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Abstract: The chromatin organization and its dynamic remodeling determine its accessibility and
sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We
studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the
nuclear pattern of histone epigenetic modifications and phosphoproteome pathways. The early effect
of oxidative stress on chromatin was studied by determining the levels of 8-oxoG lesions and the
alteration of the epigenetic modification of histones. Oxidative stress caused an accumulation of
8-oxoG DNA lesions that were increased by VRK1 depletion, causing a significant accumulation
of DNA strand breaks detected by labeling free 3′-DNA ends. In addition, oxidative stress altered
the pattern of chromatin epigenetic marks and the nuclear phosphoproteome pathways that were
impaired by VRK1 depletion. Oxidative stress induced the acetylation of H4K16ac and H3K9 and the
loss of H3K4me3. The depletion of VRK1 altered all these modifications induced by oxidative stress
and resulted in losses of H4K16ac and H3K9ac and increases in the H3K9me3 and H3K4me3 levels.
All these changes were induced by the oxidative stress in the epigenetic pattern of histones and
impaired by VRK1 depletion, indicating that VRK1 plays a major role in the functional reorganization
of chromatin in the response to oxidative stress. The analysis of the nuclear phosphoproteome
in response to oxidative stress detected an enrichment of the phosphorylated proteins associated
with the chromosome organization and chromatin remodeling pathways, which were significantly
decreased by VRK1 depletion. VRK1 depletion alters the histone epigenetic pattern and nuclear phos-
phoproteome pathways in response to oxidative stress. The enzymes performing post-translational
epigenetic modifications are potential targets in synthetic lethality strategies for cancer therapies.

Keywords: VRK1; oxidative stress; histone; acetylation; methylation; chromatin; nuclear phosphoproteins

1. Introduction

The chromatin structure is highly organized in cells, and the degree of chromatin
compaction determines the accessibility of DNA to reactive oxygen species, the main
source of endogenous DNA damage, and to treatments based on DNA damage [1,2]. The
proteins regulating chromatin dynamic organization are likely to determine the sensitivity
to DNA damage-based cancer treatments. Nucleosomes are dynamic structures composed
of histones that have different patterns of epigenetic modifications depending on the
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cellular requirements [3]. Thus, any change that affects the chromatin organization, such
as the pattern of histone post-translational modifications (PTMs), can have a major effect
on the chromatin remodeling associated with specific functions. Among them, there is
increasing evidence indicating that chromatin changes influence the response to oxidative
stress [4]. The coordination of different histone PTMs underlies the dynamic remodeling
of chromatin in different biological processes. Oxidative stress drastically alters histone
PTMs as well as the state of chromatin-modifier enzymes [2]. Therefore, alterations in the
regulation of chromatin remodeling associated with the response to oxidative stress can
contribute to facilitating the progression of human diseases, including cancer, neurological
diseases, and aging [2,4,5].

Oxidative stress is the main source of endogenous DNA damage [6,7] and also the
mechanism of DNA damage by ionizing radiation that generates reactive oxygen species.
Oxygen reacts with guanine residues, forming 8-oxoguanine (8-oxoG) [8], a DNA lesion
that is very efficiently removed by 8-oxoguanine DNA glycosylase (OGG1) [9]. However,
unrepaired 8-oxoG lesions can lead to single-strand DNA breaks that progress to double-
strand breaks [10]. The local histone environment of chromatin mediates the recruitment of
OGG1 [11,12], which is influenced by the nucleosome wrapping [13]. Therefore, alterations
in the chromatin organization are likely to alter the DNA repair. DNA oxidative lesions
contribute to neuronal DNA damage, which is associated with neurological diseases [14].
The excess of reactive oxygen species (ROS) in the microenvironment of normal cells
facilitates genome instability [15] and tumorigenesis [16]. Many tumors have elevated
levels of ROS and chronic oxidative stress [17,18]. Chromatin remodeling is associated with
tumor cell adaptation to chronic oxidative stress [4,19]. Moreover, cancer treatments such as
radiotherapy take advantage of this ROS excess in tumor cells by causing an accumulation
of lethal levels of ROS and, hence, increasing oxidative DNA damage to induce tumor cell
death [20]. In the context of cancer, oxygen plays a critical role in the response to some local
treatments, such as ionizing the radiation that indirectly alters DNA by generating reactive
oxygen species [4,8]. Oxidative DNA lesions locally alter the chromatin organization, which
is conditioned by the pattern of the epigenetic modifications of histones [21]. Both the
prevention of ROS accumulation and the repair of the DNA damage caused by ROS are
crucial to preserve genome integrity and cellular viability [4].

The alteration of nucleotides by oxidative stress can affect the pattern of epigenetic
modifications of histones as part of the DNA damage response (DDR), a process requiring
dynamic chromatin remodeling to facilitate its different sequential steps [22–24]. Chro-
matin structural modifications have several roles in DDR, like the induction of chromatin
relaxation, which is essential to initiate the repair response. Moreover, these changes act as
sensors, amplifying the signal and functioning as scaffolds for the recruitment of down-
stream signaling and sequential repair proteins, which vary depending on the type of DNA
damage. Changes in the chromatin structure vary depending on the location and the type
of lesion, thus initiating different cell-cycle checkpoints and repair pathways for specific
cellular requirements [25]. Alterations in the chromatin dynamic reorganization can impair
the DNA repair mechanisms. In response to DNA damage, the acetylation of histones
facilitates local chromatin relaxation and the accessibility to DDR proteins. Tip60 acetylates
H4 in K16, which impairs the interaction between the H4 tail and adjacent nucleosomes,
increasing the chromatin accessibility to the repair machinery [26], in addition to key DDR
proteins such as ATM, which is activated by VRK1 [27] and is linked to the chromatin
relaxation associated with H4K16ac [28]. These acetylations are triggered by VRK1, which
specifically phosphorylates Tip60/KAT5, leading to the activation of its transacetylase activ-
ity [29,30], which acetylates ATM, a modification required for this kinase activation [31,32].
VRK1 also regulates the pattern of histone epigenetic modifications [33], which can interfere
with the DNA damage responses. Alterations in the regulation of histone epigenetic modi-
fications are associated with a defective DDR and have been linked to human pathologies
like cancer [34,35]. DDR deficiencies due to changes in the chromatin structure result
in genome instability and mutagenesis [36], such as the loss of function of SETD2, the
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methyltransferase that carries out the H3K36me3 post-translational modification (PTM),
which promotes renal cancer progression due to DDR impairment [37]. In response to
oxidative stress, the post-translational modifications in histone H3 are modulated through
the regulation of epigenetic enzymes, such as the reduction in HDAC activity [38]. ROS
also regulates histone methylation, including activating PTMs (H3K4me2 and H3K4me3)
and repressive PTMs (H3K9me2, H3K9me3, H3K27me2, and H3K27me3), which vary
depending on the cellular requirements [2,39].

VRK1 is a serine–threonine kinase that, during evolution, appeared late in complex
organisms, probably to coordinate and integrate many basic cellular functions in parallel to
p53 [40,41]. In Drosophila melanogaster, this gene (ballchen) has been renamed to nucleosomal-
kinase 1 (NHK-1), which better reflects its cellular functions [42–47]. VRK1 is a nuclear
and chromatin kinase that interacts with nucleosomes [48] and participates in chromatin
remodeling as an epigenetic writer by directly phosphorylating histones in response to
stimuli [49,50], or indirectly by regulating the epigenetic enzymes that perform histone
post-translational modifications (PTMs) [29,30,51]. VRK1 depletion by itself alters the
pattern of histone H3 acetylation and methylation in several lysine residues [33]. VRK1
binds to and phosphorylates histone H3 at Thr3 and Ser10, which, together with Aurora B,
participates in the sequential steps of chromatin condensation during mitotic progression.

VRK1 regulates the nuclear and chromatin phosphoproteome and affects different
signaling pathways implicated in chromatin remodeling [52]. VRK1 participates in the
initiation of the DDR, promoting chromatin remodeling by the direct phosphorylation of
Tip60/KAT5 [29,30], H3 [48] H2A [49], and H2AX [53], which are associated with local
chromatin relaxation and facilitate the access to DNA damage of the sensing and repair
mechanisms. In addition, VRK1 also phosphorylates and regulates sequential DNA repair
proteins from DNA damage repair (DDR) pathways such as NBS1, 53BP1, and p53 [53].
VRK1 malfunction or downregulation leads to genome instability and DNA damage accu-
mulation because of a defective DDR [53]. Moreover, VRK1 is associated with the regulation
of chromatin remodelers such as the direct phosphorylation and activation of the acetyl-
transferase Tip60/KAT5 in response to doxorubicin-induced DNA damage [29,30]. These
data indicate a potential function of VRK1 in chromatin remodeling that could influence
the oxidative stress response, and histone phosphorylations are likely to alter the pattern
of their epigenetic modifications. Moreover, VRK1 overexpression is associated with a
poor prognosis in several tumor types [54,55]. The VRK1 roles vary depending on the
phase of the cell cycle; in some contexts, it promotes tumor growth and in others tumor
prevention [53]. An additional pathogenic implication of the role of VRK1 is associated with
rare variants of VRK1, which are functionally defective. These rare VRK1 variants are func-
tionally involved in very severe motor neuron diseases, among which are spinal muscular
atrophy, amyotrophic lateral sclerosis, and distal hereditary neurological diseases [56].

In this work, we have studied the implications of VRK1 on the cellular sensitivity to
oxidative stress and its role in the modification of histone post-translational modifications
and the nuclear phosphoproteome, which underly the sensitization of tumor cells to
treatments based on DNA damage.

2. Results
2.1. VRK1 Depletion Causes an Increase in 8-Oxo-Guanine DNA Lesions Induced by
Oxidative Stress

Oxidative damage causes 8-oxoG lesions in the DNA [57], which locally alter chro-
matin [4,19]. VRK1 depletion also alters the pattern of epigenetic histone modifications,
which impair chromatin dynamics and accessibility [29,33,51]. Therefore, to analyze the
possible effect of VRK1 knockdown on the oxidative stress response, we studied the ac-
cumulation of oxidative DNA damage in the absence of this kinase in cells treated with
hydrogen peroxide. VRK1 depletion is required for exiting G0 in the cell cycle. Thus,
we used cell cycle-arrested cells by serum deprivation [58]. For this aim, we determined
whether VRK1 depletion could affect the level of DNA oxidation, which was detected by
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8-oxoG lesions. VRK1 was independently depleted with two different siRNAs (siVRK1-02
and siVRK1-03) in A549 lung adenocarcinoma (Figure 1) cells, followed by serum depriva-
tion (0.5% FBS) for 48 h and treated with 200 µM H2O2 for 15 and 30 min to accumulate
cells in G0 and avoid the mitogenic signals that activate VRK1 and induce cell cycle progres-
sion [58,59]. In these cells, the 8-oxoG DNA lesions were detected by immunofluorescence.
In control cells, the level of 8-oxoG was low and the accumulation of 8-oxoG induced by
hydrogen peroxide was significant but relatively low (Figure 1A, siCt panel; Figure 1B,
green). However, VRK1 depletion by itself facilitated the accumulation of 8-oxoG even in
non-treated cells (NT), which indicated that the loss of VRK1 by itself sensitized the DNA
to the endogenous level of reactive oxygen species before treatment (Figure 1A, NT lanes;
Figure 1B, red and purple), and, because the level of 8-oxoG lesions was very high, the
additional treatment with hydrogen peroxide had a minor additional effect (Figure 1A,
center and lower panel). This effect of VRK1 depletion on the accumulation of 8-oxoG
DNA lesions is independent of the presence of serum (Supplementary Figure S1) and is a
consequence of the impairment of chromatin dynamics required for DNA repair [11–13].
VRK1 depletion caused a similar effect on the 8-oxoG levels in LN229 glioblastoma cells
exposed to hydrogen peroxide, but the oxidative damage response was slower and detected
at a later time (Supplementary Figure S2).

2.2. VRK1 Depletion Facilitates the Accumulation of Free 3′-Ends in the DNA Induced by
Oxidative Stress

The 8-oxoG DNA modifications caused by oxidative stress, if not repaired, can lead
to DNA strand breaks, which can be detected by labeling the available free 3′-DNA ends
with terminal deoxynucleotidyl transferase (TdT) in TUNEL assays. Hydrogen perox-
ide by itself causes low levels of single-strand DNA breaks, indicating that most of the
8-oxoG lesions were very efficiently repaired in the cells expressing VRK1 (Figure 2A, top
panel). However, VRK1 depletion resulted in a significant accumulation of labeled free
3′-DNA ends (Figure 2A, center and bottom panels), indicating that altered chromatin as a
consequence of VRK1 depletion impaired the repair of 8-oxoG lesions, which facilitated
the progression towards ssDNA breaks in a short time after exposure to hydrogen per-
oxide. VRK1 depletion interferes with the detection and/or repair of these 8-oxoG DNA
lesions caused by oxidative stress, which is consistent with the requirement of a specific
nucleosomal organization for repair mediated by OGG1 [11–13]. This effect is a likely
consequence of the alteration in the patterns of histone epigenetic modifications caused
by VRK1 depletion [33,51]. The quantification is shown in Figure 2B. Altogether, these
results suggest that VRK1 depletion, directly or indirectly, interferes with the oxidative
stress repair mechanism and facilitates the accumulation of DNA strand breaks.

2.3. Oxidative Stress Induces Changes in the Epigenetic Modifications of H4K16, H3K9, and
H3K4 That Are Impaired by VRK1 Depletion

Histone post-translational modifications (PTMs) are crucial for chromatin remodeling
and for many cellular processes, including the response to oxidative stress. To further ana-
lyze the role of VRK1 in chromatin remodeling, several histone epigenetic modifications, in
particular, acetylations and methylations, which occur during the oxidative stress response,
were analyzed in the presence and absence of VRK1 after exposure to hydrogen peroxide.
A549 cells were treated with 200 µM H2O2 for 30, 60, and 180 min and were compared
with non-treated cells. In these cells, the H4K16ac, H3K9ac, and H3K4me3 levels were
detected using immunofluorescence techniques, which permits individual cell observation
and confocal microscopy. The effects of oxidative stress were also determined in cells in
which VRK1 was depleted using two different siRNAs (siVRK1-02 and siVRK1-03) for 72 h
in A549 lung adenocarcinoma and LN229 glioblastoma cells. Oxidative stress induced an
increase in the H4K16ac levels that were impaired by the VRK1 depletion in A549 cells
(Figure 3) and in LN229 glioblastoma (Supplementary Figure S5). Oxidative stress caused
an accumulation of H3K9ac levels, which was impaired by VRK1 depletion (Figure 4), and
consequently led to an accumulation of the H3K9me3 levels in the cells treated with hydro-
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gen peroxide and VRK1 depletion (Figure 5). The H3K4me3 levels increased in response
to hydrogen peroxide treatment, which were enhanced by VRK1 depletion (Figure 6).
Oxidative stress also caused an increase in the levels of H3K27ac, which were impaired by
VRK1 depletion (Figure 7).
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Figure 1. Accumulation of 8-oxoG DNA lesions in serum-deprived A549 lung adenocarcinoma cells
treated with hydrogen peroxide at the indicated times. (A) Immunofluorescence of A549 cells treated
with hydrogen peroxide at different time points in control (siCt) or VRK1-depleted cells stained by
IF and detected using confocal microscopy. The boxed cells are individually shown on the right.
(B) Quantification of the levels of 8-oxoG induced by hydrogen peroxide in the experiment shown in
part a. VRK1 depletion with two different siVRK1s enhances significantly by itself the accumulation
of 8-oxoG lesions in DNA. (C) Immunoblot showing VRK1 levels. β-actin was used as a loading
control. * p < 0.05; *** p < 0.001; a.u.: arbitrary units; siCt: siControl; siV-02: siVRK1-02; siV-03:
siVRK1-03. NT: non-treated. Experiments were independently performed three times.
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Figure 2. Accumulation of 3′-free DNA ends caused by hydrogen peroxide is enhanced by VRK1
depletion in A549 lung adenocarcinoma cells. (A) Image panels showing TUNEL levels stained by IF
and detected using confocal microscopy. VRK1 was depleted using siVRK1-02 and si-VRK1-03 for
72 h. siControl was used as off-target siRNA control. Cells were treated with 200 µM H2O2 for 30 and
60 min. Squares on the left images are highlighting detailed cells shown on the right images of the
panels. DAPI was used to stain nuclei. (B) Plot showing the quantification TUNEL levels of 50 cells
for all conditions. (C) Immunoblot showing VRK1 levels. β-actin was used as a loading control.
* p < 0.05, *** p < 0.001; n.s.: not significant. a.u.: arbitrary units; NT: non-treated; siCt: siControl;
siV-02: siVRK1-02. siV-03: siVRK1-03. Experiments were independently performed three times.

Based on these results, we can conclude that VRK1 alters different types of epigenetic
histone post-translational modifications (PTM) and the nuclear phosphoproteome, and
thus has a role in chromatin remodeling by regulating, directly or indirectly, and interfering
with the response to oxidative stress. These findings indicate that VRK1 has an essential
role in chromatin remodeling in the oxidative stress response since its loss completely alters
the histone PTMs that are necessary for a proper DNA damage response.
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Figure 3. VRK1 depletion impairs the acetylation of H4K16 in A549 lung adenocarcinoma cells exposed
to hydrogen peroxide. (A). Image panels showing H4K16ac levels stained by IF and detected using
confocal microscopy. DAPI was used to stain the nuclei and VRK1 for knockdown control. VRK1 was
depleted using two siRNAs (siVRK1-02 and siVRK1-03) for 72 h. Cells were treated with 200 µM H2O2

for 15 and 30 min. (B) Quantification of H4K16ac fluorescence per nuclear area (a.u.: arbitrary units)
of 50 cells (per condition) represented in a boxplot. Scale bar = 15 µm; * p < 0.05; *** p < 0.001; a.u.:
arbitrary units; NT: non-treated; siCt: siControl; siV-02: siVRK1-02; siV-03: siVRK1-03. VRK1 levels
were detected by immunoblot and are shown at the bottom. β-actin was used as a loading control.
Experiments were independently performed three times.
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Figure 4. VRK1 depletion impairs the acetylation of H3K9 in A549 lung adenocarcinoma cells exposed
to hydrogen peroxide. (A) Image panels showing H3K9ac levels stained by IF and detected using
confocal microscopy. VRK1 was depleted using two siRNAs (siVRK1-02 and siVRK1-03) for 72 h.
Cells were treated with 200 µM H2O2 for 15 and 30 min. (B) Quantification of H4K9ac fluorescence per
nuclear area (a.u.) of 50 cells (per condition) represented in a boxplot. (C) VRK1 levels were detected
by immunoblot and are shown at the bottom. β-actin was used as a loading control. Scale bar: 20 µm;
** p < 0.01, *** p < 0.001; NT: non-treated; a.u.: arbitrary units; siCt: siControl; siV-02: siVRK1-02;
siV-03: siVRK1-03. Experiments were independently performed three times. Box: represent the detail.
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Figure 5. VRK1 depletion facilitates the trimethylation of H3K9 in A549 lung adenocarcinoma cells
exposed to hydrogen peroxide. (A) Image panels showing trimethylation of H3K9 levels stained by
IF and detected using confocal microscopy. VRK1 was depleted using two siRNAs (siVRK1-02 and
siVRK1-03) for 72 h. Cells were treated with 200 µM H2O2 for 15 and 30 min. (B) Quantification
of H3K9me3 fluorescence per nuclear area (a.u.) of 50 cells (per condition). (C) VRK1 levels were
detected by immunoblot and are shown at the bottom. β-actin was used as a loading control. Scale
bar = 15 µm; * p < 0.1; **; p < 0.01; *** p < 0.001; NT: non-treated; siCt: siControl; siV-02: siVRK1-02;
siV-03: siVRK1-03. Experiments were independently performed three times.
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Figure 6. VRK1 depletion facilitates the trimethylation of H3K4 in A549 lung adenocarcinoma cells
exposed to hydrogen peroxide. (A) Image panels showing trimethylation of H3K4 levels stained by
IF and detected using confocal microscopy. VRK1 was depleted using two siRNAs (siVRK1-02 and
siVRK1-03) for 72 h. Cells were treated with 200 µM H2O2 for 15 and 30 min. (B) Quantification of
H3K4me3 fluorescence per nuclear area (a.u.: arbitrary units) of 50 cells (per condition). (C) VRK1
levels were detected by immunoblot and are shown at the bottom. β-actin was used as a loading
control. Scale bar = 15 µm; ** p < 0.01; *** p < 0.001; NT: non-treated; siCt: siControl; siV-02: siVRK1-02;
siV-03: siVRK1-03. Experiments were independently performed three times.
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Experiments were independently performed three times. Bars within a time point represent the 
comparison of siV-02 with respect to the siCt. Bars across different time points represent the 
comparison among the sCt values. 

2.4. VRK1 Depletion Alters the Nuclear Phosphoproteome of Chromatin-Associated Proteins in 
the Oxidative Stress Response 

The defective response to oxidative DNA damage is likely to be a consequence of the 
effects that VRK1 can have on the chromatin organization and DNA damage response 
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Because we observed that VRK1 activation takes place in the early response to 
oxidative stress, we first aimed to identify whether the VRK1 role in chromatin 
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a proper oxidative stress response. For this purpose, we performed quantitative 
phosphoproteomics analysis on A549 nuclear lysates from cells treated with hydrogen 
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Figure 7. VRK1 depletion impairs the acetylation of H3K27 in A549 lung adenocarcinoma cells
exposed to hydrogen peroxide. (A) Image panels showing H3K27ac levels stained by IF and detected
using confocal microscopy. VRK1 was depleted using siVRK1-02 for 72 h. Cells were treated with
200 µM H2O2 for 15 and 30 min. (B) Quantification of H4K27ac fluorescence per nuclear area (a.u.)
of 50 cells (per condition) represented by a dot blot. (C) VRK1 levels were detected by immunoblot
and are shown at the bottom. β-actin was used as a loading control. Scale bar: 20 µm; * p < 0.1,
*** p < 0.001; NT: non-treated; a.u.: arbitrary units; siCt: siControl; siV-02: siVRK1-02. Experiments
were independently performed three times. Bars within a time point represent the comparison of
siV-02 with respect to the siCt. Bars across different time points represent the comparison among the
sCt values.

2.4. VRK1 Depletion Alters the Nuclear Phosphoproteome of Chromatin-Associated Proteins in
the Oxidative Stress Response

The defective response to oxidative DNA damage is likely to be a consequence of the
effects that VRK1 can have on the chromatin organization and DNA damage response [60].
Therefore, oxidative damage and the effect of VRK1 are likely to alter, directly and indirectly,
the covalent modifications of proteins in several nuclear signaling pathways. To detect the
changes in phosphorylation, we performed a phosphoproteomic study of nuclear proteins
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in response to oxidative stress and the effect of VRK1 depletion on the phosphorylation of
these proteins belonging to different nuclear signaling pathways.

Because we observed that VRK1 activation takes place in the early response to ox-
idative stress, we first aimed to identify whether the VRK1 role in chromatin remodeling
is associated with alterations in the nuclear phosphoproteome, necessary for a proper
oxidative stress response. For this purpose, we performed quantitative phosphoproteomics
analysis on A549 nuclear lysates from cells treated with hydrogen peroxide for 30 min in
the presence and absence of VRK1 (Figure 8).
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Figure 8. Overlapping significant chromatin-enriched phosphosites altered by both hydrogen perox-
ide treatment and VRK1 depletion in A549 lung adenocarcinoma cells. (A) Venn diagram representing
the number of differentially phosphorylated phosphosites in each comparison and their intersection
(used to build network in (C)). Numbers indicate unique or common genes (overlap) in each con-
dition (circles). (B) Bar graph containing STRING enrichment of the proteins from B based on GO
terms. (C) Protein–protein interaction (PPi) network showing overlapping significant phosphosites
and proteins with fold changes (colored squares) of two group comparisons: H2O2-siControl vs.
non-treated-siControl, and H2O2-siVRK1-02 vs. H2O2-siControl. N means the fold change. Nuclei
isolation and knockdown controls are shown in Supplementary Figure S3. Heatmap containing the
normalized phosphosite intensity of each replicate from each group is shown in Supplementary
Figure S4. ∩ = intersection.
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VRK1 was depleted in A549 cells using siVRK1-02 for 72 h, followed by treatment
with 200 µM H2O2 for 30 min. TiOx phosphopeptide enrichment coupled to LC-MS/MS
was performed to quantify the phosphoproteome changes in the nuclear fraction of A549
cells. Two independent biological replicates were measured in technical duplicates for
each condition. First, we analyzed the significant events (−1.5 > FC > 1.5, p < 0.05) that
overlapped in two two-group comparisons. The first comparison showed the effect of H2O2
on the phosphorylation of nuclear proteins compared to non-treated cells (non-treated-siCt
versus H2O2-siCt). The second comparison indicated the effect of VRK1 knockdown in
H2O2-treated cells on the phosphorylation of nuclear proteins compared to H2O2 siControl
cells (H2O2-siCt versus H2O2-siVRK1) (Figure 8A). Then, we performed protein enrich-
ment based on GO terms using String to filter the chromatin-related proteins. Oxidative
damage induces the phosphorylation of the nuclear proteins associated with chromatin
and chromosome organization, and several of them are affected by VRK1 depletion.

To characterize the specific processes in which these chromatin-related proteins are
implicated, we performed Gene Ontology analysis using String enrichment on the proteins
that composed the network. The String analysis results showed that 71% of the proteins
were involved in the chromatin organization, 78% in the chromosome organization, and
42% in the chromatin remodeling (Figure 8B, Supplementary Table S1).

The proteins and phosphosites with significant fold changes from both comparisons
are represented in Figure 8C, as well as protein–protein interactions built using String and
Phosphopath (from Cytoscape) [61]. In the presence of H2O2 compared to non-treated cells,
the phosphorylation of 75% of the phosphosites was upregulated and 25% downregulated.
In the H2O2-siVRK1 cells compared to H2O2-siControl cells, the phosphorylation of 25% of
the phosphosites was upregulated, and 75% was downregulated.

Based on these results, we can conclude that VRK1 alters different types of epigenetic
enzymes that perform histone post-translational modifications (PTM) and the nuclear
phosphoproteome and thus have a role in chromatin remodeling by regulating, directly or
indirectly, the response to oxidative stress.

These findings indicate that VRK1 has an essential role in the chromatin remodeling
in the oxidative stress response since its loss completely alters the histone PTMs that are
necessary for a proper DNA damage response.

3. Discussion

Oxidative stress facilitates DNA strand breaks, causing a local alteration in chro-
matin [2], which leads to the activation of the VRK1 chromatin kinase, which is independent
of the type of DNA damage [29,60] and triggers the appropriate DNA repair response,
requiring the dynamic remodeling of the chromatin. VRK1 is a kinase that has an essential
function in chromatin remodeling and in the response to DNA damage [53,62]. Moreover,
the ROS levels, detected by the accumulation of 8-oxoG DNA lesions, increased in the
cells lacking VRK1, indicating that, in the absence of this kinase, the regulation of ROS
levels is disrupted, and alternative mechanisms can be implicated in the oxidative stress
response. The increase in ROS levels in the absence of VRK1 can lead to different types of
alterations in cellular and nuclear processes, affecting DNA and chromatin. Furthermore,
VRK1 depletion by itself alters the pattern of epigenetic histone modifications [33], which
can facilitate either the generation of DNA damage or impair its detection and repair.

Oxidative stress alters the phosphorylation pattern of the nuclear proteome. Many of
these nuclear proteins are associated with chromatin roles, and their phosphorylation is
impaired by VRK1 depletion. We have observed that treating cells with H2O2 caused the
phosphorylation of several nuclear proteins, which was impaired when VRK1 was depleted,
reverting to a state similar to the control. This analysis revealed that many chromatin-
related proteins followed this pattern, such as DNMT1 (DNA methyl transferase 1), TASOR
(Transcription activation suppressor), or TRRAP (Transformation/Transcription Domain
Associated Protein), among others. Altogether, these results suggest that the chromatin
organization under oxidative stress conditions may be regulated by VRK1, which alters the
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phosphorylation pattern of the essential nuclear and chromatin-related proteins that are
implicated, directly or indirectly, in this response.

Epigenetic modifiers like the histone deacetylase HDAC1 are directly implicated in
the repair of oxidative bases. The HDAC1 and HDAC2 activities decrease in the presence
of oxidative stress [2]. HDAC1 activity is associated with an increase in 8-oxoG repair
due to the deacetylation of the OGG1 promoter [63]. Additionally, the acetyltransferase
Tip60/TRRAP complex promotes oxidative stress resistance by upregulating the expression
of FOXO transcription factors through the acetylation of their promoter at H4K16 [64].
However, little is known about how epigenetic enzymes are controlled. Therefore, a
better understanding of these enzymes is crucial to unveiling the mechanisms that may be
involved in the dysregulation of the response to oxidative stress.

Histones H3 and H4 are histones modified by several types of epigenetic covalent
modifications and have different combinations that can alter their recognition by other
nuclear proteins and their functions. The increase in the methylation of H3K4 has been
associated with elevated oxidative stress in cells [39]. In addition, changes in the acety-
lation of H3K9 and H4K16 have been detected in response to high ROS levels [2]. Upon
demonstrating that VRK1 knockdown alters the phosphorylation pattern of the proteins
that are implicated in chromatin remodeling in the oxidative stress response, we proposed
that VRK1 depletion can also have an effect on the pattern of histone PTM alterations in
the response to hydrogen peroxide exposure. In this work, we studied different histone
epigenetic marks that are known to be altered in the presence of oxidative stress in cells.
In particular, we studied H4K16ac, H3K9ac, and H3K4me3 as PTMs associated with open
and relaxed chromatin conformations and H3K9me3, which is associated with compacted
chromatin conformation. After hydrogen peroxide exposure, the above-mentioned open-
chromatin PTM levels increased, and the closed chromatin mark levels decreased compared
with non-treated cells (Figure 9). Moreover, in the VRK1-depleted cells, all the PTM patterns
were reverted compared with the H2O2-treated siControl cells. These findings indicate that
VRK1 is disrupting the chromatin organization in response to oxidative stress by altering
the histone of the PTM landscape. It is interesting to note that residues H3K4 and H3K9
are next to Thr3 and Ser10, respectively, which are regulated by phosphorylation mediated
by VRK1 [48], haspin [65], and AURKB [66]. In H3, the methylation of Lys4 impairs the
phosphorylation of Thr3 and constitutes a phospho-methyl switch [67,68]. Thus, a negative
charge in these phosphorylated residues, and their different combination in an individual
histone, might influence the local pattern of acetylation and methylation, a process that will
entail the recruitment of several nuclear enzyme activities, such as kinases, phosphatases,
acetylases, deacetylases, methylases, and demethylases, and whose sequential contribution
and coordination are not yet known and which might be different depending on the biolog-
ical process. Therefore, deciphering and characterizing novel proteins that may contribute
to this response are of utmost importance to comprehend the development of many human
pathologies. Furthermore, the targeting of proteins that are involved in the oxidative stress
response that is necessary for maintaining the non-lethal ROS levels in tumor cells may
reveal novel strategies to induce tumor cell death due to ROS accumulation. The link
between oxidative stress and chromatin remodeling has opened a door for new cancer
therapies. Accumulating evidence supports the effectivity of targeting epigenetic enzymes
as potential cancer treatments [1,69]. In this context, VRK1 depletion sensitizes cells to
other therapeutic strategies based on DNA damage based on treatments using drugs such
as olaparib [70], temozolomide [62], radiation, or doxorubicin [27]. Targeting VRK1 with a
novel inhibitor that alters the histone pattern of histone epigenetic modifications [33,51] is
a potential new strategy that requires development.
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Figure 9. Pattern of H3 and H4 modifications altered by oxidative stress (A) and the effect of VRK1
depletion (B). Arrows indicate upregulation or down regulation. Each combination is likely to
have a different pattern of protein interactions and of functional consequences in processes that
require dynamic chromatin remodeling, which are associated with its organization and responses to
DNA damage.

An additional implication regarding the role of VRK1 in the response to oxidative
stress is its potential pathogenic role in severe neurological diseases. Very rare pathogenic
VRK1 variants have been associated with distal neuropathies such as spinal muscular
atrophy, amyotrophic lateral sclerosis, and hereditary spastic paraplegia [56], all of which
have been linked to oxidative stress [71,72].

4. Material and Methods
4.1. Cell lines and Culture

Lung adenocarcinoma A549 (CCL-185) and glioblastoma LN229 (CRL-2611) cell lines
were obtained from the ATCC and are mycoplasma-free. All cells were cultured as previ-
ously reported [62]. Cells were detached using trypsin-EDTA (TryplE™, Thermo Fisher
Scientific, Waltham, MA, USA). Serum starvation (DMEM supplemented with 0.5% FBS,
50 U/mL penicillin, 50 µg/mL streptomycin, and 2 mM L-glutamine) was performed for
48 h when indicated. Cells were treated with different reagents, as specified in each section.

4.2. Kinase Assays

Cells were treated as indicated in the Section 2. Protein extracts (500 µg) were used
for the immunoprecipitation of endogenous VRK1 [29]. The immunoprecipitated VRK1
was incubated with 1× kinase buffer (Supplementary Table S2), 5 µM ATP (Roche, Basel,
Switzerland), and 5 µCi de [γ-32P] (PerkinElmer, Waltham, MA, USA) in agitation at 37 ◦C
for 45 min. The radioactive signal was detected using Fuji Medical X-ray films.

4.3. Interference RNA (siRNA) Transfection

Two siRNA, si-VRK1-02 (5′-CAAGGAACCUGGUGUUGAA-3′) and si-VRK1-03 (5′-GGA-
AUGGAAAGUAGGAUUA-3′), were used to deplete VRK1 as previously reported [62]. ON-
TARGET plus siControl (siCt) non-targeting siRNA (5′-UGGUUUACAUGUCGACUAA-3′)
was used as a negative control [62]. All siRNAs were from Dharmacon RNA Technologies,
Lafayette, CO, USA. Opti-MEM was used for lipotransfectine (Solmeglas, Madrid, Spain)
and siRNA dilution in Opti-MEM (GIBCO-Life Technologies, Carlsbad, CA, USA) according
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to the manufacturer guidelines. siRNAs were diluted in Opti-MEM, used at 200 nM, and
added to the lipotransfectin-Opti-MEM mix. The lipotransfectine-Opti-MEM-siRNA mix
was incubated for 30 min and added gently to cells, which were maintained in antibiotic-
free media.

4.4. Immunofluorescence and Microscopy

Immunofluorescence (IF) assays were performed as previously reported [29,62]. The
primary antibodies used are shown in Supplementary Table S3. Cell lines were cultured on
glass coverslips (Thermo Fisher Scientific) in culture dishes. At the indicated times, cells
were fixed with a 3% paraformaldehyde (PFA) solution in PBS for 20 min at RT, removed,
and 200 mM glycine was added to reduce the excess of aldehyde groups, followed by
cell permeabilization with 0.2% Triton X-100 for 20 min. Later, cells were blocked with
1% BSA diluted in PBS containing 0.1% sodium azide for 1 h at room temperature (RT), or
overnight (o/n) at 4 ◦C. The first primary antibody was incubated from 2 to 4 h at RT or
o/n at 4 ◦C. Coverslips were washed 3 times with PBS and the second primary antibody (if
necessary) was incubated between 2 and 4 h at RT. Afterward, cells were washed with PBS
and incubated with the secondary antibodies (Supplementary Table S4) at 1:1000 dilution
for 1 h at RT. Cells were washed 3 times in PBS. DAPI (4′, 6-diamidino-2-phenylindole)
was used to stain nuclei at 1:1000 dilution for 15 min. Coverslips were washed 3 times with
PBS and mounted into microscope slides with MOWIOL 4-88 (Calbiochem, San Diego, CA,
USA). The experiments were independently performed three times.

Immunofluorescence images were obtained using a Leica TCS SP5 inverted fluores-
cence confocal microscope (Leica Microsystems, Wetzlar, Germany) connected to a Leica
DC100 (Leica Microsystems) digital video camera that was used to take images. Image
analysis was conducted using ImageJ software (NIH, version 1.53t).

4.5. Immunofluorescence Staining for 8-oxoG Determination

Cells were fixed in 4% PFA for 15 min. Then, they were washed 3 times with PBS and
permeabilized with 0.2% Triton X-100 for 10 min. Cells were incubated with 4.5 N HCl.
After that, cells were blocked in 4% BSA, 0.5% Triton X-100 in PBS, and incubated with
8-oxoG primary antibody (1:400) overnight at 4 ◦C. The experiments were independently
performed three times.

4.6. TUNEL Assays

Cells were fixed, permeabilized, and blocked as described above. Free 3′-OH DNA
ends were labeled with Fluorescein-dUTP by terminal deoxynucleotidyl transferase and
detected according to the manufacturer guidelines. TUNEL assay in situ detection (Roche).
The experiments were independently performed three times.

4.7. Protein Extraction and Quantification

All steps of protein extraction were carried out on ice as reported [29,62]. Briefly, cells
were lysed in lysis buffer (Supplementary Table S2) supplemented with protease inhibitors
(1 mM PMSF, 10 µg/mL aprotinin, and 10 µg/mL leupeptin) and phosphatase inhibitors
(1 mM sodium orthovanadate and 1 mM sodium fluoride). Lysates were incubated for
20 min on ice and then centrifuged at 13,000× g for 20 min. Pellet was discarded. Soluble
fractions were kept and stored at −20 ◦C. Protein concentration was determined using the
BCA protein assay kit (Thermo Fisher Scientific).

4.8. SDS-PAGE Electrophoresis and Immunoblots

The running gel is composed of 7.5–12.5% acrylamide, 0.13–0.4% bis-acrylamide
in 0.375 M Tris-HCl (pH 8.8) and 3.5 mM SDS, tetramethylethylenediamine (TEMED),
and ammonium persulfate (APS). Three different acrylamide–bisacrylamide percentages
for running gels were used varying according to the size of the target protein. Further,
12.5–0.33% gels were used for small proteins (<30 kDa) and 10–0.27% gels for proteins



Int. J. Mol. Sci. 2024, 25, 4874 17 of 22

between 30 and 100 kDa. The stacking gel contained 4.8% acrylamide, 0.128% bisacrylamide
in 0.125 M Tris-HCl (pH 6.8), and 3.5 mM SDS (sodium dodecyl sulfate). Electrophoresis
was carried out under denaturing conditions in electrophoresis buffer as reported [30].
Precision Plus Protein Standards Dual Color (Bio-Rad, Shinagawa City, Tokyo) was used
as a molecular weight protein reference. Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) was performed under a constant voltage (90 V for 15 min and
120 V for 80 min).

After SDS-PAGE electrophoresis, proteins were transferred to PVDF Immobilon-
P/FL/PSq membranes (Millipore, Burlington, MA, USA), which were activated in methanol
(Sigma Aldrich, St. Louis, MO, USA) for 2 min. The transfer was performed at 90 V for
90 min at 4 ◦C, followed by blocking with 5% non-fat dried milk or BSA, diluted in TBS-T
for 1 h at RT. Afterward, membranes were washed 3 times in TBS-T and incubated with the
primary antibody in 1% BSA in TBS-T and diluted according to the manufacturer specifica-
tions for 1–2 h at RT or overnight at 4 ◦C. Membranes were washed 3 times with TBS-T and
incubated with the secondary antibody (Table S4 at 1:10,000 dilution in 1% BSA in TBS-T in
the dark. Membranes were washed 3 times in TBS-T and scanned in the Odyssey Infrared
Imaging System (LI-COR Biosciences, Lincoln, NE, USA). Bands in membrane images were
quantified using Quantity One software version 29.

4.9. Statistics and Data Analysis

Statistics were performed with SPSS versions 25 and 26 and GraphPad Prism ver-
sion 8.0.1. Kruskal–Wallis statistical test for non-parametric distributions was used for
two-group comparisons in all experiments except for phosphoproteomics experiments.
Differences between groups were considered significant when p-values < 0.01.

4.10. Cytoplasm/Nucleus Fractionation for Phosphoproteomics Analysis

First, cells treated as specified in the Section 2 were lysed in cytosolic lysis buffer
with phosphatase (PhoSTOP from Sigma-Aldrich) and protease inhibitors (cOmplete from
Sigma-Aldrich) were added right before use, incubated on ice for 5 min, and centrifuged
at 2000× g for 5 min at 4 ◦C. The cytosolic fraction (supernatant) was flash-frozen in
liquid nitrogen and stored at −80 ◦C. The pellet (nuclear fraction) was washed 3 times in
cytosolic lysis buffer without IGEPAL. Nuclei pellets were lysed in nuclear lysis buffer with
phosphatase and protease inhibitors added right before use. Nuclear lysates were incubated
in ice for 10 min and sonicated in 2 cycles of 15 s (21% amplitude) with a digital sonifier-
SFX250 (Branson Ultrasonic, Brookfield, CT, USA). Then, nuclear lysates were centrifuged
at 16,000× g for 10 min at 4 ◦C and the supernatants containing nuclear proteins were
flash-frozen in liquid nitrogen and stored at −80 ◦C. BCA protein assay kit (Thermo Fisher
Scientific) was used to determine protein concentration.

4.11. Sample Preparation for Phosphoproteomics Analysis

Nuclear lysates were reduced with 10 mM dithiothreitol (DTT) for 45 min at 56 ◦C
and alkylated with 50 mM iodoacetamide (IAA) for 45 min at RT in the dark. Lysates
were digested with trypsin in a proportion of 20 µg trypsin/mg protein o/n at RT. Further,
0.1% trifluoroacetic acid (TFA) was added to the peptides. Peptides were desalted using
OASIS HLB Cartridge commercial kit in 10 mg columns following the manufacturer’s proto-
col. Phospho-enrichment was performed using immobilized metal affinity chromatography
(IMAC) automatically using high-capacity Agilent AssayMAP Fe (III)-NTA cartridges
(Santa Clara, CA, USA) in the AssayMAP Bravo as previously described127. Peptides were
lyophilized for 45 min at 45 ◦C in a vacuum centrifuge.

4.12. Label-Free Phosphoproteomics by Liquid Chromatography Tandem Mass Spectrometry
(LC)-ms/ms

Nuclear lysates and phosphopeptide-enriched samples were diluted in 4% acetoni-
trile (ACN) and 0.5% TFA before use. Peptides were separated on a Reprosil C18 aqua
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column (1.9 µm porous spherical silica, 120 Å pore diameter) in a 90-min buffer gradient
(2–32% ACN, 0.5% acetic acid) at a rate of 300 nL/min using a U3000 RSLC high-pressure
nano LC (Dionex LC-Packings)(Thermo-Fisher Scientific, Waltham, MA, USA). After injec-
tion, peptides were measured online and nanospray ionization was performed using a Q
Exactive mass spectrometer (Thermo Fisher Scientific) [73].

4.13. Protein, Phosphopeptide and Phosphorylation Site Identification

MaxQuant v2.0.3.0 [74] was used for MS/MS spectra search against the Uniprot
human reference proteome FASTA from 2021 containing 42,383 entries [75] according to
the previously defined settings [73]. Trypsin was selected as the cutting enzyme and two
missing cleavages were permitted. Ser, Thr, and Tyr phosphorylation (+79.966330 Da) were
treated as variable modifications. Peptide precursor ions and fragment ions were searched
with a maximum and minimum mass deviation of 4.5 ppm and 20 ppm, respectively.
Protein, peptide, and phosphosite identifications were filtered at an FDR of 1%. The
minimum Andromeda score for modified peptides was set as 40 (delta score 17). The
minimum peptide length allowed was 7 amino acids. Match-between-runs and label-free
quantification settings were selected.

4.14. Phosphoproteomics Data Analysis

Normalization, clustering, and statistical tests were performed using RStudio v4.1.3.
Phosphopeptides were quantified by phosphorylation intensities. Phosphorylation inten-
sities were normalized to the median intensity of all phosphopeptides identified in the
sample. Phosphosites with a localization probability > 0.75 (class I phosphosites) were
used in further analyses. Multiplicity of 1, 2, or 3 was designated to each phosphosite to
categorize phosphosites identified in mono-phosphorylated, diphosphorylated, or >diphos-
phorylated peptides, respectively. Phosphosite fold change (FC) and p-value between
group comparisons were calculated using Limma package from RStudio [76]. The mass
spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifier PXD040944 [77,78].

In two-group comparisons, phosphosite intensities with a FC > 1.5 or <−1.5 and a
p-value < 0.05 were considered significantly different. Missing values were excluded from
statistical analysis. Two biological replicates in technical duplicates were measured for each
condition. Pearson correlation between replicates was excellent.

Post-translational Modification Signature Enrichment Analysis (PTMsea) was used for
PTM enrichment. PTMsea is based on a PTM signatures database (PTMsigDB) that provides
curated phosphorylated signatures of kinases, perturbations, and signaling pathways to
enable site-specific PTM signature enrichment analysis [79]. PTMsea analysis was used as a
GenePattern module. Phosphosite-specific pathway enrichment of two-group comparisons
was analyzed using this tool.

Phosphopath from Cytoscape was used to build protein–protein interaction (PPi)
networks representing detected phosphosites of each protein [80]. Each phosphosite was
represented together with the fold change of 2-group comparisons. STRING was used to
perform protein enrichment and filter proteins based on their functions as indicated in the
Section 2 [81].

5. Conclusions

Our findings indicate that VRK1 has a role in the early oxidative stress response by
altering the nuclear phosphoproteome and the pattern of epigenetic modifications and,
consequently, changing the histone PTM landscape, jeopardizing chromatin remodeling and
sensitizing cells to DNA damage by oxidative stress as a result of the reduced levels of VRK1.
This implication could favor understanding the underlying pathological mechanisms due to
a defective oxidative stress response that leads to human diseases like cancer. Alternatively,
VRK1 inhibition could emerge as a novel therapeutic target because it may facilitate the
accumulation of toxic ROS in tumor cells in combination with other cancer drugs through
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the impairment of chromatin remodeling, resulting in decreased tumor cell viability and
death. Therefore, targeting VRK1 in combination with histone epigenetic inhibitors can
lead to novel synthetic lethality strategies in cancer treatment [82].

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms25094874/s1. Reference [83] is cited in Supplementary Materials.
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