced techniques like reduced density gradient (RDG) and the quan-
tum theory of atoms in molecules (QTAIM) for a detailed investigation of non-covalent
interactions (NCIs) within the system [74,75].
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Additionally, the COSMO-RS method and orbital analysis were utilized to assess the
reactivity and electronic properties of the system, focusing on the energies of the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
The RDG analysis, crucial for identifying van der Waals interactions and other weak non-
covalent forces [61,76,77], was complemented by NCI analyses performed using Multiwfn
3.8 packages [58]. These analyses were visualized through the visual molecular dynamics
(VMD) [78] interface and Gnuplot software version 5.4 [79], offering a comprehensive
perspective on the interaction dynamics within the adsorption system.

4. Conclusions

In this study, the efficacy of Algerian Tamazert kaolin as an adsorbent for Cr(III)
removal from wastewater was rigorously evaluated. Characterization techniques, including
XRD and FT-IR, confirmed the crystalline structure and kaolinite phase dominance, while
EDS, XPS, and particle size analyses detailed the kaolin’s composition and micrometric
particle presence. BET surface area measurements and the thermo-gravimetric analysis
provided insights into the mesoporous nature and thermal stability of the clay, with zeta
potential measurements indicating surface charge characteristics and particle stability in
the solution.

The adsorption experiments demonstrated Tamazert kaolin’s high Cr(III) adsorp-
tion capacity, achieving 99.11% removal efficiency under optimal conditions. Influential
parameters such as pH, initial concentration, adsorbent mass, and ionic strength were sys-
tematically explored, revealing the adsorption’s dependency on these factors. The process
was found to be spontaneous and can be driven by a combination of physisorption and
chemisorption, as evidenced by the thermodynamic study. Langmuir isotherm conformity
suggested monolayer adsorption.

Complementing these findings, DFT computations and quantum chemical analyses,
including COSMO-RS, molecular orbitals, IGM, RDG, and QTAIM, provided a molecular-
level understanding of the adsorptive interactions. These theoretical tools, in conjunction
with experimental data, have propelled biosorbent research forward, improving the under-
standing of adsorption mechanisms. This study underscores the significance of continuous
innovation in adsorbent material development and regeneration techniques, contributing
to sustainable industrial and environmental remediation efforts.
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