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Abstract: Fibrous dysplasia (FD) poses a therapeutic challenge due to the dysregulated extracellular
matrix (ECM) accumulation within affected bone tissues. In this study, we investigate the therapeutic
potential of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in managing FD by examining its effects on
FD-derived cells in vitro. Our findings demonstrate that 1,25(OH)2D3 treatment attenuates the pro-
fibrotic phenotype of FD-derived cells by suppressing the expression of key pro-fibrotic markers
and inhibiting cell proliferation and migration. Moreover, 1,25(OH)2D3 enhances mineralization by
attenuating pre-osteoblastic cellular hyperactivity and promoting maturation towards an osteocytic
phenotype. These results offer valuable insights into potential treatments for FD, highlighting the
role of 1,25(OH)2D3 in modulating the pathological properties of FD-derived cells.
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1. Introduction

Fibrous dysplasia (FD) represents a complex interplay between aberrant cellular
activities and dysregulated extracellular matrix (ECM) dynamics, culminating in the ac-
cumulation of dense fibrous tissue within affected bone regions. The pathogenesis of FD
involves atypical pre-osteoblastic and mesenchymal stromal fibroblastic cell populations,
whose actions drive the pathological alterations observed in FD lesions [1,2]. Central to
these aberrations is the GNAS mutation in bone marrow mesenchymal stem cells (BMSCs),
which disrupt cyclic AMP (cAMP)-associated pathways to trigger a cascade of pathological
events [3].

At the forefront of FD pathogenesis lies the perturbation of osteogenic differentiation,
resulting in the entrapment of stromal cells in a pre-osteoblastic state. The maturation
of pre-osteoblasts, pivotal for normal bone formation, is arrested in FD, leading to an
accumulation of undifferentiated cells with dysregulated activities [4]. These cells express
pro-fibrotic factors like transforming growth factor beta (TGFβ), collagen type 1 alpha 1
chain (COL1A1), collagen type 3 alpha 1 chain (COL3A1), procollagen lysine 2-oxoglutarate
5-dioxygenase (PLOD), and periostin (POSTN), which contribute to aberrant ECM produc-
tion and deposition for the formation of dense fibrotic tissue [5–7].

Moreover, the GNAS mutation exerts its influence beyond osteogenic differentiation,
potentially altering the differentiation or de-differentiation of other cell types into fibrob-
lasts [8,9], further propagating fibrous tissue accumulation. The ensuing overproduction
of cAMP, a hallmark of the GNAS mutation, intricately modulates pro-fibrotic responses
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through various mechanisms. Elevated cAMP levels stimulate fibrotic proliferation and
ECM synthesis while promoting the expression of pro-fibrotic factors such as TGFβ [10].
The TGFβ pathway orchestrates the upregulation of pro-fibrotic genes such as COL1A1,
COL3A1, connective tissue growth factor (CTGF), and fibronectin (FBN) for the cellular
transition from a quiescent to an activated state [11–13]. Upon activation, fibroblasts un-
dergo phenotypic alterations characterized by heightened proliferative capacity, increased
migratory potential, and augmented ECM synthesis [14], substantiating the development
of tissue stiffness and fibrous tissue formation.

Despite advancements in the understanding of FD pathophysiology, therapeutic inter-
ventions remain largely elusive and limited to symptomatic control. Current investigatory
drugs include anti-bone resorptive agents such as bisphosphonates [15], denosumab [16],
and tocilizumab [17], aimed at attenuating the accelerated bone turnover, alongside anal-
gesics like tanezumab [18] and anti-brain-derived neurotrophic factor (BDNF) [19] for
alleviating associated bone pain. Surgical interventions may also be employed to address
deformities or fractures resulting from the disease process. However, it is important to note
that these treatments are merely palliative and fail to target the fundamental molecular
and cellular aberrations involving mineralization and fibrosis that drive FD pathogene-
sis. Consequently, patients are left with limited viable options for disease management
or treatment.

In light of these limitations, vitamin D has emerged as a potential therapeutic candi-
date for FD management. Known for its roles in bone metabolism, mineralization, and
its anti-proliferative/anti-inflammatory properties, vitamin D enhances calcium absorp-
tion and promotes osteoblast differentiation and function [20] to counter the dysregulated
turnover observed in FD lesions and facilitate the formation of structurally sound bone tis-
sue. Evidence also suggests it has anti-proliferative effects on mesenchymal stem cells [21],
crucial in FD pathogenesis, and potential to curb pro-fibrotic phenotypes in diseases such
as lung and liver fibrosis. By inhibiting abnormal cell proliferation, vitamin D supplementa-
tion could regulate the expansion of fibroblastic and immature osteogenic cell populations
within FD lesions, thereby attenuating disease progression.

Recognizing the potential of vitamin D, our study investigated the impact of 1,25-
dihydroxyvitamin D3 (1,25(OH)2D3), an active form of vitamin D3, on mitigating the
pro-fibrotic phenotype and promoting the maturation and mineralization of FD-derived
cells in vitro. We aimed to elucidate the therapeutic potential of 1,25(OH)2D3 by explor-
ing the cellular responses of FD-derived cells to its treatment, focusing on its effects on
migrative and proliferative properties, pre-osteoblastic hyperactivity, and osteogenic matu-
ration/mineralization, in comparison to normal BMSCs. Through our investigation, we
sought to provide insights into the benefits of 1,25(OH)2D3 in addressing aberrant ECM
development associated with FD.

2. Materials and Methods
2.1. Human Primary Tissues

Fresh tissue samples were collected from five patients diagnosed with craniofacial
fibrous dysplasia undergoing surgery for lesion resections and normal craniofacial bone
samples from healthy volunteers undergoing cosmetic facial bone contouring surgery.
The collection and use of surgical specimens for research were carried out in accordance
with approved protocols by the Institutional Review Board of Seoul National University
Bundang Hospital (B-2111-718-302) and Samsung Medical Center (2021-12-025). The
demographic and clinical features of the donors are summarized in Table 1.

Table 1. Donor characteristics and clinical features.

Diagnosis Donor Gender Age Site

Fibrous Dysplasia R1 M 18 Nasal cavity/maxillary sinus
Fibrous Dysplasia R2 M 19 Zygomaticomaxillary
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Table 1. Cont.

Diagnosis Donor Gender Age Site

Fibrous Dysplasia R3 F 25 Hemiface/mandible
Fibrous Dysplasia R4 M 12 Mandible
Fibrous Dysplasia R5 M 14 Forehead/upper orbit

None H1 F 28 Zygomatic/mandible
None H2 F 23 Hemiface/mandible
None H3 M 22 Zygomatic/mandible
None H4 M 19 Zygomatic/mandible
None H5 F 25 Zygomatic/hemiface

R = fibrous dysplasia patient, H = healthy volunteer.

2.2. Specimen Dissociation and Cell Isolation

Fresh lesion specimens were minced into fine particles and then subjected to digestion
with a 2 mg/mL collagenase D solution (Roche, Mannheim, Germany) in growth medium
(Dulbecco’s Modified Eagle medium (DMEM; Gibco Life Technologies, Carlsbad, CA, USA)
supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic–antimycotic solution).
This digestion process lasted for 4 h at 37 ◦C with gentle agitation. The resulting cell
suspension was filtered through a 70 µm cell strainer, treated with 1x RBC Lysis Buffer
(Invitrogen, San Diego, CA, USA), and either cryopreserved or cultured in T-flasks at a
density of 3 × 105 cells per flask. Any undigested residues were maintained in growth
medium for primary explant culture. Approximately two weeks post-explantation, cells
were collected and subjected to cryopreservation or replating in fresh culture dishes.

Normal bone specimens from healthy volunteers, devoid of associated metabolic bone
pathology, were used to isolate bone marrow mesenchymal stromal cells (BMSCs) for the
control group. The marrow was scraped into basal medium, followed by pipetting and
serial passages through needles of decreasing diameter. Cells were either cryopreserved or
replated for culture.

2.3. RNA Extraction and RT-qPCR

Cells were seeded into 6-well plates at a density of 2 × 105 cells per well and allowed
to attach to the plate for 24 h before treating with either 100 nM of 1,25(OH)2D3 (Sigma–
Aldrich, Waltham, MA, USA) or 10 nM of prostaglandin E2 (PGE2) (Sigma-Aldrich) or a
combination of both in growth medium. After 24 h, RNA extraction was performed, and
subsequently, cDNA was synthesized utilizing the cDNA Synthesis Kit (Thermo Scientific,
Waltham, MA, USA). The mRNA expressions were quantified via real-time PCR using
Power SYBR Green® PCR Master Mix on a QuantStudio™ 7 Flex PCR System (Applied
Biosystems, Waltham, MA, USA). Primers used in the analysis are listed in Table 2.

Table 2. Target genes and their primer sequences.

Gene Name Forward Primer (5′-3′) Reverse Primer (5′-3′)

COL1A1 GTGCGATGACGTGATCTGTGA CGGTGGTTTCTTGGTCGGT
COL3A1 TGGTCTGCAAGGAATGCCTGGA TCTTTCCCTGGGACACCATCAG
TGFβ1 TCGCCAGAGTGGTTATCTT TAGTGAACCCGTTGATGTCC
RUNX2 TGGTTACTGTCATGGCGGGTA TCTCAGATCGTTGAACCTTGCTA

OCN CACTCCTCGCCCTATTGGC CCCTCCTGCTTGGACACAAAG
DMP1 GATCAGCATCCTGCTCATGTT AGCCAAATGACCCTTCCATTC
SOST CCCTTTGAGACCAAAGACGTG GGCCCATCGGTCACGTAG

GAPDH ACAGTTGCCATGTAGACC TTTTTGGTTGAGCACAGG

2.4. Wound Healing Assay

Cells were seeded at 5 × 104 cells per well into 12-well plates and allowed to reach
confluence. A 200 µL pipette tip was used to create a uniform scratch across the cell
monolayer. Cells were then washed with phosphate-buffered saline (PBS) and treated
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with either 100 nM of 1,25(OH)2D3 or 10 nM of PGE2 or a combination of both in growth
medium. Images were captured at 0 and 16 h post-wounding using an inverted microscope.
The migration rate was determined by measuring the wound area using ImageJ software
(version 1.54i). Migration was expressed as the percentage of wound closure relative to the
initial wound area.

2.5. Proliferation Assay

Cells were seeded into 96-well plates at a density of 5 × 103 cells per well and allowed
to attach to the plate for 24 h before treating with either 100 nM of 1,25(OH)2D3 or 10 nM of
PGE2 or a combination of both in growth medium. After 24 h, the proliferation rate was
assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
solution (Invitrogen). Briefly, cells were incubated with MTT solution (0.5 mg/mL) for 4 h
at 37 ◦C. The formazan crystals formed were solubilized with dimethyl sulfoxide (DMSO),
and the absorbance was measured at 570 nm using a microplate reader.

2.6. Immunofluorescence

Cells were seeded at 5 × 104 cells per well into 12-well plates and allowed to attach to
the plate for 24 h before treating with either 100 nM of 1,25(OH)2D3 or 10 nM of PGE2 or a
combination of both in growth medium. After 48 h, cells were fixed with 4% paraformalde-
hyde for 10 min at RT, permeabilized with 0.5% Triton X-100, blocked with UltraCruz®

blocking reagent (Santa Cruz Biotech, Santa Cruz, CA, USA) for 30 min at RT, and incu-
bated with primary antibodies overnight at 4 ◦C with appropriate primary antibodies:
anti-COL1, anti-COL3, and anti-TGFβ1 (all from Santa Cruz, diluted at 1:100 in blocking
reagent). The following day, Alexa Fluor®-labeled secondary antibody (Invitrogen, diluted
at 1:250 in blocking reagent) was applied for 1 h at RT before mounting in Vectashield
mounting medium with DAPI (VMR). Final histological images were taken using Zeiss
LSM800 confocal microscope (Zeiss, Oberkochen, Germany) after curing the mounting
medium overnight.

2.7. ALP and ARS Assay

For the alkaline phosphatase (ALP) assay, cells were seeded into 96-well plates at a
density of 5 × 103 cell per well and allowed to reach 60% confluence in the growth medium
prior to treating with either 100 nM of 1,25(OH)2D3 or 10 nM of PGE2 in osteogenic differ-
entiation medium (DMEM supplemented with 10% FBS, 10 nM dexamethasone, 50 µg/mL
ascorbic acid, 10 mM sodium β-glycerophosphate, and 1% antibiotic-antimycotic). A fresh
medium change with treatment was executed every 3 days for 2 weeks. Cells were fixed
with 4% paraformaldehyde for 10 min at RT, and subsequently incubated with an ALP
staining solution (Takara Bio, Tokyo, Japan) for 30 min. Cells were imaged using a light
microscope. For quantitative analysis, the bound dye was eluted from stained cells using
DMSO, and the absorbance of the eluted dye was measured using a spectrophotometer.

For the Alizarin Red S (ARS) assay, cells were cultured and treated in the same manner
as outlined previously for the ALP assay. However, osteogenic differentiation was induced
in cells for a longer period of time of 3 weeks. Cells were fixed with 4% paraformaldehyde
for 10 min at RT and incubated with 2% ARS solution (VWR International, Radnor, PA,
USA) for 1 h. Stained cells were visualized under a light microscope, and images were
captured to assess calcium deposition as red-stained mineralized nodules. For quantitative
analysis, the bound dye was eluted from stained cells using DMSO, and the absorbance of
the eluted dye was measured using a spectrophotometer.

2.8. Statistical Analysis

Statistical analysis and data representation were performed using GraphPad Prism
8. The statistical differences were determined by one-way ANOVA. All quantitative re-
sults are presented as the mean ± standard deviation of five independent experiments,
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with each performed in triplet, if not noted otherwise. A p-value < 0.05 was considered
statistically significant.

3. Results
3.1. 1,25(OH)2D3 Suppresses Pro-Fibrotic Properties of FD-Derived Cells

A histological analysis of FD-derived cells revealed the significantly elevated expression
of key pro-fibrotic markers—COL1, COL3, and TGFβ1—in comparison to normal BMSCs
(Figure 1A). Upon a low dose of stimulation with PGE2, these markers exhibited a robust
increase in expression, which was effectively attenuated by 1,25(OH)2D3 treatment. These
differences were more prominent in FD-derived cells, which displayed strong fibrotic pheno-
types compared to normal BMSCs. Our analysis of the mRNA expression levels corroborated
these histological observations, demonstrating a significant suppression in the expression
profile of COL1A1, COL3A1, and TGFβ1 in the presence of 1,25(OH)2D3 (Figure 1B).
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Figure 1. 1,25(OH)2D3 inhibits the expression of fibrotic markers and attenuates cell migration and
proliferation. (A) Representative immunofluorescent images and (B) mRNA expression levels of
fibrotic markers COL1, COL3, and TGF-β1 under the treatment of 1,25(OH)2D3, PGE2, or both, in
normal BMSCs and patient-derived cells. Functional studies to determine their effects on (C) cell
migration and (D) cell proliferation were performed. The graphs represent the gene expression relative
to the normal BMSCs control group. Asterisks indicate statistical significance based on one-way
ANOVA (**** p value < 0.0001, *** p value < 0.001, ** p value < 0.01, * p value < 0.05). Scale bar, 100 µm.
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To investigate the modulatory effects of 1,25(OH)2D3 on the pro-fibrotic phenotypes,
we examined its impact on the migratory and proliferative capacities of FD-derived
cells. Migration assays revealed a heightened migratory propensity of FD-derived cells,
evidenced by their increased migration distances and rates relative to normal BMSCs
(Figure 1C). Treatment with 1,25(OH)2D3 significantly curtailed the migratory capacity of
FD-derived cells, both in the presence and absence of PGE2 stimulation. These findings
suggest that 1,25(OH)2D3 suppresses the migratory attributes of FD-derived cells, poten-
tially inhibiting their tissue infiltration ability. Furthermore, FD-derived cells exhibited
an augmented proliferative capacity compared to normal BMSCs, which was significantly
attenuated with the treatment of 1,25(OH)2D3, particularly in PGE2-stimulated, FD-derived
cells (Figure 1D). Collectively, these findings delineate the efficacy of 1,25(OH)2D3 in miti-
gating the proliferation and migration of FD-derived cells, thus highlighting the therapeutic
potential in combating pro-fibrotic phenotypes associated with FD.

3.2. 1,25(OH)2D3 Promotes Osteoblast Maturation and Enhances Mineralization

Treatment with 1,25(OH)2D3 demonstrated a notable impact on the hyperactivity and
mineralizing capacities of FD-derived cells. Firstly, we evaluated the effect of 1,25(OH)2D3
on the hyperactivity of FD-derived cells using the ALP assay (Figure 2A). FD-derived
cells treated with 1,25(OH)2D3 exhibited a significant attenuation of elevated ALP activity
compared to untreated cells, indicative of suppressed hyperactivity. This reduction in
ALP activity suggests that 1,25(OH)2D3 treatment effectively mitigates the hyperactivity of
FD-derived cells, potentially normalizing their osteogenic differentiation process.
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Furthermore, we investigated the mineralizing capacities of FD-derived cells in re-
sponse to 1,25(OH)2D3 treatment using the ARS assay. Treatment with 1,25(OH)2D3
significantly enhanced mineralization in FD-derived cells compared to untreated cells,
which demonstrated significantly low levels of ARS activity, as evidenced by the increased
Alizarin Red S staining intensity. This enhancement in mineralizing capacities suggests that
1,25(OH)2D3 treatment promotes the formation of mineralized bone tissue via FD-derived
cells, potentially counteracting the dysregulated bone remodeling observed in fibrous dys-
plasia. Overall, our results demonstrate that 1,25(OH)2D3 treatment effectively mitigates
hyperactivity and enhances the mineralizing capacities of FD-derived cells.

The mRNA expression levels of early- to late-osteogenic markers were assessed to
investigate the maturation status of FD-derived cells following treatment with 1,25(OH)2D3
(Figure 2B). Our results revealed the inhibition of Runt-related transcription factor 2
(RUNX2), an early osteogenic marker, which was highly expressed in FD-derived cells
compared to normal BMSCs. Furthermore, the suppressed expression of late-osteogenic
markers, including osteocalcin (OCN), dentin matrix protein 1 (DMP1) and sclerostin
(SOST), was restored in FD-derived cells treated with 1,25(OH)2D3 compared to untreated
cells, aligning them with the expression levels observed in normal BSMCs. OCN, DMP1,
and SOST are key components of the ECM in bone tissue and are synthesized by mature
osteoblasts during the late stages of osteogenesis. Therefore, their increased expression
indicates a shift towards a mature osteoblast/osteocyte phenotype upon treatment with
1,25(OH)2D3. These findings suggest that 1,25(OH)2D3 promotes the differentiation and
maturation of FD-derived cells towards a bone-forming phenotype, which may contribute
to the restoration of normal bone remodeling and mineralization in FD.

4. Discussion

Fibrous dysplasia (FD) presents a challenging clinical scenario, characterized by the
pathological replacement of normal bone with fibrous tissue. This disorder manifests with
bone deformities, fractures, and chronic pain [22], often necessitating therapeutic interven-
tions to mitigate its progression and associated symptoms. The pathogenesis of FD involves
the intricate dysregulation of bone ECM formation, orchestrated by atypical mesenchymal
stromal fibroblastic and pre-osteoblastic cell populations within FD lesions [23]. In this
study, we sought to explore the therapeutic potential of 1,25(OH)2D3 in addressing the
fibrotic phenotypes and aberrant bone metabolism characteristic of FD (Figure 3). Our
results demonstrate that treatment with 1,25(OH)2D3 effectively mitigates the pro-fibrotic
properties of FD-derived cells. We observed a significant reduction in the mRNA levels of
fibrotic markers, including COL1A1, COL3A1, and TGFβ1, in FD-derived cells treated with
1,25(OH)2D3. These findings suggest that 1,25(OH)2D3 suppresses the fibrotic phenotype of
FD-derived cells, potentially inhibiting the abnormal accumulation of fibrous tissue within
FD lesions.

Furthermore, we found that treatment with 1,25(OH)2D3 significantly reduces the mi-
gratory and proliferative properties of FD-derived cells. This observation highlights the
anti-migratory and anti-proliferative effects of 1,25(OH)2D3, which may contribute to its
therapeutic potential in mitigating the progression of FD. Additionally, we demonstrated
that 1,25(OH)2D3 treatment enhances the mineralizing capacities of FD-derived cells, as
evidenced by increased ALP activity and ARS staining intensity. These findings suggest
that 1,25(OH)2D3 promotes osteogenic differentiation and mineralization in FD-derived cells,
potentially restoring normal bone metabolism and structure in FD lesions. The therapeutic ef-
fects of 1,25(OH)2D3 observed in our study are supported by previous studies demonstrating
its anti-fibrotic [24,25], anti-proliferative [26,27], and pro-osteogenic [28] properties in various
disease models. Vitamin D3 has been shown to regulate key signaling pathways involved in
fibrosis, proliferation, and osteogenesis, including the TGFβ1/mothers against decapenta-
plegic homolog (Smad) and wingless-type (Wnt)/β-catenin pathways [29,30]. By modulating
these pathways, 1,25(OH)2D3 may exert its therapeutic effects by inhibiting fibrotic processes,
suppressing abnormal cell proliferation, and promoting osteogenic differentiation.



Int. J. Mol. Sci. 2024, 25, 4954 8 of 11
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 3. Proposed effect of 1,25(OH)2D3 on the pathobiological features of FD. 1,25(OH)2D3 sup-
presses the heightened release of pro-fibrogenic mediators and promotes the release of osteogenic 
mediators by MSCs in FD individuals, thereby impeding fibrogenic differentiation and activation 
into pro-fibrotic fibroblasts while fostering osteogenic differentiation and maturation to restore ab-
errant matrix deposition and impaired mineralization. FD: fibrous dysplasia; MSC: mesenchymal 
stem cell; RUNX2: Runt-related transcription factor 2; ALP: alkaline phosphatase; OPN: osteopon-
tin; DMP1: dentin matrix protein 1; SOST: sclerostin; COL1: collagen type 1; COL3: collagen type 3; 
TGFβ1: transforming growth factor beta 1. 

Furthermore, we found that treatment with 1,25(OH)2D3 significantly reduces the mi-
gratory and proliferative properties of FD-derived cells. This observation highlights the 
anti-migratory and anti-proliferative effects of 1,25(OH)2D3, which may contribute to its 
therapeutic potential in mitigating the progression of FD. Additionally, we demonstrated 
that 1,25(OH)2D3 treatment enhances the mineralizing capacities of FD-derived cells, as 
evidenced by increased ALP activity and ARS staining intensity. These findings suggest 
that 1,25(OH)2D3 promotes osteogenic differentiation and mineralization in FD-derived 

Figure 3. Proposed effect of 1,25(OH)2D3 on the pathobiological features of FD. 1,25(OH)2D3 sup-
presses the heightened release of pro-fibrogenic mediators and promotes the release of osteogenic
mediators by MSCs in FD individuals, thereby impeding fibrogenic differentiation and activation into
pro-fibrotic fibroblasts while fostering osteogenic differentiation and maturation to restore aberrant
matrix deposition and impaired mineralization. FD: fibrous dysplasia; MSC: mesenchymal stem cell;
RUNX2: Runt-related transcription factor 2; ALP: alkaline phosphatase; OPN: osteopontin; DMP1:
dentin matrix protein 1; SOST: sclerostin; COL1: collagen type 1; COL3: collagen type 3; TGFβ1:
transforming growth factor beta 1.

While traditionally fibroblasts were not considered direct precursors of osteoblasts,
and vice versa, emerging evidence suggests that they possess differentiation plasticity,
allowing for transdifferentiation processes [31]. This phenomenon is evident in certain
pathological contexts like ossification of the posterior longitudinal ligament (OPLL), where
fibroblasts within ligament tissue differentiate into osteoblast-like cells, contributing to
ectopic bone formation [32,33]. Similarly, in conditions such as X-linked hypomyelination
with spondylometaphyseal dysplasia (H-SMD), patient-derived fibroblasts have demon-
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strated the ability to transdifferentiate into osteoblast-like cells to recapitulate the disease-
relevant skeletal phenotype [34]. Although their relevance to FD is speculative, the shared
fibroblastic phenotype expressed across various cellular subsets within FD lesions suggest
the potential for interconversion between fibroblasts and other differentiated progenies of
MSC [23].

The significantly greater amounts of alizarin Red S content, indicative of increased
calcium deposition, and reduced fibrogenic marker expressions in FD-derived cells treated
with 1,25(OH)2D3, support the shift towards osteoblastic differentiation. This aligns with
the notion that stromal fibroblasts within FD lesions may exhibit osteoblastic phenotypic
features under environmental stimuli, such as vitamin D-associated signaling, further high-
lighting the potential for cellular plasticity modulation and transdifferentiation processes
in FD pathogenesis. However, the specific mechanisms underlying the interplay between
fibroblasts and osteoblasts, as well as their potential transdifferentiation into osteoblastic
cells, remain unclear in FD. Further research is needed to elucidate the cellular dynam-
ics underlying FD and to investigate the precise mechanisms through which vitamin D3
exerts its effects on cellular differentiation processes, offering a novel approach for the
management of FD.

This study provided valuable insights into how 1,25(OH)2D3 can effectively intervene
in the multifaceted pathology of FD. By demonstrating its ability to mitigate the pro-fibrotic
properties of FD-derived cells while simultaneously promoting osteogenic differentiation
and mineralization, our findings underscore the therapeutic potential of 1,25(OH)2D3
as a comprehensive treatment that targets both fibrotic phenotypes and aberrant bone
metabolism in FD. Importantly, while investigatory drug candidates such as the ones
mentioned earlier led to insignificant radiographic improvements and complications like
hypercalcemia [35] or nausea and myalgia [36], this vitamin D analog offers a potent and
safe alternative.

However, an important limitation of this study lies in the lack of investigation into
specific signaling pathways mediating these effects. Vitamin D3 acts through the vitamin
D receptor (VDR) to modulate various signaling cascades, including the Wnt/β-catenin
pathway, mitogen-activated protein kinase (MAPK) pathway, and phosphatidylinositol
3-kinase (PI3K)/(protein kinase B) Akt pathway [37]. The activation of these pathways can
influence cell proliferation, differentiation, and survival, all of which are relevant to FD
pathogenesis. By elucidating the downstream signaling pathways affected by 1,25(OH)2D3
in FD-derived cells, we could gain a deeper understanding of its mechanisms of action and
potentially identify novel therapeutic targets. Additionally, pathway analysis could provide
insights into the crosstalk between vitamin D3 signaling and other pathways implicated in
FD, such as the cAMP pathway associated with the GNAS mutation.

Therefore, future studies should consider integrating pathway analysis techniques,
such as transcriptomic profiling or phosphoproteomic analysis, to elucidate the intricate
molecular mechanisms underlying the therapeutic effects of vitamin D3 in FD. This com-
prehensive approach would not only enhance our understanding of FD pathophysiology
but also facilitate the development of targeted and personalized therapeutic strategies
for this challenging disorder. In conclusion, our findings suggest that 1,25(OH)2D3 holds
promise as a therapeutic agent for the management of fibrous dysplasia. By targeting
fibrotic phenotypes and aberrant bone metabolism, 1,25(OH)2D3 may offer a novel ap-
proach for the treatment of FD. Further studies are warranted to elucidate the underlying
mechanisms of action of 1,25(OH)2D3 and to evaluate its efficacy and safety in preclinical
and clinical settings.
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