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Abstract: The influenza A virus nonstructural protein 1 (NS1), which is crucial for viral replication
and immune evasion, has been identified as a significant drug target with substantial potential to
contribute to the fight against influenza. The emergence of drug-resistant influenza A virus strains
highlights the urgent need for novel therapeutics. This study proposes a combined theoretical
criterion for the virtual screening of molecular libraries to identify candidate NS1 inhibitors. By
applying the criterion to the ZINC Natural Product database, followed by ligand-based virtual
screening and molecular docking, we proposed the most promising candidate as a potential NS1
inhibitor. Subsequently, the selected natural compound was experimentally evaluated, revealing
measurable virus replication inhibition activity in cell culture. This approach offers a promising
avenue for developing novel anti-influenza agents targeting the NS1 protein.

Keywords: antiviral; natural compounds; influenza; drug resistance; virtual screening

1. Introduction

Influenza remains a significant global public health issue, causing 5 million severe
cases and 290,000 to 650,000 deaths during seasonal outbreaks [1]. Despite the availability
of seasonal influenza vaccines, their effectiveness varies, leaving a significant portion of
the population vulnerable to the virus [2]. In addition to vaccination, the first line of
protection against flu is antiviral medications, such as neuraminidase inhibitors (NAIs) and
baloxavir (marboxil), a cap-dependent endonuclease inhibitor of the viral polymerase [3].
Although the present circulating strains have a low rate of NAI resistance, the therapeutic
window for NAIs is relatively narrow, and baloxavir (marboxil) drug resistance has been
documented [4–6]. Favipiravir (T-705) has shown promise against severe novel or reemerg-
ing influenza A virus strains when other antivirals are ineffective. However, it is not widely
used due to its potential side effects and its limited approval in some countries [7]. Driven
by the limitations of current influenza prevention and treatment options, particularly the
emergence of novel strains and the threat of drug resistance, researchers are urgently
seeking novel and effective anti-influenza therapeutics. Leveraging existing medications’
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established safety and efficacy profiles, drug repurposing offers a compelling approach to
expedite the development of anti-influenza therapies. Recent reviews have highlighted
the potential of this strategy, and investigations into repurposing diverse drug classes [8],
among other several antibiotic classes such as macrolides [9] and aminoglycosides [10],
have been documented.

The influenza A virus NS1 protein is among the key players in influenza pathogenicity
and it stands out for its multi-faceted role in viral replication, immune evasion, and
virulence [11,12]. Additionally, it effectively suppresses crucial host antiviral responses,
particularly by inhibiting interferon signaling, highlighting its potential as a target for new
drug development. Given its well-conserved structure and pivotal role in both replication
and pathogenicity, influenza NS1 has garnered significant attention as a promising target for
antiviral interventions [11–14]. Nevertheless, despite the growing interest in NS1, research
in this field is still in its early stages, and there are currently no NS1-targeting medicines
progressing to preclinical or clinical trials for influenza therapy. Structurally ranging from
230 to 237 amino acids depending on the strain, the NS1 protein forms dimers with two
distinct functional domains. The N-terminal domain binds double-stranded RNA, while
the C-terminal domain interacts with various cellular proteins, including CPSF30, a key
player in processing cellular pre-mRNAs [15]. This interaction disrupts CPSF30-mediated
host mRNA processing, contributing to NS1’s immune evasion strategy and allowing the
virus to manipulate the host environment to its advantage. Interfering with the interaction
between the nonstructural protein NS1 and the cellular protein CPSF30 could potentially
serve as a strategy to combat viral infections.

Since ancient times, natural products have served as the foundation for medicines
across various cultures. They are often considered safe and effective due to their natural
origins and established track record [16]. In terms of toxicity and bioavailability, naturally
derived remedies and their ingredients are widely believed to be safer and more effective
than substances lacking this natural origin [16]. Due to the diverse range of pharma-
cophores and stereochemistry found in natural product collections, they could be valuable
in identifying possible candidates for challenging screening targets, such as protein–protein
interactions [17]. Given that the NS1 protein’s function relies on numerous protein–protein
interactions, natural compounds hold substantial promise due to their recognized ability to
disrupt such interactions [15,17].

As the in silico equivalent of the high-throughput screening of huge compound
databases, virtual screening is an essential aspect of the drug development process, signifi-
cantly reducing the time and expenses involved in discovering novel medicines [18]. Using
this approach, anti-influenza leads have been successfully found from natural chemical
databases. In this study, we employed computer-based techniques to investigate the ZINC
natural product database, emphasizing the crucial role of natural products in the search for
new influenza treatments. The ZINC database [19] is the most extensive, freely available
3D molecular library, with over twenty million commercially accessible chemicals.

This study presents a theoretical framework for the efficient virtual screening of large
molecular libraries to identify potential influenza A NS1 protein inhibitors. A promis-
ing drug candidate was identified by combining in silico database exploration, using
the electron-ion interaction potential/the average quasi valence number (EIIP/AQVN)
filter, with ligand-based virtual screening and molecular docking. An experimental val-
idation confirmed the anti-influenza activity of 3-(1H-indol-3-yl)-N-(4-phenylbutan-2-
yl)propanamide in cell cultures. Future perspectives include further exploring the capacity
of this candidate compound, selected through in silico methods, as an antiviral agent.
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2. Results

The virtual screening protocol used in this study involved the application of sequential
filters to identify potential influenza A virus NS1 inhibitors. The workflow in Figure 1
details the protocol followed in this study.
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Figure 1. The workflow of the protocol followed in this study.

Initially, we conducted virtual screening on the ZINC Natural Product database using
the EIIP/AQVN criterion. To commence this screening process, it was necessary to define
the screening criteria. Given the absence of an approved NS1 inhibitor, the chosen learning
set comprised NS1 inhibitors documented in the existing literature and a compound report
card from the ChEMBL (Table S1). More than 80% of the compounds from the learning
set (Table S1, Figure 1) were inside the active domain with AQVN and EIIP values within
the intervals of (2.069–2.90) and (0.038–0.093), respectively. In light of the extensive range
of NS1 inhibitors available, and to refine the domain occupied by NS1 inhibitor drug
candidates and enhance the potential for dual targeting against both NS1 and HA by
natural compounds, we established the HA inhibitor learning set using sources from the
literature within the AQVN/EIIP ranges of (2.380–2.74) and (0.049–0.096), respectively,
representing over 80 percent of the analyzed HA inhibitors compounds. Furthermore,
based on findings from the literature regarding the potential repurposing of macrolides
and aminoglycosides for influenza treatment, we further refined the domain and identified
a shared area that could offer multi-target activity. We accomplished this by narrowing
down the overlap area within the domain for macrolides with EIIP/AQVN values of
2.467–2.630/0.077–0.096 and for aminoglycosides with values of 2.552–2.820/0.024–0.084.
This deliberate refinement of the virtual screening domain increases the likelihood of
selecting drug candidates with the potential for multi-target activity. For the final selected
shared domain, AQVN/EIIP values of 2.552–2.630/0.077–0.084 were utilized as the criteria
for selecting compounds that could serve as NS1 influenza inhibitor candidates. (Figure 2).
In this way, a curated collection of 2475 natural compounds was selected for the subsequent
in silico steps.
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Figure 2. Schematic presentation of the EIIP/AQVN criterion for the selection of candidate anti-
influenza NS1 compounds through the virtual screening of molecular libraries (green—NS1 inhibitors,
blue—HA inhibitors, purple—aminoglycosides, yellow—macrolides, red—the domain AQVN/EIIP
domain employed for virtual screening in this study).

2.1. The Principal Component Analysis (PCA) Model

The selected candidates from the previous step were filtered according to Lipinski’s
rule of five [20]. Subsequently, those that share the same scaffold (two phenyl rings and an
amide linking group) as the reported inhibitor molecules were identified [21]. A total of
31 remaining candidate molecules were further classified according to their 3D similarity by
calculating the molecular interaction field (MIF) descriptors [22]. The Principal Component
Analysis (PCA) method was used to construct the QSAR model based on the acquired data.
The first two Principal Components (PC1 and PC2), which encompass most of the model
(Table 1), were chosen for the model’s description (Figure 3). The six compounds that
resembled inhibitors in the literature the most were selected for structure-based filtering.
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Table 1. Statistics of PCA model for H1N1 2009 NS1 effector domain inhibitors. SSX—percentage of
the X sum of squares; SSXacc—accumulative percentage of the X sum of squares; VarX—percentage
of the X variance; VarXacc—accumulative percentage of the X variance.

Component SSX SSXacc VarX VarXacc

1 27.45 27.45 24.99 24.99
2 22.81 50.26 21.78 46.77
3 11.14 61.40 10.43 57.20
4 8.87 70.28 8.61 65.81
5 4.52 74.80 4.08 69.89

2.2. Molecular Docking

Selected candidates were then docked into the X-ray crystal structure of the NS1
effector domain from H1N1 influenza A/California/07/2009 (PDBID: 3M5R) (https://
www.rcsb.org/structure/3M5R (accessed on 3 March 2024)). The binding site was located
at the binding interface between NS1 and the host CPSF30 [24]. To validate the compu-
tational model, reference inhibitors (Table S2) were re-docked into the selected receptor
structure [25].

Despite the docking results (Table 2) suggesting a potentially weak interaction with
the receptor (binding energy of about −6 kcal/mol), a visual inspection revealed that
molecules ZINC12895341 (3-(1H-indol-3-yl)-N-[(2S)-4-phenylbutan-2-yl]propanamide) and
ZINC12895343 (3-(1H-indol-3-yl)-N-[(2R)-4-phenylbutan-2-yl]propanamide) are positioned
(Figure S1) similarly to the inhibitors described in the literature [25]. Owing to the
phenyl rings, they can establish favorable interactions in the selected hydrophobic region
(Figures 4 and 5). Moreover, the binding free energies’ orders of magnitude also correspond
with those of the reference inhibitors [25]. The key amino acids engaged in the interactions
are Arg108, Lys110, Val117, Leu119, Val180, and Gly183. The ZINC12895343 enantiomeric
form indicates a slightly more favorable binding mode than ZINC12895341 (−6.6 kcal/mol
compared to −6.3 kcal/mol, Table 2), most likely thanks to the π-π stacking interaction
with the side chain of Trp187. This was validated after rescoring the obtained docking
poses for both the candidate compounds and those from the literature. The scoring function
was expanded into the individual terms’ contributions to the binding energy (Table S4);
the detailed interactions between the compounds and amino acid residues are presented
in Table S5 and Figures S2 and S3. The top candidate in both enantiomeric forms has a
significantly lower hydrogen bond contribution than the reference compounds, although
higher hydrophobic contribution on average. The differences in repulsion and gauss terms
between the compound groups are due to the complicated atom–atom network interactions,
involving their atom radii and types, where interatomic distances depend on the docking
pose. Due to the highly similar binding patterns between the candidate compounds and
those in the literature, we state that the docking results support proper selection.

Table 2. Selected candidates from the QSAR model with their docking energies. In the last column,
Euclidian distance, PA22 from A22 indicates the level of similarity to this most potent inhibitor.

ZINC ID Vina Docking Energy (kcal/mol) PA22

ZINC12895343 −6.6 0.529736751
ZINC12895341 −6.3 0.768482715
ZINC04023123 −5.6 1.131189207
ZINC35485059 −6.8 1.409582845
ZINC00517232 −5.9 1.49712743
ZINC35485061 −6.5 1.667747682

https://www.rcsb.org/structure/3M5R
https://www.rcsb.org/structure/3M5R
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2.3. The Absorption, Distribution, Metabolism, Elimination, and Toxicity (ADMET) Prediction

Table S6 displays the estimated ADMET properties of candidate compounds according
to the following parameters: molecular weight (MW), number of rotatable bonds (RB),
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dipole moment (DM), molecular volume (MV), number of hydrogen donors (DHB), number
of hydrogen acceptors (AHB), polar surface area (PSA), octanol/water partition coefficient
(log P), aqueous solubility (log S), apparent Caco-2 cell permeability (PCaco), number of
likely primer metabolic reactions (PM), percentage of human oral absorption (%HOA),
violations of rules of three (VRT) and five (VRF), blood–brain barrier permeability parameter
(QPlogBB) [26], and Multi-Parameter Optimization score for drugs targeting the Central
Nervous System (CNS MPO) [27]. The violations of Lipinski’s [20] and Jorgensen’s [28]
rules are shown together with the ADME parameters. Based on the ADMET features,
selected compounds may have good pharmacokinetic profiles and may be promising
candidates for treating influenza A viruses.

2.4. In Vitro Efficacy Testing of 3-(1H-Indol-3-yl)-N-(4-phenylbutan-2-yl)propanamide against
H1N1 and H3N2 Influenza A Viruses

We evaluated the in vitro antiviral efficacy of 3-(1H-indol-3-yl)-N-(4-phenylbutan-2-
yl)propanamide, the top candidate identified through screening the ZINC database for
potential anti-influenza compounds [29]. When 3-(1H-indol-3-yl)-N-(4-phenylbutan-2-
yl)propanamide was introduced to cells infected with H1N1 or H3N2 influenza A viruses,
it led to a significant reduction in the production of infectious virus. Treatment with 10 µM
3-(1H-indol-3-yl)-N-(4-phenylbutan-2-yl)propanamide resulted in significant reductions in
H1N1 viral titers at +1 and +2 days post-infection (Figure 6). A total of 10 µM 3-(1H-indol-
3-yl)-N-(4-phenylbutan-2-yl)propanamide treatment resulted in significant reductions in
viral titers at +1 and +2 day post-infection. Treatment with 10 µM 3-(1H-indol-3-yl)-N-(4-
phenylbutan-2-yl)propanamide resulted in significant reductions in H3N2 viral titers at
+1 and +2 day post-infection (Figure 7). As a positive treatment control, influenza A virus
was premixed with 10 µM of merimepodib, an IMPDH inhibitor with known antiviral
activity against a variety of viruses, including influenza A virus [30,31]. In the experiments
with influenza A/CA/07/2009 (H1N1) and A/NY/55/04 (H3N2), it was shown that 3-
(1H-indol-3-yl)-N-(4-phenylbutan-2-yl)propanamide inhibits influenza virus production
(Figures 6 and 7).
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Figure 7. Influenza A/NY/55/04 (H3N2) viral titers at 0, 1, and 2 days post-infection (dpi) after
treatment with the 3-(1H-indol-3-yl)-N-(4-phenylbutan-2-yl)propanamide with the indicated drug
concentrations. Ten micromolar (10 µM) merimepodib was used as a positive control. The results are
plotted as the means of triplicate observations, with standard deviations shown.

3. Discussion

With its ability to circulate among various host populations, the influenza virus poses a
persistent global health threat, leading to unpredictable animal and human outbreaks. Due
to the increasing use of licensed antiviral medications resulting in the emergence of drug-
resistant strains, the current strategies to prevent and treat influenza A and B virus infections
are proving inadequate [1]. The influenza A virus NS1, pivotal in viral replication and
immune evasion, emerges as a crucial drug target with considerable potential to contribute
significantly to the fight against influenza. It achieves this vital role by participating in
numerous protein–protein and protein–RNA interactions. Specifically, the NS1 protein
physically associates with CPSF 30 kDa within influenza virus-infected cells, preventing
CPSF from binding to the RNA substrate, inhibiting 3′ end cleavage and polyadenylation
in host pre-mRNAs, and, thus, blocking host transcription [15,32]. Therefore, we focused
on disrupting the protein–protein interaction between the nonstructural protein NS1 and
the cellular protein CPSF30 with small-molecule inhibitors as a promising approach to
thwart viral infections.

Natural product collections are known for their diverse pharmacophores and extensive
stereochemistry, making them valuable for identifying potential compounds for challenging
screening targets like protein–protein interactions. Due to their proven ability to disrupt
such interactions, natural compounds were selected as ideal candidates for inhibiting the
CPSF30-NS1 interaction. These compounds offer a promising solution, as they provide
potential drug candidates with low toxicity and widespread availability for treating in-
fluenza. In our research, we utilized natural products sourced from the ZINC database,
underscoring their potential to form the foundation for new agents with improved efficacy
and enhanced tolerability in treating infectious diseases.

In the pursuit of innovative strategies to reduce drug resistance and pandemic virus
threats, in silico approaches or computer-aided drug design have opened up numerous
opportunities for identifying potential novel lead compounds for various diseases, includ-
ing infectious diseases [18]. As highlighted in ref. [23], numerous predictive computa-
tional approaches are being introduced to target influenza viruses. One of the described
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approaches is the concept of long-range interactions, which we applied in the current
study [31]. As previously demonstrated for molecular targets in diverse pathological con-
texts, molecules sharing similar AQVN and EIIP values tend to interact with common
therapeutic targets [31]. Consequently, this observation has given rise to the EIIP/AQVN
criteria, which are employed for the virtual screening of molecular libraries in search of
compounds exhibiting similar therapeutic properties [33]. Previous investigations have
validated the effectiveness of the EIIP/AQVN approach in identifying inhibitors against
a range of viral targets, including influenza [34,35]. These findings were further verified
experimentally [34,36,37].

In this study, we employed a virtual screening protocol designed to identify potential
inhibitors of the influenza NS1 protein. This process entailed the systematic application
of sequential filters. We began by implementing an initial filter based on the EIIP/AQVN,
proceeding with PCA analysis, and subsequently conducting molecular docking on the
comprehensive ZINC Natural Product database. However, we needed to establish precise
screening criteria to start this screening endeavor. We curated a learning set by drawing
from documented NS1 inhibitors in the existing literature and leveraging the compound
report card from ChEMBL (Table S1). Given the available diverse in silico array of NS1
inhibitors, our objective was to narrow down the domain occupied by potential NS1
inhibitor drug candidates. To enhance the likelihood of multi-targeting against both
NS1 and different influenza targets using natural compounds, we further constructed
the NS1 inhibitor learning set from the literature. Inspired by promising findings in the
literature suggesting the repurposing potential of macrolides [9] and aminoglycosides for
influenza treatment [10], we linked these to the published AQVN/EIIP domains established
for these compounds and undertook further refinement [38]. This endeavor led us to
identify a shared domain with the potential for multi-target activity. This deliberate
refinement of our virtual screening domain significantly enhances the prospect of selecting
drug candidates capable of engaging in multi-target activity against influenza A viruses.
Still, these candidates may also offer additional benefits in combating secondary bacterial
infections, a common influenza complication, during seasonal and pandemic outbreaks [39].

Furthermore, through the utilization of ligand-based virtual screening, candidates
were chosen based on their proximity to the centroid in the PCA model. This model relied
on variables derived from MIF descriptors of compounds within the learning set, making
their pharmacophore similarity a key criterion for selection. Subsequently, a structure-
based approach was employed, enabling the docking of the previously selected compounds
into crystal structures as the next step.

Looking at the graph of PCA scores (PC1 against PC2), we observe that compounds
are concentrated into several groups. ZINC12895343 and ZINC12895341, 3-(1H-indol-3-
yl)-N-(4-phenylbutan-2-yl)propanamide enantiomers, were found to exhibit the highest
level of molecular similarity to the most effective known inhibitor, A22 (Figure 2 and
Table 2). Certainly, they are clustered around both inhibitors used for constructing the PCA
model (Figure 2). A22 disrupts the interaction between NS1 and CPSF30 by binding to the
CPSF30-binding pocket in many strains of influenza A virus, indicating its potential as an
antiviral agent [25].

Together with the significant molecular similarity found in the QSAR model, molecular
docking revealed that the selected candidates also fit best into the hydrophobic pocket
identified as essential for NS1 inhibition. Despite the modest differences in positioning
between the enantiomeric forms, the method of action and binding energies are very similar.
Thus, it was demonstrated that the compound in question potentially attenuates virus
replication by disrupting CPSF30–NS 1 interaction. Therefore, it was selected for further
experimental testing.

In the in vitro experiments with influenza A/CA/07/2009 (H1N1), it was shown that
3-(1H-indol-3-yl)-N-(4-phenylbutan-2-yl)propanamide inhibits influenza virus production
(Figure 5).
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While investigating the natural origins of 3-(1H-indol-3-yl)-N-[(1R)-1-methyl-3-phenyl-
propyl]propanamide, several resources were consulted. These resources included the
NPBS (Natural Products and Biological Sources) database, which links natural products
to various plants, bacteria, fungi, and marine organisms [40]. Unfortunately, the NPBS
yielded no matches for this specific compound. We further explored the KNApSAcK family
database [41], which offers compound information alongside details about the source plant
family and species. Again, no corresponding entry for 3-(1H-indol-3-yl)-N-[(1R)-1-methyl-
3-phenyl-propyl]propanamide was identified within KNApSAcK. It is important to note
that the compound does appear in open databases like ZINC and COCONUT [42], which
classify it as a natural product. However, these databases lack information regarding the
compound’s specific source.

Our study highlights the promising antiviral activity of 3-(1H-indol-3-yl)-N-[(1R)-1-
methyl-3-phenyl-propyl]propanamide, a candidate compound identified via screening
the ZINC database. This compound emerged as a candidate due to its structural simi-
larity to A22, a known influenza A virus inhibitor. The in silico part of our study sug-
gested a mechanism similar to A22, indicating 3-(1H-indol-3-yl)-N-[(1R)-1-methyl-3-phenyl-
propyl]propanamide’s potential to disrupt the critical NS1-CPSF30 interaction, potentially
inhibiting viral replication. In further in vitro experiments, we demonstrated 3-(1H-indol-
3-yl)-N-[(1R)-1-methyl-3-phenyl-propyl]propanamide’s efficacy in significantly reducing
viral titers for both H1N1 and H3N2 strains. The antiviral activity observed in these experi-
ments encourages the further exploration of the potential of this in silico-selected candidate
compound as an antiviral agent.

4. Materials and Methods
4.1. Data Preparation

A library of natural products that contain 1 × 105 compounds was downloaded
from the ZINC database in a processed format [19]. This database can be accessed via
the following website: http://zinc15.docking.org (accessed on 31 October 2022). The
learning set was created to define the predictive criterion for selecting influenza A virus
NS1 inhibitor candidates (Tables S1 and S3). Since there is currently no approved influenza
A virus NS1 inhibitor, the selected learning set consisted of NS1 inhibitors reported in
the literature and a compound report card from the ChEMBL (Table S1). The learning
set for HA inhibitors was derived from the previously published literature (see Table S3
for details). A selected set of 2475 natural compounds was downloaded from the ZINC
database [19] in 3D sdf format, and the corresponding SMILES and molecular formulas
were isolated. Structures of reported NS1 inhibitors were obtained using BIOVIA Draw
2021 [43] and exported in 3D sdf format. Crystal structures of the NS1 effector domain from
A/California/07/2009 (H1N1) were downloaded from the RCSB PDB database (PDBIDs:
3M5R and 3LZG) [44].

4.2. EIIP/AQVN Filter

The average quasi valence number (AQVN) and the electron–ion interaction potential
(EIIP) [45], generated from the general model pseudopotential [46], determine the specific
recognition and targeting between interacting biological molecules at distances greater
than 5 Å [33]:

Z* = ∑i=1,m(ni Zi/N) (1)

EIIP = 0.25 Z* sin(1.04 π Z*) (2)

where Z* stands for AQVN, Zi is the valence number of the i-th atomic component, ni is
the number of atoms of the i-th component, m is the number of atomic components in
the molecule, and N is the total number of atoms. EIIP values are expressed in Rydberg
units (Ry).

AQVN and EIIP account for the unique physical characteristics defining long-range
interactions between biological molecules [33]. The biological activity of organic molecules

http://zinc15.docking.org
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(such as their mutagenicity, carcinogenicity, toxicity, antibiotic, and cytostatic activity) is
strongly correlated with their EIIP and AQVN [45].

4.3. PCA Model

Both learning set compounds and candidate molecules were imported into Pentacle
software (version 1.06 for Linux) [47] in a 3D sdf format. There they were oriented to-
wards principal moments of inertia and protonated there at a physiological pH. GRIND
descriptors were calculated using diverse molecular interaction field (MIF) probes [22].
The essential nonbonded interactions were represented by the probes: DRY (hydrophobic
interactions), O (hydrogen bond acceptor), N1 (hydrogen bond donor), and TIP (molecular
shape descriptor). GRID with step 0.5 was the method for MIF computation, while the
discretization algorithm was AMANDA [48] with a scale factor of 0.55. The encoding
method was MACC2 with weights set to DRY: −0.5, O: −2.6, N1: −4.2, and TIP: −0.75.
The principle components analysis (PCA) model (with the number of PCA components set
to five) was built using the collected GRIND descriptors.

4.4. Molecular Docking

After downloading PDB crystal structures, receptor preparation implied the removal
of all ligands, ions, and water molecules, as well as protonation in accordance with physio-
logical conditions. For this purpose, BIOVIA Discovery Studio 2021 [43] and ADT Tools
1.5.6 were used [29,49]. Ligand molecules (converted to PDB format) were protonated
at pH = 7.4 in VEGA ZZ [50] and geometrically optimized in MOPAC 2016 [51] at the
PM7 [52] theory level. A grid box of 24 × 24 × 24 Å was placed to encompass every amino
acid residue that interacts with human CPSF30 [24]. The grid box (x, y, and z) center was
(−24.3, 40.8, −2.5). All docking results were obtained by using Autodock Vina 1.1.2 [53].
The value of exhaustiveness was 50. The scoring function of Autodock Vina calculates the
binding energy as a sum on single atom–atom pair contributions, but the basic equation
can be expanded into the following terms:

∆G = w1 ∗ gauss1+w2 ∗ gauss2 + w3 ∗ repulsion + w4 ∗ hydrophobic term + w5 ∗ hydrogen term

where gauss1 and gauss2 represent the contributions of Van der Waals potential and
repulsion term steric clashes, and the final two terms are those of hydrophobic interactions
and hydrogen bonds. Coefficients w1–w5 represent weighting parameters.

Figures were made in BIOVIA Discovery Studio 2017 and Origin 9.0 software.

4.5. ADMET Prediction

Using QikProp software in normal mode, the ADMET parameters of the candidate
compounds and inhibitors were computed [54]. MarvinSketch 22.9 was used to determine
CNS MPO values [55].

4.6. In Vitro Efficacy Testing against H1N1 and H3N2 Influenza A Viruses

The experiment began by pre-mixing influenza A/CA/07/2009 (H1N1) virus with 3-
(1H-indol-3-yl)-N-(4-phenylbutan-2-yl)propanamide, followed by an hour-long incubation
at 37 ◦C. The same process was repeated for the influenza A/New York/55/04 (H3N2) virus.
Madin-Darby canine kidney (MDCK) cells in 12-well plates, reaching 85–95% confluency,
were washed twice with serum-free media before being infected with the virus/drug
mixtures. Each treatment group was tested in triplicate.

As a positive treatment control, the influenza A virus was premixed with 10 µM of
merimepodib, an IMPDH inhibitor with known antiviral activity against various viruses,
including influenza [30,31].

After an hour of incubation at 37 ◦C with 5% CO2, cells were washed once with
serum-free media, and the appropriate concentration of test drug was added to each well.
Negative control wells were mock-infected, while virus control wells were infected but left
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untreated. The cells were then kept at 37 ◦C with 5% CO2, and samples were collected at 0,
24, and 48 h post-infection, then stored at −80 ◦C until analysis.

In order to measure the reduction in the production of infectious progeny, each sample
was diluted at a 1:10 ratio and used to inoculate cells in 96-well plates with approximately
85–95% confluency to determine viral titers using a 50% tissue culture infective dose
(TCID50) assay. Growth curves for each virus were constructed based on individual titers
collected at the specified time points.

5. Conclusions

Natural compounds are significant reservoirs of innovative, highly effective, and
specific candidates for treating influenza diseases. A virtual screening was conducted on
the ZINC Natural Product database to identify potential inhibitors of NS1 of influenza A
viruses. The most promising candidate compound, 3-(1H-indol-3-yl)-N-[(1R)-1-methyl-3-
phenyl-propyl]propanamide, was chosen in silico and validated in vitro as a potential novel
treatment agent against the influenza A viruses. Further research is required to elucidate the
candidate compound’s antiviral effects in vivo and show whether the compound represents
a suitable preliminary candidate for alleviating human and animal influenza infections.
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