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Abstract: Osteoporosis, characterized by reduced bone density and increased fracture risk, affects
over 200 million people worldwide, predominantly older adults and postmenopausal women. The
disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies
osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and
vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts.
However, these treatments have limitations, including side effects and compliance issues. Natural
products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain
poorly understood. In this study, we investigate the efficacy of natural compounds in modulating
molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK)
pathway and the gut microbiome’s influence on bone homeostasis. Using an in silico and in vitro
methodology, we have identified quercetin as a promising candidate in modulating MAPK activity,
offering a potential therapeutic perspective for osteoporosis treatment.

Keywords: osteoporosis; natural compounds; molecular docking; molecular dynamics simulations;
bone metabolism; quercetin; MAPKs

1. Introduction

Bone and mineral metabolism play a crucial role in preserving bone health, while
their interruption can cause a decrease in bone density and consequently osteoporosis.
Osteoporosis is becoming a serious healthcare issue due to the high morbidity, mortality
and significant healthcare cost involved and is characterized by skeletal fragility and
susceptibility to fractures [1]. It is a metabolic bone disease that affects over 200 million
individuals globally [2], and it is occurring mostly in older adults and postmenopausal
women [3]. Two categories of osteoporosis have been identified: primary, when it is age-
related, and secondary, when it is caused due to the presence of an underlying disease or
mediation [4]. Osteoporosis is caused by the disruption of the cooperative balance between
osteoblasts and osteoclasts [5], and it can be diagnosed by measuring the bone mineral
density (BMD) with dual X-ray absorptiometry (DXA) [6], which is considered the gold
standard for the diagnosis of osteoporosis [7]. BMD (g/cm2) is determined by the ratio
of the measured bone mineral content to the measured bone area and is converted to the
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Trabecular Bone Score (T-score). According to the World Health Organization (WHO),
osteoporosis occurs when the reference values of the T-score ≤ −2.5 of DXA at the lumbar
spine, femoral neck or distal third of the radius [8,9], while a patient is diagnosed with
osteopenia when the reference values of the T-score are between −1 and −2.5 [10].

Once osteoporosis has been diagnosed, healthcare professionals can tailor specific
interventions to achieve an effective therapy during the early phase of this disease [11].
Fundamental aspects for any osteoporosis prevention or treatment program include lifestyle
modifications (physical exercise, balanced diet, the cessation of tobacco use and excess
alcohol intake) and vitamin D and calcium supplementation. An adequate intake of calcium
decreases the rate of bone mineral density loss [12] and combined with vitamin D reduces
the risk of total and hip fractures [13]. Yet, these approaches are insufficient in preventing
the progression of osteoporosis, and they need to be combined with specific osteoporosis
drugs that have been developed to restore the normal balance between bone resorption
and bone formation [14]. Currently available osteoporosis drugs are either antiresorptive,
which slow down bone resorption by inhibiting the osteoclasts and anabolic drugs, which
increase bone formation by stimulating the osteoblasts [15]. Both therapeutic strategies
have demonstrated proven efficacy [16], but they are limited by side effects, concurrent
comorbidities and inadequate long-term compliance [17]. Therefore, there is a great need
to tailor treatments for osteoporosis that are both effective and safe.

In recent years, natural products have emerged as promising candidates for preventing
osteoporosis; however, the exact mechanism through which they operate remains unknown,
resulting in limiting clinical applications [18]. In response to this challenge, investigating the
potential of natural products to counteract bone fragility based on molecular targets could
offer potential therapeutic benefits for patients. Several molecular mechanisms are known
to have an impact on bone homeostasis [5,11]. The Wingless-type mouse mammary virus
integration site (Wnt) signaling pathway is an evolutionary conserved system of cell–cell
communication that is the master switch for osteoblastic differentiation [19]. Sclerostin and
dickkopf-1 function as antagonists of Wnt signaling, exerting negative regulatory influence
on bone formation [20]. Monoclonal antibodies, such as romosozumab and BHQ 880, have
been strategically employed to specifically target and neutralize the inhibitory actions
of sclerostin and Dickkopf-1, respectively, thereby facilitating the augmentation of bone
formation [21]. Moreover, therapeutic interventions have been implemented to attenuate
osteoclastic differentiation which is primarily modulated by the receptor activator of the
nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) pathway [22].
Denosumab, a monoclonal antibody which successfully neutralizes RANKL and thus
inhibits key steps in osteoclast-mediated bone resorption, has clearly shown substantial
antifracture benefits in clinical trials [23] and can be considered as a first-line treatment
for osteoporosis.

The Mitogen-Activated Protein Kinase (MAPK) pathway can also be a potential ther-
apeutic target for the treatment of osteoporosis. It has been shown to regulate osteoclast
differentiation and activation [24] with two Extracellular Signal-Regulated Kinase (ERK)
isoforms, ERK1/2, and three c-Jun N-terminal Kinase (JNK) forms, JNK1/2/3, having a
primary role in influencing the proliferation of osteoclast precursors as well as the regula-
tion of apoptosis in osteoclasts [25]. Moreover, the four isoforms of p38 (p38α/β/γ/δ) also
play a key role in osteoclast differentiation and bone resorption [26]. Therefore, targeting
specific components of the MAPK pathway may influence bone remodeling.

Recent studies have also yielded novel insights into the influence of the gut micro-
biome in bone homeostasis and the mechanism of degenerative skeletal diseases, such as
osteoporosis [27,28]. The gut microbiome consists of trillions of symbiotic and pathogenic
microorganisms residing in the human intestine that build mutually beneficial relation-
ships with the host [29,30]. It is originally obtained from the mother during birth, and it
functions as a multicellular organ which influences a plethora of physiological functions of
the human body including metabolic balance [31,32]. In addition, it has been associated
with the pathogenesis of several metabolic disorders, including osteoporosis, where an
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imbalance in the gut microbiome, known as dysbiosis, has been observed in associated
patients [33–35]. For this reason, it has been considered as an appealing therapeutic strategy
for combating osteoporosis.

In pursuit of therapeutic interventions to address osteoporosis, the potential of phyto-
chemicals to modulate the activity of MAPKs related to bone metabolism and osteoporosis
was examined against the p38, ERK and JNK isoforms while also investigating their in-
fluence on the gut microbiome. A graphical overview of the strategy pursued in this
study is depicted in Figure 1. Briefly, several classes of natural compounds were collected
from an open access chemical library. The interaction of these molecules with 40 strains
of the human gut microbiome that could affect osteoporosis was predicted using a well-
established machine learning (ML) algorithm. Virtual screening was performed for the
selected protein targets, and the top-ranked compounds were further subjected to 100 ns
molecular dynamics (MD) simulations in triplicates to study the structural dynamics, con-
formational behavior and the stability of protein–ligand complexes. Finally, the binding
free energy of each protein–ligand complex was assessed using the Molecular Mechanics
Poisson–Boltzmann surface area (MM-PBSA) method to evaluate in vitro selected com-
pounds against specific MAPKs.
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Figure 1. A graphical summary of the role of MAPKs in bone metabolism. The potential inhibition of
MAPKs by natural products could suppress the differentiation and activation of the osteoclasts.

2. Results and Discussion
2.1. The Selection of the Most Promising Natural Compounds for MD Simulations

A combined computational and experimental workflow was implemented for the dis-
covery of the potential inhibitors of specific components of the MAPK pathway that may
influence bone remodeling. An overview of this workflow is depicted in Figure 2. To assess the
potential of natural compounds to modulate the activity of MAPKs related to osteoporosis, we
first selected 187 molecules from an online platform, CNatural, (http://cnatural.eu/home/,
accessed on 14 March 2024) based on their reported association in osteoporosis from literature
data. To select desirable compounds for MD simulations, four filters were applied: (A) the
evaluation of docking scores and pertinent binding poses of the molecules, (B) consideration
of the potential issuance of scientific opinions from the European Food Safety Authority
(EFSA) and assessing the safety profiles of the 187 natural compounds, (C) examination of
their involvement in clinical trials related to osteoporosis and (D) assessment of their influence
on gut microbiome strains associated with osteoporosis.

http://cnatural.eu/home/
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Figure 2. An overview of the workflow implemented for the discovery of natural compounds that
have the potential to inhibit MAPKs. The procedure starts with a virtual library enumeration of
180,000 compounds that are filtered based on their reported association with osteoporosis (187 com-
pounds). It then continues with docking calculations, prediction of the interactions of the compounds
with the human gut microbiome and assessment of potential clinical trials that have participated
and respective EFSA scientific opinions and safety profiles to produce a subset of five ligands in
allosteric binding mode. Then, MD simulations are employed on p38b and ERK1 to retain only
2 stably bound molecules, which were subsequently validated in vitro. These compounds undergo
testing on additional JNK, p38 and ERK isoforms, followed by a second round of KdELECT assays
to identify the natural compound with the potential to modulate the activity of MAPKs. Quercetin
emerges as an inhibitor of ERK1, JNK2 and JNK3, suggesting its promise in addressing osteoporosis.

As a first step, the resulting molecules were screened on the selected crystal structures
of p38b and ERK1 using the AutoDock Vina 1.1.2 [36] docking software. The choice of
crystal structures is described analytically in the Methods section. Of particular interest is
the location of the co-crystalized ligands in relation to the ATP-binding site and the type
of inhibition that they exhibit. Kinase inhibitors of p38 [37] and JNK [38] isoforms are
classified into type-I inhibitors that mimic ATP and aim for the ATP-binding site and type-II
inhibitors, which stabilize an “out” conformation of the ATP/Mg2+-coordinating domain
distinguished by a conserved Asp-Phe-Gly (DFG) motif [39,40]. Finally, ERK isoforms
demonstrate minimal tendency towards adopting the ‘DFG-out’ conformation. Therefore,
the potent inhibitors target a distinct allosteric pocket located adjacent to the ATP site [41].
The preferred binding modes selected in this study focused on the type-II inhibition for p38
and JNK isoforms along with the allosteric inhibition reported in Chaikuad et al. [41]. The
decision was driven by the robust binding of ATP to the ATP-binding site, rendering it less
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favorable as a primary target for natural compounds. Therefore, all the phytochemicals
were docked using AutoDock Vina [36] in order to acquire the lowest energetic structure in
the allosteric binding region for each protein. To assess the capability of AutoDock Vina in
generating reliable initial structures for MD simulations, we performed the self-docking
of the co-crystalized ligands into their respective allosteric binding sites within p38b and
ERK1. The ligands consistently attained the highest docking scores while maintaining
their positions within the allosteric binding pocket. Specifically, they achieved scores of
−11.0 kcal/mol in comparison to −10.5 kcal/mol for the top-ranked compound in ERK1
and −13.7 kcal/mol compared to −11.9 kcal/mol for the top-ranked compound in p38b.
The docking scores of the 187 natural compounds on the two proteins are listed in Table S1.

The compounds were additionally filtered based on their safety profiles. Through
comprehensive database searches, legislative inquiries and literature reviews, 40% of the
natural compounds were found to have an established daily dose deemed safe and effica-
cious, demonstrating beneficial effects without any reported adverse side effects. These
compounds were further refined based on whether the EFSA had assessed their safety
of use in products and their potential beneficial effects on specific functions of the hu-
man body. Only 15 compounds have received scientific opinions from the EFSA [42–58],
and Table S2 lists the inquiries submitted to the EFSA for the respective phytochemicals
along with the corresponding assessments received. Moreover, we explored the possible
participation of the 187 natural compounds in clinical trials associated with osteoporosis.
Using the clinical.trials.gov database (https://clinicaltrials.gov/, accessed on 14 March
2024), we conducted a search for clinical studies and nutritional interventions involving
the 187 natural compounds and their corresponding extracts. Table S3 presents examples
of completed clinical studies assessing the impact on bone health, whether through indi-
vidual phytochemicals, their extracts or diets containing them. The majority of available
clinical data pertain to flavonoids (genistein-, hesperidin-, soy isoflavones and isoflavone-
enriched foods) and polyphenols (past dried plum, blueberry and green tea extracts) [59–69].
However, due to the non-mandatory nature of conducting clinical studies or nutritional
interventions for dietary supplements, insufficient clinical data were identified for the
selected compounds or their extracts.

Finally, we examined whether these compounds could inhibit the growth of human
gut bacterial strains using an ML model developed by McCoubrey et al. [70]. Among the
cohort of 40 strains, 14 strains are affiliated with the genera Ruminococcous, Bifidobac-
terium, Clostridium, Fusobacterium and Veillonella. According to clinical studies involving
patients with osteoporosis and other skeletal health problems, augmented populations
of these genera were observed within their human gut microbiome [71–73]. Hence, it is
crucial to hinder their growth. On the other hand, diminished populations of the genera
Bacteroides and Lactobacillus (nine strains found in the dataset) were detected, and it is
imperative to avoid inhibiting their growth. Thus, our prioritization of compounds was
based on their predicted interaction with both the total number of bacterial strains and the
number of strains associated with osteoporosis. These models face limitations primarily
due to the availability of data, as the number of studies on microbe–drug interactions
remain relatively low, and there is a scarcity of publicly accessible shotgun metagenomic
data for analysis. Moreover, technical disparities across studies often hinder comparison
and validation efforts. Additionally, the effectiveness of a drug’s anti-commensal effect
is contingent upon its bioavailability at the site of action. However, the model utilized
relies on data from high-throughput screens conducted at a fixed concentration. While
the authors demonstrated that this concentration generally aligns with intestinal levels for
most drugs, variations may exist for certain compounds due to influences from both host
and microbial factors. Furthermore, the method and analysis here utilize a single strain as
a representative of each species, potentially overlooking strain-specific responses to drugs.
Such variations may encompass factors known to significantly impact antimicrobial and
antidrug resistance, such as the presence of specific xenobiotic-metabolizing enzymes and
multidrug resistance transporters [74–76]. While high-throughput experiments offer crucial
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insights into complex biological systems, ML methods can complement these experiments
by identifying trends and extrapolating observed patterns. Despite the likelihood of fu-
ture high-throughput screens providing more valuable information on drug–microbiome
interactions, the vastness of this space poses challenges, and experimental methods may
struggle to keep pace with the rapid development of new compounds and the discovery
and sequencing of new microbial strains. Furthermore, in vitro experiments often require
the isolation and culture of assayed microbes, which can be challenging or infeasible,
particularly for gastrointestinal and host-associated species. Therefore, we assert that the
computational prediction of drug–microbe interactions is not only valuable but also a
critical component of future research on the interactions between drugs and the human
microbiome, offering numerous applications.

After applying the four aforementioned filters, we narrowed down our selection to
five phytochemicals for further assessment using MD simulations. Table 1 presents the
five candidate molecules alongside the total number of affected bacterial strains attributed
to each compound and the number of strains associated with osteoporosis.

The five selected natural compounds are categorized as either flavonoids (three com-
pounds) or polyphenols (two compounds). Chlorogenic acid ranked 100th for ERK1 and
122nd for p38b, both with a docking score of −8.4 kcal/mol, exhibiting a mere 3.5 kcal/mol
distinction from the top-ranked compound of p38b (−11.9 kcal/mol) and a 2.1 kcal/mol
variance from the top-ranked phytochemical in ERK1 (−10.5 kcal/mol). It was predicted
to impact a total number of 18 out of 40 bacterial strains of the human gut microbiome,
with 11 of them linked to osteoporosis. Salidroside, the other phenolic compound chosen
for MD simulations, was primarily selected as a negative control for our protocol. Scoring
among the lower ranks, it ranked 146th for p38b with −7.7 kcal/mol and 100th for ERK1
with −7.3 kcal/mol. It influenced a modest count of six bacterial strains, with only three of
them associated with osteoporosis.

Regarding flavonoids, quercetin achieved moderate scores in both p38b (102nd with
−8.3 kcal/mol) and ERK1 (104th with −8.5 kcal/mol), with a slight discrepancy from
the top-ranked compounds of p38b (3.6 kcal/mol) and ERK1 (2 kcal/mol). However,
it influenced over half of the strains (22) within the human gut microbiome, with 15 of
them associated with osteoporosis. Quercetin has captured substantial interest from both
medical and research fields due to its promising therapeutic potential. This includes its
antioxidant, antitumor, antiatherogenic, antithrombotic and cardioprotective properties [77].
As a result, quercetin has emerged as a prominent bioactive ingredient with promising
applications in numerous functional foods and pharmaceutical products. Nonetheless, the
limited water solubility of this phytochemical significantly hampers its bioavailability and
absorption following oral administration [78]. To address this challenge, quercetin has been
incorporated into innovative lipid-based systems to enhance its bioactivity and therapeutic
profile. Nanotechnology strategies, including microparticles, nanostructured lipid carriers,
nanoparticles, nanoemulsions, microemulsions, liposomes, phytosomes, niosomes and
transferosomes, have been employed for this purpose [79]. The administration of quercetin
is typically well tolerated, though minor side effects such as mild headache, nausea and
tingling of the extremities may occur with long-term supplementation at 1000 mg/day.
Nephrotoxicity has been documented with high intravenous doses in cancer patients [80].

Naringin was chosen as the second flavonoid for MD simulations due to its safety
profile and efficacy, as outlined in the scientific opinion issued by the EFSA [43,51]. More-
over, it emerged as one of the highest-ranked phytochemicals, exhibiting a docking score of
−10.0 kcal/mol for p38b (ranking 13th) and −9.1 kcal/mol for ERK1 (ranking 51st), with
minimal variance compared to the top-ranked natural compounds for p38b (1.9 kcal/mol)
and ERK1 (1.4 kcal/mol). It was predicted to affect a total of 16 bacterial strains, with
7 of them associated with osteoporosis. Hesperidin, the final compound chosen for MD
simulations, possesses a high safety threshold in food according to the EFSA [50,52,56].
Additionally, it is currently under clinical trials regarding osteopenia and osteoporosis, with
ongoing investigations and no definitive conclusions yet reached (ClinicalTrials.gov Identi-
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fier: NCT00330096). Furthermore, it stood out as one of the top-ranking phytochemicals,
showcasing a docking score of −9.2 kcal/mol for p38b (ranked 46th) and −9.9 kcal/mol
for ERK1 (ranked 13th), with negligible differences compared to the highest-ranked natural
compounds for p38b (2.7 kcal/mol) and ERK1 (0.6 kcal/mol). Ultimately, it was predicted
to affect 12 strains linked to the gut microbiome, of which 5 linked to osteoporosis. A visual
examination of the docking poses of these compounds using the PyMOL 2.5.5 software
was also conducted to verify their presence within the allosteric binding pocket.

Table 1. The compounds selected for MD simulations, their predicted collective impact on bacte-
rial strains and the specific subset of strains demonstrating either positive or negative effects on
osteoporosis.

Natural
Compound 2D Structure

Total Number of
Affected Bacterial

Strains

Number of Affected
Strains

Positively
Correlated with

Osteoporosis

Number of
Affected Strains

Negatively
Correlated with

Osteoporosis

Quercetin
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2.2. MD Simulations

To assess the binding of the five selected compounds to p38b and ERK1, we conducted
100 ns MD simulations on the protein–ligand complexes using Gromacs 2021 [81]. The top-
ranked docking pose of each protein–ligand complex was used as a starting structure. Each
simulation was performed in triplicate with identical starting conditions but different initial
velocities. The calculation of the ligands’ root-mean-square deviation (RMSD) with re-
spect to the initial frame showed that quercetin (RMSDquercetin = 2.74 ± 0.22 Å—Figure 3A,
RMSDbackbone = 1.68 ± 0.13 Å—Figure 3B) and naringin (RMSDnaringin = 3.00 ± 0.89 Å—
Figure S1A, RMSDbackbone = 1.97 ± 0.32 Å—Figure S1B) remained stable inside the al-
losteric ERK1 binding pocket. On the other hand, salidroside (RMSD = 6.16 ± 1.74 Å,
Figure S2A), chlorogenic acid (RMSD = 13.92 ± 10.00 Å, Figure S3A) and hesperidin
(RMSD = 6.20 ± 0.21 Å, Figure S4A) demonstrated notable large RMSD values compared to
the protein’s backbone RMSD values (2.23 ± 0.16 Å—Figure S2B, 2.67 ± 0.82 Å—Figure S3B
and 2.87 ± 0.35 Å—Figure S4B, respectively), highlighting that the phytochemicals are
drifting off the binding site of the receptor. The ligand RMSD values for each protein–ligand
complex for each replica are listed in Table 2, while the protein backbone RMSD values are
listed in Table S4.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 3. (Α) RMSD of the three replicas of quercetin bound to ERK1 as a function of time; (B) RMSD 
of the three replicas of the backbone of ERK1 as a function of time; (C) a diagram of the interactions 
of quercetin with ERK1 (orange), in comparison with the interactions of SCH772984 with ERK1 
(blue); (D) the first cluster representative of quercetin bound to ERK1. 

To further study the capability of quercetin and naringin to act as potential inhibitors 
of ERK1, we computed the binding free energy of the two natural compounds and the co-
crystalized ligand (SCH772984) on ERK1 using the MM-PBSA method (Table 3). Querce-
tin exhibited the most favorable free energy of binding on ERK1 (−25.54 ± 8.13 kJ/mol), 
closely resembling the binding of the co-crystalized ligand (−33.80 ± 8.95 kJ/mol). Conse-
quently, quercetin demonstrates significant inhibitory potential against ERK1. On the con-
trary, the binding free energy of naringin on the same protein was positive in all three 
simulations (+15.20 ± 5.88 kJ/mol), indicating that naringin is not anticipated to bind to the 
receptor. 

Table 3. Binding free energies (kJ/mol) for the ERK1–ligand complexes as obtained by the 
MM/PBSA calculations. 

Replica ID Free Energy of Binding 
Quercetin (kJ/mol) 

Free Energy of Binding  
Naringin (kJ/mol) 

Free Energy of Binding 
SCH772984 (kJ/mol) 

1 −16.84 ± 1.21  +17.91 ± 5.22 −42.65 ± 2.52 
2 −26.85 ± 2.66  +8.45 ± 7.42 −24.75 ± 0.93 
3 −32.94 ± 5.31  +19.24 ± 3.53 −34.01 ± 2.32 

Average free energy of binding −25.54 ± 8.13 +15.20 ± 5.88 −33.80 ± 8.95 

To investigate the structural basis of the binding of quercetin with ERK1, we calcu-
lated the interactions between the natural compound and the amino acids of the binding 
site of the receptor, and then we extracted their frequency of appearance using the 
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curring with a frequency of 99 ± 1%. This interaction has been extensively documented in 
the previous literature as significant for the adoption of the DFG ‘in’ conformation [41]. 
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Figure 3. (A) RMSD of the three replicas of quercetin bound to ERK1 as a function of time; (B) RMSD
of the three replicas of the backbone of ERK1 as a function of time; (C) a diagram of the interactions of
quercetin with ERK1 (orange), in comparison with the interactions of SCH772984 with ERK1 (blue);
(D) the first cluster representative of quercetin bound to ERK1.

To further study the capability of quercetin and naringin to act as potential inhibitors
of ERK1, we computed the binding free energy of the two natural compounds and the co-
crystalized ligand (SCH772984) on ERK1 using the MM-PBSA method (Table 3). Quercetin
exhibited the most favorable free energy of binding on ERK1 (−25.54 ± 8.13 kJ/mol), closely
resembling the binding of the co-crystalized ligand (−33.80 ± 8.95 kJ/mol). Consequently,
quercetin demonstrates significant inhibitory potential against ERK1. On the contrary, the
binding free energy of naringin on the same protein was positive in all three simulations
(+15.20 ± 5.88 kJ/mol), indicating that naringin is not anticipated to bind to the receptor.
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Table 2. Average values of RMSD and standard deviation of each ERK1–ligand complex were calculated
over 100 ns MD simulations.

Replica ID RMSD
Quercetin (Å)

RMSD
Naringin (Å)

RMSD
Salidroside (Å)

RMSD
Chlorogenic Acid (Å)

RMSD
Hesperidin (Å)

1 2.96 ± 0.49 2.47 ± 0.57 8.21 ± 5.52 11.50 ± 1.87 6.15 ± 1.25

2 2.74 ± 0.71 2.49 ± 0.49 3.95 ± 1.29 5.35 ± 1.49 6.03 ± 1.09

3 2.52 ± 0.40 4.03 ± 1.49 6.33 ± 3.00 24.90 ± 22.93 6.43 ± 1.27

Average RMSD 2.74 ± 0.22 3.00 ± 0.89 6.16 ± 1.74 13.92 ± 10.00 6.20 ± 0.21

Table 3. Binding free energies (kJ/mol) for the ERK1–ligand complexes as obtained by the MM/PBSA
calculations.

Replica ID Free Energy of Binding
Quercetin (kJ/mol)

Free Energy of Binding
Naringin (kJ/mol)

Free Energy of Binding
SCH772984 (kJ/mol)

1 −16.84 ± 1.21 +17.91 ± 5.22 −42.65 ± 2.52

2 −26.85 ± 2.66 +8.45 ± 7.42 −24.75 ± 0.93

3 −32.94 ± 5.31 +19.24 ± 3.53 −34.01 ± 2.32

Average free energy of binding −25.54 ± 8.13 +15.20 ± 5.88 −33.80 ± 8.95

To investigate the structural basis of the binding of quercetin with ERK1, we calculated
the interactions between the natural compound and the amino acids of the binding site of
the receptor, and then we extracted their frequency of appearance using the GetContacts
module [82] (Figure 3C). The interactions of SCH772984 with ERK1 were similarly assessed
for comparison with the interactions observed with quercetin. A crucial hydrogen bond
established by quercetin with ERK1 involves the amino acid ASP184, occurring with a
frequency of 99 ± 1%. This interaction has been extensively documented in the previous
literature as significant for the adoption of the DFG ‘in’ conformation [41]. Moreover,
it forms strong hydrogen bonds with LYS71 (69 ± 29% frequency), GLU88 (32 ± 8%
frequency) and LYS131 (90 ± 8% frequency) that are considered as three key interactions
contributing to the tight binding of inhibitors [42]. In addition to this, quercetin establishes
notable interactions with the allosteric site of ERK1, particularly with TYR53 (96 ± 1%
frequency) and MET125 (97 ± 1% frequency). These interactions exhibit comparable
frequencies to those observed with SCH772984. Finally, the first cluster representative of
the quercetin–ERK1 complex highlighting the most important interactions of quercetin
with ERK1 is illustrated in Figure 3D.

Concerning p38b, all phytochemicals displayed low RMSD values (RMSDnaringin =
2.40 ± 0.20 Å—Figure 4A, RMSDbackbone = 2.76 ± 0.14 Å—Figure 4B, RMSDchlorogenic acid =
2.34 ± 0.41 Å—Figure S5A, RMSDbackbone = 2.75 ± 0.43 Å—Figure S5B, RMSDquercetin =
3.12 ± 0.53 Å—Figure S6A, RMSDbackbone = 2.89 ± 0.20 Å—Figure S6B and RMSDhesperidin =
3.84 ± 0.27 Å—Figure S7A, RMSDbackbone = 3.10 ± 0.28 Å—Figure S7B), indicating their
stability within the allosteric binding site. However, salidroside appeared to become
solvent-exposed in replica 3 (RMSDsalidroside = 5.77 ± 3.22 Å—Figure S8A, RMSDbackbone =
2.99 ± 0.41 Å—Figure S8B). The ligand RMSD values for each protein–ligand complex for
each replica are listed in Table 4, while the protein backbone RMSD values are listed in
Table S5.
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Figure 4. (A) RMSD of the three replicas of naringin bound to p38b as a function of time; (B) RMSD
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Table 4. Average values of RMSD and standard deviation of each p38b–ligand complex were
calculated over 100 ns MD simulations.

Replica ID RMSD
Quercetin (Å)

RMSD
Naringin (Å)

RMSD
Salidroside (Å)

RMSD
Chlorogenic Acid (Å)

RMSD
Hesperidin (Å)

1 3.40 ± 0.89 2.53 ± 0.53 3.74 ± 0.89 2.53 ± 0.73 4.06 ± 0.96

2 3.44 ± 0.70 2.51 ± 0.41 3.25 ± 0.70 1.87 ± 0.33 3.92 ± 0.54

3 2.51 ± 0.51 2.17 ± 0.37 10.31 ± 0.51 2.62 ± 0.47 3.53 ± 0.49

Average RMSD 3.12 ± 0.53 2.40 ± 0.20 5.77 ± 3.22 2.34 ± 0.41 3.84 ± 0.27

To delve deeper into the potential inhibitory effects of the four natural compounds on
p38b, we employed the MM-PBSA method to compute the binding free energy of naringin,
chlorogenic acid, quercetin and hesperidin, along with the co-crystalized ligand (nilotinib),
on p38b (Table 5). Naringin demonstrated the most favorable binding free energy on p38b
equal to −13.69 ± 6.34 kJ/mol, followed by hesperidin with −5.01 ± 11.12 kJ/mol and
chlorogenic acid with −3.41 ± 13.15 kJ/mol. However, none of the three compounds
reached the binding free energy of nilotinib (−38.94 ± 30.95 kJ/mol), with two out of
three replicas recording values exceeding 50 kJ/mol. Finally, quercetin exhibited negligible
binding affinity for p38b, with a value of +1.92 ± 0.82 kJ/mol.
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Table 5. Binding free energies (kJ/mol) for the p38b–ligand complexes as obtained by the MM/PBSA
calculations.

Replica ID
Free Energy of

Binding Quercetin
(kJ/mol)

Free Energy of
Binding Naringin

(kJ/mol)

Free Energy of
Binding

Hesperidin
(kJ/mol)

Free Energy of
Binding

Chlorogenic Acid
(kJ/mol)

Free Energy of
Binding Nilotinib

(kJ/mol)

1 +2.79 ± 6.99 −15.87 ± 5.11 −0.57 ± 11.24 −18.14 ± 9.92 −3.85 ± 2.73

2 +1.17 ± 6.11 −18.66 ± 6.50 −17.67 ± 9.53 +7.15 ± 9.15 −62.35 ± 1.54

3 +1.80 ± 4.87 −6.55 ± 4.14 +3.20 ± 5.62 +0.77 ± 5.88 −50.62 ± 3.52

Average free
energy of binding +1.92 ± 0.82 −13.69 ± 6.34 −5.01 ± 11.12 −3.41 ± 13.15 −38.94 ± 30.95

To explore how naringin may bind with p38b on a molecular level, we computed
the interactions between the phytochemical and the residues present in the receptor’s
binding site as well as their frequency of appearance (Figure 4C). We also calculated the
interactions of nilotinib with p38b in a similar manner for comparison reasons. Naringin
establishes crucial interactions with the allosteric site of p38b, particularly with PHE169
(30 ± 17% frequency) and ASP168 (99 ± 1% frequency). These interactions exhibit compa-
rable frequencies to those observed with nilotinib. Finally, the first cluster representative of
the naringin–p38b complex highlighting the most important interactions of naringin with
p38b is illustrated in Figure 4D.

In light of the inhibitory potential exhibited by naringin towards p38b and quercetin
towards ERK1, our investigation extended to determine their binding capabilities to ad-
ditional MAPKs, namely JNK1/2/3, p38c and ERK2. Concerning JNK1, naringin exhib-
ited conformational flexibility within the allosteric pocket, as indicated by an RMSD
of 5.51 ± 2.25 Å (Figure S9A), contrasting with the stability of the backbone with an
RMSD of 2.54 ± 0.07 Å (Figure S9B). Conversely, quercetin demonstrated the ability
to effectively bind within the same pocket (RMSDquercetin = 3.47 ± 0.56 Å—Figure S10A,
RMSDbackbone = 2.10 ± 0.11 Å—Figure S10B). However, both naringin and quercetin dis-
played an unfavorable free energy of binding to JNK1, with values of +13.88 ± 1.89 kJ/mol
and +2.40 ± 7.62 kJ/mol, respectively. In the case of p38c, both naringin and quercetin were
found to have drifted away from the allosteric binding site of the host, as indicated by their
respective RMSD values of 15.26 ± 7.19 Å (Figure S11A) and 9.72 ± 2.07 Å (Figure S12A).
This contrasts with the stability observed in the protein backbone, with RMSD values
of 4.02 ± 0.37 Å (Figure S11B) and 4.73 ± 0.53 Å (Figure S12B). For ERK2, quercetin
became solvent-exposed, with an RMSD of 19.48 ± 13.22 Å (Figure S13A), while the pro-
tein backbone exhibited a low RMSD value of 1.82 ± 0.12 Å (Figure S13B). Conversely,
naringin displayed conformational flexibility within the allosteric pocket, with an RMSD of
4.94 ± 1.30 Å (Figure S14A), contrasting with the stability observed in the backbone, which
had an RMSD of 2.01 ± 0.06 Å (Figure S14B). However, naringin exhibited an unfavorable
free energy of binding to ERK2, measuring at +20.42 ± 3.53 kJ/mol. The ligand RMSD
values for the JNK1–ligand complexes, p38c-ligand complexes and ERK2-ligand complexes
for each replica are listed in Tables S6, S8 and S10, while the backbone RMSD values for
each protein are listed in Tables S7, S9 and S11.

Regarding JNK2, both naringin and quercetin demonstrated notably low RMSD values
(RMSDnaringin = 3.06 ± 0.21 Å—Figure S15A and RMSDquercetin = 3.30 ± 1.02 Å—Figure 5A)
comparable to those of the protein backbone ones (2.58 ± 0.59 Å—Figure S15B and
2.07 ± 0.25 Å—Figure 5B for naringin and quercetin, respectively). The ligand RMSD
values for each protein–ligand complex for each replica are listed in Table 6, while the
protein backbone RMSD values are listed in Table S11.
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Table 6. Average values of RMSD and standard deviation of each JNK2–ligand complex were
calculated over 100 ns MD simulations.

Replica ID RMSD Quercetin (Å) RMSD Naringin (Å)

1 2.36 ± 0.41 2.96 ± 0.20

2 1.90 ± 0.24 2.88 ± 0.42

3 1.95 ± 0.25 3.35 ± 0.30

Average RMSD 2.07 ± 0.25 3.06 ± 0.21

Furthermore, both compounds exhibited favorable binding free energies (Table 7), with
naringin at −7.29 ± 9.81 kJ/mol and quercetin at −4.65 ± 4.59 kJ/mol. However, neither
of them reached the computed binding free energy of BIRB-796 (−20.75 ± 2.69 kJ/mol).

Table 7. Binding free energies (kJ/mol) for the JNK2–ligand complexes as obtained by the MM/PBSA
calculations.

Replica ID Free Energy of Binding
Quercetin (kJ/mol)

Free Energy of Binding
Naringin (kJ/mol)

Free Energy of Binding
BIRB-796 (kJ/mol)

1 −6.54 ± 3.44 −16.97 ± 6.49 −23.51 ± 2.37

2 −7.99 ± 1.88 −11.07 ± 8.43 −21.65 ± 2.42

3 +0.59 ± 2.76 +6.17 ± 7.51 −17.10 ± 1.79

Average free energy of binding −4.65 ± 4.59 −7.29 ± 9.81 −20.75 ± 2.69
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Finally, we also investigated the structural basis of the binding of quercetin with JNK2
by calculating the interactions between the natural compound and the amino acids of the
binding site of the receptor, and then we extracted their frequency of appearance using the
GetContacts module (Figure 5C). The interactions of BIRB-796 with JNK2 were similarly
assessed for comparison with the interactions observed with quercetin. Quercetin forms
crucial interactions with the “back pocket” of JNK2 that is sandwiched between the side
chains of LYS55 (98 ± 1% frequency), MET108 (99 ± 1% frequency) and LYS168 (99 ± 1%
frequency) [83]. It also establishes lipophilic contacts with LEU110 (66 ± 23% frequency)
and MET111 (92 ± 7% frequency). Additionally, it forms two crucial hydrogen bonds
with the side chain of LYS73 situated in helix C (99 ± 1% frequency) and ASP169 (99 ± 1%
frequency) found in the DFG motif. Finally, it engages in hydrophobic interactions with
PHE170 (89 ± 1% frequency) which is located in the activation loop. The first cluster
representative of the quercetin–JNK2 complex highlighting the most important interactions
of quercetin with JNK2 is illustrated in Figure 5D.

Ultimately, we also explored the inhibitory potential of quercetin and naringin towards
JNK3. Both natural compounds exhibited conformational flexibility within the allosteric
binding pocket, as indicated by the ligand RMSD values of 5.41 ± 1.21 Å (Figure 6A)
for quercetin and 6.06 ± 2.09 Å (Figure S16A) for naringin, while the protein backbone
demonstrated low RMSD values of 2.45 ± 0.08 Å (Figure 6B) for quercetin and 2.81 ± 0.35 Å
for naringin (Figure S16B). The ligand RMSD values for each protein–ligand complex for
each replica are listed in Table 8, while the protein backbone RMSD values are listed in
Table S12.
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Table 8. Average values of RMSD and standard deviation of each JNK3–ligand complex were
calculated over 100 ns MD simulations.

Replica ID RMSD Quercetin (Å) RMSD Naringin (Å)

1 6.82 ± 1.44 3.96 ± 0.81

2 4.69 ± 0.85 5.30 ± 1.42

3 4.74 ± 0.56 8.91 ± 1.84

Average RMSD 5.41 ± 1.21 6.06 ± 2.09

Moreover, naringin showed an unfavorable binding free energy of +13.69 ± 9.49 kJ/mol,
whereas quercetin exhibited a slightly negative binding free energy of −0.11 ± 0.62 kJ/mol
(Table 9). However, quercetin failed to achieve the computed binding free energy of
X3S, which was measured at −12.63 ± 17.21 kJ/mol. Remarkably, there were substantial
variations among the three runs for the co-crystalized ligand, with replica 1 showing a
positive value of binding free energy at +5.44 ± 2.74 kJ/mol. This highlights the challenge
of identifying new inhibitors for this protein.

Table 9. Binding free energies (kJ/mol) for the JNK3–ligand complexes as obtained by the MM/PBSA
calculations.

Replica ID Free Energy of Binding
Quercetin (kJ/mol)

Free Energy of Binding
Naringin (kJ/mol)

Free Energy of Binding X3S
(kJ/mol)

1 −0.52 ± 5.08 +4.41 ± 4.58 +5.44 ± 2.37

2 +0.76 ± 3.51 +9.94 ± 6.84 −7.54 ± 5.46

3 −0.57 ± 5.35 +26.72 ± 7.22 −35.79 ± 2.41

Average free energy of binding −0.11 ± 0.62 +13.69 ± 9.49 −12.63 ± 17.21

Finally, we examined the structural mechanism underlying the binding of quercetin to
JNK3. This involved calculating the interactions between the natural compound and the
amino acids within the receptor’s binding site, followed by determining their frequency of
occurrence using the GetContacts module (Figure 6C). To provide a basis for comparison,
we also evaluated the interactions of X3S with JNK3 in a similar manner. Quercetin
establishes essential interactions with LYS93 (occurring with a frequency of 64 ± 27%)
within hydrophobic pocket-I and with ILE70 (frequency: 87 ± 13%), VAL78 (frequency:
43 ± 12%), VAL196 (frequency: 70 ± 11%) and LEY206 (frequency: 81 ± 1%) situated at
hydrophobic pocket-II [84]. The first cluster representative of the quercetin–JNK3 complex
highlighting the most crucial interactions of the natural compound with JNK3 is depicted
in Figure 6D.

2.3. In Vitro Assays

To experimentally determine the interaction of the five natural compounds with ERK1
and p38b, the KdELECT technique from Eurofins (https://www.eurofinsdiscovery.com,
accessed on 14 March 2024) was performed. After conducting two experimental runs, it
was evident that only quercetin exhibited a robust binding affinity towards ERK1, with a
measured value of 70 µM. On the other hand, none of the five compounds displayed any
binding to p38b (>100 µM). Furthermore, we investigated the potential inhibitory effects
of quercetin and naringin on JNK2 and JNK3. Naringin failed to bind to either of these
two proteins at concentrations exceeding 100 µM. In contrast, quercetin displayed strong
inhibition for both JNK2 (11 µM) and JNK3 (3.6 nM). The KdELECT results illustrating
the binding of the examined phytochemical to the three target proteins are depicted in
Figure 7. The results highlight the substantial potential of quercetin in modulating the
activity of kinases relevant to bone metabolism and osteoporosis through its binding to
three distinct MAPKs.

https://www.eurofinsdiscovery.com
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The proposed mechanism of quercetin’s action on osteoclast differentiation and activity,
impacting bone metabolism, involves its modulation of the NF-κB/MAPK/Akt signaling
pathway, as depicted in Figure 8. Upon RANKL binding, RANK triggers the activation of
the NF-κB/MAPK/Akt pathway, facilitating NFATc1 self-amplification. NFATc1, in turn,
regulates the expression of osteoclast-specific genes such as c-fos, CTSK, Acp5, DC-stamp
and V-ATpase-D2. Our findings suggest that quercetin may inhibit osteoclastogenesis by
potentially interrupting this cascade, with a particular focus on ERK1, JNK2 and JNK3
proteins. While further experimental validation is needed to substantiate this hypothesis,
these findings emphasize quercetin’s potential importance in osteoporosis and lay the
groundwork for the creation of pioneering treatment approaches for the condition.
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3. Materials and Methods
3.1. The Selection of the Most Promising Natural Compounds for MD Simulations

To examine the inhibitory potential of several classes of natural compounds to the p38,
ERK and JNK isoforms, an initial set of 187 phytochemicals was collected from CNatural,
an online platform developed by Cloudpharm (http://cnatural.eu/home/, accessed on
14 March 2024) containing more than 180,000 natural products collected from four databases
(ChEMBL, ChEBI, NPASS and CTD). The compounds under study were selected based on
their reported association in osteoporosis from literature data.

Selecting the receptor crystal structure greatly influences the successful prediction
of the stability of a protein–ligand complex [85]. Therefore, the crystal structures of the
p38, ERK and JNK isoforms were determined based on the following criteria: (1) proteins
ought to be of human origin, (2) resolution lower than 2.8 Å, (3) the presence of an allosteric
co-crystalized ligand and (4) no mutations on the amino acids of the binding sites defined
by the corresponding ligand (residues within 5 Å distance from the ligand). The atomistic
models with PDB IDs are as follows: 3GP0 [86], 1CM8 [87], 4QTB [41], 4QTA [41], 3ELJ [88],
3NPC [83] and 7KSI [84] and met the above criteria for the p38b, p38c, ERK1, ERK2, JNK1,
JNK2 and JNK3 proteins.

The selected crystal structures along with the 187 natural compounds were used for
the docking calculations. AutoDock Tools were used for the preparation of the proteins
and the compounds [89], while AutoDock Vina 1.1.2 [36] was employed to dock the
phytochemicals into the receptors. The binding site was defined from the center of the
co-crystalized ligands of each PDB structure, using grid cubic boxes with dimensions of
20 × 20 × 20 Å. Proteins were held rigid, while the natural compounds were allowed to be
flexible during docking simulations. For each compound, 10 poses were generated, with
the exhaustiveness parameter set to 20. To validate our docking protocol, we assessed
the ability of AutoDock Vina to correctly dock nilotinib and SCH772984 in the allosteric
binding pockets of p38b and ERK1, respectively.

Moreover, the impact of the 187 natural compounds on the growth of 40 gut bacterial
strains was studied utilizing an ML algorithm developed by McCoubrey et al. [70]. To the
best of our knowledge at the time of conducting our ML study (early 2023), there were
no other pertinent ML-based methods available for delineating the impact of drugs on
the growth of bacterial strains within the human gut microbiome. Despite the potential
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illumination such studies could provide regarding the impact of drugs on the microbiome
and the subsequent opportunity for enhancing pharmaceutical treatments, there remained
a deficiency in integrating chemical and microbiological knowledge with a computational,
data-driven, systems approach. According to this algorithm, 1613 molecular descriptors
were generated for each compound based on their simplified molecular-input line-entry
system (SMILES) using the Mordred package [90]. Based on these features, the best
performing ML model from McCoubrey et al. (extra trees classifier with performance
metrics of AUROC: 0.86 ± 0.01, weighted recall: 0.59 ± 0.06, weighted precision: 0.80 ± 0.05
and weighted f1: 0.67 ± 0.04) was employed to detect the gut bacterial effects of the
187 natural compounds.

3.2. MD Simulations

The most promising compounds were then subjected to 100 ns MD simulations in
triplicate using the Gromacs 2021 [81] and CHARMM36 (July 2021 version) force field [91].
As starting structures for the MD simulations, we used the top docked pose from the
p38b and ERK1 AutoDock Vina docking calculations. Missing residues were modeled
by utilizing the CHARMM-GUI web-server [92]. The force field parameters for small
molecules were generated using CGenFF [93], while the TIP3P model [94] was used to
model the water molecules. Simulation boxes were created with in a cubic box ensuring
a minimum distance of 15 Å between each complex atom and the edge of the periodic
box.. The protein–ligand complexes were solvated, and then sodium and chloride ions
were added to neutralize the charge of the system. All systems were energy-minimized for
50,000 steps, using the steepest decent algorithm [95,96]. Then, they were subjected to NPT
equilibration for 10 ns with a 2 fs timestep, using positional restraints for the ligands. A
Berendsen barostat [97] was employed to maintain a target pressure of 1 bar with a time
constant of 2 ps and a compressibility of 4.5 × 10−5 bar−1, and the temperature control was
kept at 300 K using the V-rescale thermostat [98] with a coupling constant of 0.1 ps. Once
the systems were equilibrated, 100 ns MD simulations were performed in the NPT ensemble
with the atomic coordinates saved every 100 ps. Covalent bonds with hydrogen atoms were
constrained using the LINear Constraint Solver (LINCS) [99] algorithm allowing for a 2 fs
timestep. A Parrinello–Rahman barostat [100] was used to keep pressure at 1 bar, with a
time constant of 2 ps and a compressibility of 4.5 × 10−5 bar−1, and a V-rescale thermostat
was used to keep temperature at 300 K, with a coupling constant of 0.1 ps. Long-range
electrostatic interactions were treated using the particle mesh Ewald method [101] with a
maximum grid spacing of 1.2 Å. Non-bonded interactions were calculated with a cutoff of
12 Å and a switching distance of 10 Å.

The MD trajectories were postprocessed and analyzed using the standard GROMACS
tool (gmx trjconv) for centering and fitting based on the protein atoms. The ligand’s
RMSD and protein’s backbone RMSD as a function of time were calculated through the
MDAnalysis Python library [102,103] using the starting frame as a reference structure. The
gmx_MMPBSA module [104] was employed to estimate the binding free energy of the
protein–ligand complexes using MM-PBSA calculations [105]. A total of 51 snapshots
(equally spaced in the last 50 ns of the MD simulations) were used for the calculation of the
binding free energy. The GetContacts module [82] was employed to calculate the contacts
of the co-crystalized ligands and the natural products with the protein residues during
the MD simulations. The cutoff ranges for hydrogen bonds were set to 3.5 Å and 70◦

angles, for hydrophobic interactions, 6 Å and 45◦ angles and for salt bridges, 4 Å. Finally, to
obtain the most representative structure of the protein–ligand complexes, we clustered the
conformations using the gromos [106] algorithm of the gmx_cluster routine (GROMACS
2021.5). The RMSD of the non-hydrogen atoms of each protein–ligand complex was used
as the clustering criterion, and a cutoff value of 1 Å was chosen in order to obtain balanced
cluster sizes. The central structure of the most populated cluster was picked in order to
acquire the most representative structure of each system.
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3.3. In Vitro Assays

To experimentally determine the binding of the five most promising compounds ob-
tained from the in silico studies to four proteins of the MAPK pathway (p38b, ERK1, JNK2
and JNK3), the KdELECT technique from Eurofins (https://www.eurofinsdiscovery.com,
accessed on 14 March 2024) was employed. It is based on the KINOMEscan™ assay de-
veloped by DiscoverX, which is one of the most comprehensive high-throughput systems
for screening compounds against large numbers of human kinases. KINOMEscan™ op-
erates on a competition binding assay, quantifying a compound’s ability to compete with
an immobilized, active site-directed ligand. This assay integrates three key components:
DNA-tagged kinase, the immobilized ligand and the test compound. The competitive
interaction between the test compound and the immobilized ligand is evaluated through a
quantitative PCR analysis of the DNA tag [107].

4. Conclusions

In this study, we demonstrated the potential of natural compounds, specifically
quercetin, to act as inhibitors of the MAPK pathway, which plays a critical role in osteoclast
differentiation and activity, potentially influencing bone metabolism. We developed a
novel workflow for screening inhibitors of the MAPK pathway, incorporating thorough
computational analyses such as molecular docking, molecular dynamics simulations, ma-
chine learning and binding free energy calculations of natural compounds. Within this
framework, among five selective compounds, quercetin exhibited significant binding affin-
ity and inhibitory potential towards ERK1 and JNK isoforms. Moreover, in vitro assays
confirmed quercetin’s binding affinity towards ERK1, JNK2 and JNK3, highlighting its
potential role as a multi-target inhibitor with potential therapeutic benefits for osteoporosis
management. Although further experimental validation is necessary, these findings may
open new avenues for osteoporosis treatment.
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