
Citation: Lee, G.; An, S.; Jang, B.-J.;

Lee, S. Deep Learning for Counting

People from UWB Channel Impulse

Response Signals. Sensors 2023, 23,

7093. https://doi.org/10.3390/

s23167093

Academic Editor: Jong-Ryul Yang

Received: 4 July 2023

Revised: 2 August 2023

Accepted: 7 August 2023

Published: 10 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Learning for Counting People from UWB Channel
Impulse Response Signals
Gun Lee , Subin An , Byung-Jun Jang and Soochahn Lee *

School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea;
leegun4488@kookmin.ac.kr (G.L.); nesquiq@kookmin.ac.kr (S.A.); bjjang@kookmin.ac.kr (B.-J.J.)
* Correspondence: sclee@kookmin.ac.kr; Tel.: +82-2-910-4837

Abstract: The use of higher frequency bands compared to other wireless communication protocols
enhances the capability of accurately determining locations from ultra-wideband (UWB) signals. It
can also be used to estimate the number of people in a room based on the waveform of the channel
impulse response (CIR) from UWB transceivers. In this paper, we apply deep neural networks to
UWB CIR signals for the purpose of estimating the number of people in a room. We especially focus
on empirically investigating the various network architectures for classification from single UWB CIR
data, as well as from various ensemble configurations. We present our processes for acquiring and
preprocessing CIR data, our designs of the different network architectures and ensembles that were
applied, and the comparative experimental evaluations. We demonstrate that deep neural networks
can accurately classify the number of people within a Line of Sight (LoS), thereby achieving an 99%
performance and efficiency with respect to both memory size and FLOPs (Floating Point Operations
Per Second).

Keywords: ultra-wideband; people counting; deep neural networks

1. Introduction

Ultra-wideband (UWB) technology is a wireless communication protocol that enables
short-distance communication through high-frequency radio waves. While it first emerged
in the 1970s in the United States for military applications, commercialization began in the
2000s after military restrictions were lifted [1]. Despite its advantages, UWB technology
has not garnered as much attention as other wireless communication technologies like
WiFi and Bluetooth, primarily due to its lower competitiveness in areas such as production
cost [2,3]. But the adoption of the High-Rate Pulse Repetition Frequency (HRP) and the
establishment of the IEEE 802.15.4-2015 [4] standard has helped the potential of UWB
technology being recognized.

UWB technology has many advantages, including high data transfer speeds, low
power consumption, and a resistance to interference from other wireless signals [5]. The
utilization of higher frequency bands, in contrast to other wireless communication protocols,
enhances the capability to accurately determine locations. UWB technology features a
bandwidth of 500 MHz, and its narrow pulse width of 2 ns can be leveraged to obtain precise
distance measurements. By correlating UWB symbols, multiple channel impulse responses
(CIRs) can be obtained, and by statistically analyzing the slight variations in these CIRs, a
distance resolution of several centimeters or less can be achieved [6]. This feature is useful
for indoor positioning systems, asset tracking, and other location-based services.

These characteristics of UWB technology can also be applied for estimating indoor
occupancy, that is, to determine the number of people in a given space [7–10]. This
application is related to building management, optimizing resource allocation, as well
as in enhancing safety and security in public places such as airports, shopping malls,
and stadiums. For example, the use of people-counting technologies can greatly benefit

Sensors 2023, 23, 7093. https://doi.org/10.3390/s23167093 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167093
https://doi.org/10.3390/s23167093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0005-9800-1830
https://orcid.org/0009-0007-2921-2284
https://orcid.org/0000-0002-5295-6050
https://orcid.org/0000-0002-2975-2519
https://doi.org/10.3390/s23167093
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167093?type=check_update&version=1


Sensors 2023, 23, 7093 2 of 17

environments such as retail stores or public transportation systems. In the context of a store,
it can provide real-time data on crowd density, helping to maintain a safe environment by
avoiding overcrowding. In this work, we provide experimentation on a small number of
people, which may be applied to cases such as measuring elevator capacity.

Imaging technology has been traditionally used to determine the number of people
indoors, but it can be challenging to accurately count the number of people in poorly
lit areas or in places where people are partially obstructed by objects or other people.
Moreover, these technologies carry inherent risks, including potential infringements on
personal privacy and possibilities for unintentional disclosure of personal information.

Using radar technology requires expensive high-output and high-performance radar
systems, which are not price-competitive [11]. And while Bluetooth or WiFi can be used to
determine the presence of people, they may struggle to accurately recognize the number
of individuals present [12]. Compared to Bluetooth or WiFi, UWB is less susceptible to
the data attenuation caused by the presence of multiple people or objects due to its wider
channel bandwidth and lower sensitivity to object interference.

In recent works [8,9], methods have been developed to estimate the number of people
in a room based on the waveform of the CIR from UWB transceivers. In these methods,
statistical methods such as simple thresholding [8] or analysis of the singular values of the
matrix of temporal CIR differences [9] are used for estimation. While more recent machine
learning methods, such as deep neural networks, have been applied to impulse radio
(IR)-UWB radar signals [13–16], there has been no similar method for UWB transceiver CIR
signals. Compared to radar, UWB transceivers have advantages in that they may be used
together within a communication system, and that they may have less power consumption.

Thus, in this paper, we apply deep neural networks to UWB CIR signals for estimating
the number of people in a room. We especially focus on empirically investigating various
network architectures for classification from single UWB CIR data, as well as on various
ensemble configurations. We present our processes for acquiring and preprocessing CIR
data, our designs of the different network architectures and ensembles that were applied,
and the comparative experimental evaluations. An ensemble of two models and four CIR
signals as the best trade-off between performance and efficiency, achieved a 99% accuracy
in 321,000 k FLOPs with 6566 k parameters.

2. Previous Work

Various works have been proposed in terms of applying UWB technology for detecting
humans. As the task is involved with sensing, many works have applied IR-UWB radar as
the signal source. In the work by Yang et al. [14], a method for dense people counting by
using the hybrid features from IR-UWB radar was proposed. In the work by Lee et al. [17],
a method for motion recognition through IR-UWB radar was explored. In the work
by Kalyanaraman et al. [18], 14 UWB nodes were installed to determine whether a car
door was open and if a person was present. A method of counting people in a wide
area using IR-UWB radar was introduced in Choi et al. [11]. In Pham et al. [13], the use
of convolutional neural networks (CNN) for people counting on IR-UWB was proposed.
Human activity recognition using UWB CIR and Wi-Fi CSI was compared in Bocus et al. [19].
In Moro et al. [15], a variety of machine learning methods, including decision trees, as
well as feed-forward, recurrent, and autoencoder neural networks, were evaluated in
how they dealt with the problem of non-line-of-sight human detection. And in the work
by Choi et al. [16], a customized deep neural network structure combining CNN and
LSTM, a type of recurrent neural network, for people counting from UWB radar signals
was proposed.

Many other works have been proposed that apply the CIR from UWB transceivers as
the input signal. In Mohammadmoradi et al. [8], simple thresholding on the CIR signal was
used to estimate the number of people in a room. In the method by De Sanctis et al. [9],
the features computed from the singular value decomposition (SVD) of the time variation
of the CIR were used as the input for Naive Bayes classifiers and decision trees for people



Sensors 2023, 23, 7093 3 of 17

counting. Jang et al. [10] further extended this work on the additional datasets achieved by
hardware meeting the latest IEEE 802.15.4-2015 [4] standard. More recently, Sung et al. [20],
proposed a method for accurately locating individuals indoors through using deep learning
on UWB CIR input data. The work in this paper also deals with UWB CIR data for people
counting, but it is focused on determining the best neural network structures and ensemble
configurations for maximizing the estimation accuracy.

3. UWB Dataset
3.1. UWB Data Acquisition

To collect data, we used the DWM3000 module from Qorvo (Greensboro, NC, USA),
which is the latest HRP UWB module supporting the IEEE 802.15.4z-2020 standard [21].
This module allows for selective frequency channel settings that are based on domestic
communication standards. For our experiment, we set the module to channel 9. To
connect the module to the PC, we used Nordic’s NRF-52840 microcontroller (Nordic,
Trondheim, Norway).

Since the CIR is greatly influenced by the surrounding environment, efforts were
made to create the same environment as much as possible, other than the variable for the
number of people. The experimental environment was set up as depicted in Figure 1 when
acquiring the CIR generated during transmission and reception between the two modules.

Room dimensions were 12 m × 8 m × 2.6 m. In a Line of Sight (LoS) environment, the
two modules were placed 4 m apart in a straight line, each positioned 1 m above the floor
and fixed using a tripod.

Figure 1. Laboratory Space Configuration. Experiment in the middle of room for decreasing signal
reflect.

When acquiring the data, continuous communication was established between the
two UWB modules. The test subjects were adult males and females. The number of people
in the environment was then varied from zero to five, and the corresponding CIR signals
were measured. To diversify the data, we varied the height, body shape, gender, and other
factors for each person, as well as the freeze variations to the basic environment. And
data were acquired for when the people remained stationary and when they moved and
acted freely. The CIR signal was collected at a rate of two instances per second. In each
setting, 500 CIRs were measured in a LoS environment, and then the number of people was



Sensors 2023, 23, 7093 4 of 17

gradually increased up to five, resulting in 3000 CIRs. We measured data for 11 different
settings, 4 with static subjects and 7 with moving subjects, resulting in a total of 33,000 CIRs.

In the following Figures 2 and 3, we present visualizations of the CIR waveforms for
static and moving peoples, respectively. We observed that, as the number of people grew,
the variance of waveforms also increased, and this was likely due to the added reflected
waves from the additional individuals. On the other hand, we observed that the motion of
the subjects did not seem to affect the CIR significantly. We believe that this is due to the
characteristic high frequency of the UWB signal.

Figure 2. The change in CIR waveform depends on the number of stationary people between the
Line of Sight (LoS). Each plot represents the mean and variation calculated from 500 individual
CIR waveforms.

Figure 3. The change in CIR waveform depends on the number of individuals moving within the
Line of Sight (LoS). Each plot represents the mean and variation calculated from 500 individual
CIR waveforms.

Signals with a higher index tend to show more variation than those with a lower index.
This is primarily due to the nature of signal wave propagation. Lower index signals are
predominantly formed by direct waves, which have a straightforward path. In contrast,



Sensors 2023, 23, 7093 5 of 17

higher index signals are largely formed by indirect waves that reflect off walls or objects,
causing a greater degree of variation.

3.2. UWB CIR Data Format

A UWB pulse width of 1 ns provided a distance resolution of 30 cm. It was possible to
increase this resolution to several centimeters by transmitting UWB symbols repeatedly
and by detecting changes in the CIR values through slight differences in the internal clocks
of the hardware. The resulting CIR data contained 64 subtle differences, and a resolution of
1/64 ns was achieved through a leading edge detection (LED) algorithm that leverages the
data statistics. Often a proprietary LED algorithm is applied by the manufacturer of the
UWB IC, but the CIR obtained through this process can be accessed through the SDK. In
over 1000 CIR points, the first correlation point that surpasses a specific threshold is called
the FP_index. Based on that point, we extracted 64 subsequent values of the CIR. Since
the UWB receiver has an IQ demodulator structure, real and imaginary components were
acquired within the CIR signal as follows:

CIRr = [α1, α2, . . . , α64], CIRi = [β1, β2, . . . , β64]. (1)

We applied the concatenated real and imaginary vectors as the input data for the
neural network. To guide the network to learn the relative shape patterns of the CIR instead
of the absolute values which may depend on the signal strength, we applied min–max
normalization on CIRr and CIRi, separately, as follows:

CIRk =
CIRk − CIRMin

CIRMax − CIRMin
. (2)

We defined the input data for all neural networks in this work as

CIR =
[
CIRr, CIRi

]
. (3)

4. Neural Network Components for CIR Signals
4.1. Fully Connected Layer

The fully connected layer comprised a set of neurons that were connected parallel to
the input, as shown in Figure 4a. This is the basic layer type for neural networks, and it
constitutes the hidden layer for multi-layer perceptrons. Its operation was defined as

Xout = σ(WXin + b), (4)

where Xin and Xout are the layer input and output, respectively; W is the weight parameters;
b is the bias vector; and σ is the activation function. If the layer was applied to the input
CIR, W would form a 2D matrix of size N × 128, where N is the number of neurons in the
layer. This layer was also referred to as the densely connected layer, or the linear layer.

4.2. Convolutional Layer

The convolutional layer comprised a set of convolutional neurons, as shown in
Figure 4b. The operation within this layer is defined as a convolutional function with
kernel values as the weight parameters, as per the below:

Xout[p] = σ

(
m

∑
i=−m

Xin[p + i] · w[i]

)
. (5)

Here, p represents a specific position in both the input and output signals. The symbol
w is used to denote the convolutional kernel, while m is the size of the kernel.

In contrast to the conventional, fully connected neurons, shared weight parameters
were applied to a local window of input data at every point to compute the output vector
for each convolutional neuron. In the case of a 1D convolution layer, the computation



Sensors 2023, 23, 7093 6 of 17

proceeds in one direction using convolution operations, which were determined by the
kernel size. Although the output dimension was adjusted by the kernel size parameter k,
we included zero padding to ensure that the same dimension was consistently maintained.

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 1

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 2

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 3

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 63

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 64

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

layer
1st

layer

(a) Fully Connected Layer

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 1

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 2

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 3

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 63

ℎ𝐶𝐶𝐶𝐶𝐶𝐶 64

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼 1st

layer

(b) Convolutional Layer

Figure 4. The format of CIR data and the configuration diagram for each layer [22]. hCIR[i] denotes
the ith element of the CIR input signal.

4.3. Activation Function

Both fully connected and convolutional layers required an activation function to avoid
the operations of multiple layers collapsing into a single operation. While various activation
functions have been proposed [23], we applied the ReLU (rectified linear unit) [24] function
for all layers except for the final layer of a network (as it is the most widely used). The
ReLU function was defined as follows:

y = max(0, x). (6)

For the final layer, we applied the softmax function introduced in [25], which trans-
forms the output value into a probability that corresponds to each class by the following formula:

yk =
exp(xk)

∑N
i=1 exp(xi)

. (7)

4.4. Pooling Layer

Pooling layers pool multiple local input values together into a single output in a sliding
window fashion that is similar to convolutional layers. Pooling layers are mostly used
together with convolutional layers to compensate for the convolutional layers’ limitations
that arise from local operations. As convolutional neurons may fail to generate output
dimensions that encompass the global range of the input data, pooling was applied to
increase the ’receptive field’. The two common types of pooling are max pooling and
average pooling, which were introduced in [26–28] and are also presented in Table 1. Max
pooling selects the maximum value from within the defined pool size, thus preserving the
strongest feature response. On the other hand, average pooling calculates the average value
within the pool, providing a smooth, low-resolution representation of the feature map.



Sensors 2023, 23, 7093 7 of 17

Table 1. Max Pooling and Average Pooling Equations.

Max Pooling Equation Average Pooling Equation

Xout[p] = max(Xin[p − m], . . . , Xin[p + m]) Xout[p] =
1

2m + 1

m

∑
i=−m

Xin[p + i].

4.5. Normalization Layer

Normalization layers operate by rescaling data based on the mean of a specific dimen-
sion. When significant variation occurs within this dimension, normalization layers can
effectively enhance the model’s stability, learning speed, and overall performance.

In this work, we experimented with both batch normalization and layer normalization,
as introduced in [29,30] and presented in Table 2. Batch normalization normalizes the
output of a prior layer with respect to the size of the batch, while layer normalization
normalizes across the features of the input instead of the batch size.

Table 2. Batch Normalization and Layer Normalization Equations

Batch Normalization Equations Layer Normalization Equations

µB =
1
m

m

∑
i=1

xi // mini-batch mean

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 // mini-batch variance

x̂i =
xi − µB√

σ2
B + ε

// normalize

yi = γx̂i + β = BNγ,β(xi) // scale and shift

µL =
1
d

d

∑
i=1

xi // layer mean

σ2
L =

1
d

d

∑
i=1

(xi − µL)
2 // layer variance

x̂i =
xi − µL√

σ2
L + ε

// normalize

yi = γx̂i + β = LNγ,β(xi) // scale and shift

In these equations, β represents the shift parameter, ε is the small constant added for
numerical stability, and γ denotes the scale factor.

4.6. Dropout Layer

In a deep network where data passes through numerous layers, there is a risk that the
model can become overly complex and begin to overfit, essentially memorizing the training
data. The dropout operation introduced in [31,32] addresses this by randomly ’dropping
out’ (that is, setting to zero) a number of layer outputs during the training process.

Through this approach, each neuron becomes less dependent on the activations of
others, gaining more independent significance. This results in a more generalized model,
as it becomes less reliant on specific weights and inter-neuron connections. Essentially,
dropout layers bolster the model’s resilience when confronted with new, unseen data,
leading to improved generalization performance.

4.7. Loss Function

The loss function in a machine learning model quantifies the disparity between the
predicted probability distribution and the actual data distribution. It evaluates the model’s
performance, guides the optimization process, and varies according to the problem type.
Furthermore, loss functions help guide model training, enhance performance evaluation,
improve learning algorithms, and assist in preventing overfitting through regularization.

Among the various loss functions, Cross Entropy [33] Loss is commonly used in
classification problems; thus, we chose it for our experiment. It quantifies the difference
between the predicted probabilities and the true label distribution, thereby aligning the



Sensors 2023, 23, 7093 8 of 17

model’s predictions more closely with the actual labels to improve its classification accuracy.

L = − 1
N

N

∑
i=1

C

∑
j=1

yij log(ŷij) (8)

In this equation, L stands for the loss we aim to minimize. N refers to the batch size
of the dataset, while C signifies the total number of classes present in our classification
problem. The term ŷ represents the predicted probability from the model, and y symbolizes
the ground truth, indicating that a specific observation i belongs to a certain class j.

5. Neural Network Structures
5.1. Fully Connected Neural Network

A Fully Connected (FC) Neural Network, a specialized type of artificial neural network,
is characterized by each neuron in a layer being connected to all neurons in the preceding
and succeeding layers. This comprehensive interconnectivity equips the network with the
capacity to decipher and learn from the complex and abstract patterns in the input data.

Figure 5a depicts the configuration of the Fully Connected Neural Network. In order
to compare accuracy, experiments were conducted by varying the number of hidden layers
from one to three, and by setting parameter values between 16 and 1600.

Input CIR

96, (11) kernel Conv 
Layer

MaxPooling (2)

ReLU

256, (5) kernel Conv 
Layer

MaxPooling (2)

ReLU

384, (3) kernel Conv 
Layer

ReLU

384, (3) kernel Conv 
Layer

ReLU

256, (3) kernel Conv 
Layer

ReLU

X, Dense

ReLU

X, Dense

Output 
Num people

6, Dense
(softmax)

ReLU

Input CIR

X, (k) kernel 
Conv Layer

MaxPooling (2)

ReLU

64, (k) kernel
Res Block

128, (k) kernel
Res Block

512, (k) kernel 
Res Block

256, (k) kernel 
Res Block

AveragePooling (2)

1000, Dense

6, Dense
(softmax)

Output 
Num people

ReLU

Input CIR

200, (k) kernel Conv 
Layer

400, (k) kernel Conv 
Layer

ReLU

200, (k) kernel Conv 
Layer

ReLU

X, Dense

ReLU

X, Dense

Output 
Num people

ReLU

6, Dense
(softmax)

ReLU

ReLU

Input CIR

X, (k) kernel 
Conv Layer

X, (k) kernel 
Conv Layer

ReLU

X, (k) kernel 
Conv Layer

ReLU

Output 
Num people

ReLU

Input CIR

X, Dense

X, Dense

ReLU

X, Dense

ReLU

Output 
Num people

ReLU

ReLU

6, Dense
(softmax)

ReLU

6, Dense
(softmax)

(a) FC Network (b) Conv Network (c) Mix Network (d) AlexNet Style Network (e) ResNet Style Network

Figure 5. Network architectures explored in this work.

5.2. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a specialized category of deep learning
models, and it is primarily used for tasks such as visual image analysis and other data-rich
domains. These networks are designed to automatically discern the spatial hierarchies of
features from input data, making them particularly well-suited for tasks where the spatial
arrangement of data is crucial.

Figure 5b illustrates the configuration of our Convolutional Neural Network. The
performance of the network is influenced by the parameter values and kernel size within
the convolutional layer, so we conducted experiments by varying these two parameters,
as well as the number of layers. In our experiments, we adjusted the parameter values
between 64 and 800, as well as varied the kernel size from 3 to 15.

5.3. Mix Neural Network

Our mixed neural network was designed by integrating a convolutional layer with a
fully connected layer. As shown in Figure 5c, the configuration consists of a three-layer
Convolutional Neural Network (CNN) followed by one or two fully connected layers. We



Sensors 2023, 23, 7093 9 of 17

conducted experiments where we varied the parameters of the fully connected layer and the
kernel size in the CNN layers, while keeping the remaining parameters constant (or ’frozen’).

5.4. AlexNet Style Network

We constructed a network by adopting the AlexNet [34] model, which is designed for
effective image classification. We transformed the existing 2D network layer into a 1D form,
and conducted experiments by changing the parameters, kernel size, and structure. The
configuration diagram of the AlexNet Style Network is shown in Figure 5d. The AlexNet
Style Network is composed of five Conv Layers and two FC Layers. In the first Conv Layer,
a wide range is brought in with a large kernel size, and after bringing a narrow range of
features through the next small kernel size, the FC layer learns information. Between each
layer, there is an operation to reduce or expand information through the max-pooling layer
and the zero-padding layer.

5.5. ResNet Style Network

ResNet, or Residual Network [35], is a deep learning model that utilizes “skip con-
nections” or “shortcuts” to bypass layers, effectively addressing the problem of vanishing
gradients and allowing for the training of much deeper networks. In a similar manner, a
ResNet-style model was implemented by converting existing 2D-type layers into 1D-type,
and by incorporating skip connections. Experiments were conducted by varying the pa-
rameters, kernel size, and structure. The structure of the ResNet Style Network is shown in
Figure 5e.

In the case of the ResNet Style Network, block unit convolution was performed, as
depicted in Figure 6. A Res block consists of a Conv block and identity block. A Conv Block
is used when the existing size and the size created through Conv are different, while an
identity block is used when the sizes are the same.

X, (k) 
kernel 
Conv 
Layer

X, (k) 
kernel 
Conv 
Layer

ReLU
Add

ReLU

X, (k) 
kernel 
Conv 
Layer

X, (k) 
kernel 
Conv 
Layer

ReLU
Add

ReLU

Max
Pooling 

(2)

Previous
Feature

Map

Next
Feature

Map

Conv Block Identity Block

Figure 6. Diagram of Residual Block.

6. Ensembling Model and Signal
6.1. Model Ensembling

Model ensembling operates by integrating multiple individual models, usually by
methods such as voting or through averaging predictions. This approach is characterized
by the ability to leverage the strengths of various models, thereby often enhancing over-
all performance. By employing model ensembling, we can increase the robustness and
generalization capabilities of machine learning models, thus frequently leading to higher
prediction accuracies.

We generated two to four instances of each model, with each instance being trained
with slightly different parameter values. Subsequently, we combined their outputs and
evaluated their collective performance on the test set.

6.2. Signal Ensembling

Signal ensembling operates by merging multiple signal data points, typically by using
methods such as averaging or computing a weighted sum to produce a consolidated
output signal. A defining characteristic of signal ensembling is its capacity to reduce
noise and improve the quality of the signal by leveraging information from several similar
signals. Employing signal ensembling aids in enhancing signal reliability, boosting the



Sensors 2023, 23, 7093 10 of 17

signal-to-noise ratio, and ultimately improving the accuracy of the tasks that are dependent
on the signal.

We used our top-performing model to predict between 2 and 10 signals. Subsequently,
we combined these output signals and evaluated their collective performance on the test set.

7. Experiments
7.1. Experimental Setting

We conducted our work in a Linux OS, which served as the fundamental programming
environment, and used Python version 3.6.9. In configuring the network, tensorflow library
version 2.3.0 was employed, with the ADAM optimizer utilized to train the network and
used to minimize sparse categorical cross-entropy loss. Data pre-processing was performed
using the sklearn library. To analyze the performance index, the entire dataset was divided
equally into a train dataset (70%), a validation dataset (15%), and a test dataset (15%).

7.2. Baseline Method

We conducted experimental evaluations of three basic classification methods: the
decision tree classifier, the Naive Bayes classifier, and the k-nearest neighbor (K-NN)
classifier. We trained these classifiers on the raw CIR data vector, and the lower dimensional
vector was constructed by applying Principal Component Analysis (PCA) reconstruction
with only a portion of the principal components, as conducted in the method for face
recognition [36].

With a single signal, the performance appeared to be similar between the PCA method
and raw data, as shown in Table 3. However, the PCA method helped to reduce the
dimensionality of the data, which decreased the computational cost of training.

Table 3. Comparative analysis of the methods and classifiers with a single CIR signal.

Method Classifier Accuracy Data Dim.

Raw data Naive Bayes 37.68% 128

Raw data Decision Tree 46.59% 128

Raw data K-NN (K = 3) 66.16% 128

PCA Naive Bayes 34.32% 57

PCA Decision Tree 43.19% 24

PCA K-NN (K = 3) 66.38% 57

As for the K-NN classifier, it achieved an accuracy of approximately 66%. Although
this can be improved with multiple iterations and adjustments to the components, the
initial level of accuracy was not strongly indicative of a good performance.

7.3. Network Structure Search

We conducted a series of experiments using various models to determine the optimal
network structure for estimating the number of people based on the received signals.
Initially, we trained the models using a structure with minimal layers, fixing the batch size
to 32, and continued this until no further improvements were seen in the learning process.

Additionally, we employed the ReduceLROnPlateau method, which adjusts the learning
rate by reducing it to 90% of the original rate if no improvements are detected over a certain
number of epochs. If we encountered a point where the learning plateaued despite the learning
rate adjustments, we implemented Early Stopping to terminate the training process.

We then restored the model that demonstrated the best performance during training.
The results from the various network structures we tested, including accuracy, number of
parameters, and the Floating Point Operations Per Second (FLOPs), are summarized in
Table 4. This table presents the best performance achieved for each architecture.



Sensors 2023, 23, 7093 11 of 17

Generally, we observed that the accuracy increased with the number of layers. How-
ever, when the parameter value was set to its maximum, the network tended to become
overly complex. This complexity not only slowed down the computation process, but also
ultimately lead to a decrease in accuracy. The optimal kernel size appeared to be 9 as this
provided the best performance.

Overall, the Mixed Style Network exhibited a higher accuracy than both the Fully
Connected Network and the Convolutional Network. However, this came with a significant
increase in the number of parameters and FLOPs. The AlexNet and ResNet models also
had a considerable number of parameters and FLOPs. Interestingly, despite being deeper
than AlexNet, ResNet had fewer parameters.

Table 4. Summary of the network structures search results. (X and k correspond to each of the
networks displayed in Figure 5).

Network
Type

Layer Width X, Kernel Size (k),
Res Block [] Accuracy Parameters FLOPs

FC Net 250 68.00% 33 k 67 k

FC Net 128-800 70.67% 124 k 248 k

FC Net 200-400-200 73.05% 187 k 374 k

Conv Net 400(13) 71.21% 164 k 1660 k

Conv Net 256(11)-400(11) 72.38% 1286 k 145,000 k

Conv Net 200(3)-400(9)-200(9) 76.12% 1518 k 185,000 k

Mix Net 200(3)-400(9)-200(9)-512 78.53% 7999 k 198,000 k

Mix Net 200(3)-400(13)-200(13)-256-128 79.68% 5392 k 273,000 k

Alex Net 96(11)-256(5)-384(3)-384(3)-
256(3)-1024-2048 80.14% 9038 k 65,200 k

Res Net 4096(9)-[64(3)]-[128(3)]-[256(3)]-
[512(3)]-1000 79.92% 5495 k 79,900 k

7.4. Network Hyperparameter Tuning

To compare the performance of the various neural network structures, we needed to
perform hyperparameter tuning for each model. This tuning was based on the model with
the highest performance within each network structure.

Initially, we incorporated the norm layer, dropout layer, and pooling layer into the
optimal network and compared the experimental results. We tested various configurations
for the norm and pooling layers as previously mentioned. After identifying the network
with the highest performance, we further optimized it by adjusting the dropout rate.

Subsequently, we conducted experiments using various batch sizes, specifically 16,
32, 64, 128, and 256. In the final step, we adjusted the learning rate to maximize the
performance of the model. The results of these experiments are detailed in Table 5.

Table 5. Results of Network Hyperparameter Tuning.

Network Hyperparameter Acc. Params. FLOPsNorm Dropout Pool Batch LR

FCNet BN 0.2 X 64 1 ×10−3 80.87% 190 k 381 k
ConvNet X 0.3 X 128 1 ×10−3 80.63% 1518 k 185,000 k
MixNet X X X 64 5 ×10−4 81.27% 5392 k 273,000 k
AlexNet LN X AP 32 1 ×10−4 81.31% 41,627 k 153,000 k
ResNet BN X MP 32 1 ×10−4 81.86% 6375 k 79,900 k



Sensors 2023, 23, 7093 12 of 17

7.5. Implementation Ensembling of Model and Signal
7.5.1. Model Ensembling

In our experiment, we ensembled both similar and different types of models to obtain
our best result. We focused on two types of models with the aim of finding the optimal
model ensemble.

We conducted experiments with Fully Connected (FC) Networks, which are known
for their rapid processing speed due to low FLOPs. Additionally, we tested ResNet models,
which—despite their deep architecture—are recognized for their low parameter count.

By ensembling these diverse models, each with varying complexities and architectures,
we aimed to enhance the overall performance of the system.

Our experimental results, as shown in Table 6, demonstrated that the ensembling
of models resulted in an approximate performance improvement of 2–3% compared to
a single model. In the case of FC Networks, which are not as deep as other model archi-
tectures, we observed performance limitations even when multiple models were used.
However, the inclusion of ResNet models in the ensemble led to a noticeable improvement
in performance.

Table 6. Sample Results of 2-Network Ensembling.

Network Acc. Params. FLOPs

FCNet + FCNet 81.57% 463 k 926 k
ResNet + ResNet 82.64% 12,751 k 160,000 k
ResNet + FCNet 83.27% 6566 k 80,300 k

Table 7 shows the average estimation accuracy for different numbers of people. Inter-
estingly, the accuracy for three and four people was lower than for five. This suggests that
while the waveforms for three and four people are complex, they are more easily confused
with each other, leading to decreased accuracy.

Table 7. Average Estimation Accuracy for the Number of People.

Num of People Single FC
Network Single ResNet FC Ensemble ResNet

Ensemble

0 99.75% 99.51% 99.75% 99.63%
1 89.69% 92.72% 91.75% 92.60%
2 81.93% 82.18% 83.15% 84.72%
3 72.60% 72.48% 74.78% 74.78%
4 66.78% 68.72% 68.48% 72.00%
5 74.42% 75.51% 74.54% 77.93%

Mean 80.86% 81.85% 82.08% 83.61%
FLOPs 381 k 79,900 k 1140 k 240,000 k

The ResNet model showed a superior performance in situations where the signal was
highly variable, such as when there were four–five individuals. This indicates that deep
neural networks can adeptly handle challenging conditions, thereby offering increased
reliability amidst signal instability or noise.

We carried out experiments to investigate the variations in accuracy that were con-
tingent on the number of individuals, and this was achieved by using both single and
ensemble models. These experiments provided insights into how the selection of the
model and the ensembling strategy could impact performance based on the number of
individuals present.

The results underscore the benefits of model ensembling, particularly its capacity to
augment performance beyond that of individual models in complex and noisy environ-
ments. While model ensembling enhances performance without extending processing time,



Sensors 2023, 23, 7093 13 of 17

as the models operate separately, it does increase the memory usage depending on the
number of models utilized.

7.5.2. Signal Ensembling

The traditional evaluation method, which took into account only a single CIR, was ex-
panded upon to achieve a better performance by considering multiple CIRs. This approach
significantly improved accuracy. However, it is worth noting that this improvement came
with an associated increase in FLOPs, which was proportional to the number of CIRs used,
thereby highlighting a key trade-off between performance and computational cost.

To obtain more detailed performance metrics, we calculated the error rate between the
predicted and actual number of people using the Mean Square Error (MSE) method. We
conducted similar experiments with the ResNet Style Network model, which demonstrated
the highest performance in our tests.

Prior research [9,10] indicates that accumulating 100 CIRs and performing SVD can
achieve excellent accuracy. However, this approach requires at least 30 s to accumulate the
CIRs and carry out the SVD. While we followed the descriptions of prior research, using the
three features of a second slope, an average slope, and the area under curve for training the
classifiers, we observed that it underperformed with the neural-network-based classifiers.

Our experimental results, as detailed in Table 8, demonstrate that ensembling multiple
signals simultaneously yields a substantial performance improvement. Specifically, when
comparing the results of using two signals to using just a single signal, we observed
a notable increase of approximately 8% in performance. As the number of combined
signals increases, the system has the potential to reach a 100% accuracy score. However, a
crucial factor to consider is the associated increase in processing time. While the memory
usage remains unaffected, the processing time increases proportionally with the number of
accumulated signals.

Table 8. Results of Ensembling Multiple CIR Signals (Calculation of SVD FLOPS was taken from [37]).

Method CIR Num Accuracy MSE FLOPs

SVD & Naive Classifier 100 32.00% 1.8439 43,433 k
SVD & Decision Tree 100 60.00% 1.0392 43,433 k
SVD & K-NN (K = 3) 100 54.00% 1.1575 43,433 k

Neural Network 1 81.85% 0.6874 79,900 k
Neural Network 2 90.16% 0.3390 160,000 k
Neural Network 3 93.57% 0.1853 240,000 k
Neural Network 4 95.46% 0.1287 320,000 k
Neural Network 8 98.54% 0.0426 639,000 k
Neural Network 9 98.71% 0.0376 719,000 k
Neural Network 10 100 % 0.0000 799,000 k

7.5.3. Model Signal Ensembling

Our experiments focused on achieving the maximum possible accuracy in terms of
estimating the number of people, while also concurrently enhancing the efficiency of model
parameters and FLOPs. In this context, we found the strategy of integrating both model
ensembles and signal ensembles highly effective. Nevertheless, an anticipated trade-off
emerged: the enhanced accuracy was offset by an increased number of FLOPs, which was
a direct consequence of the larger parameter set introduced by the ensembles.

To address this challenge, we concurrently processed both the model and signal
ensembles, a strategy that resulted in high accuracy with a reduced count of parameters
and FLOPs. We already observed that the FC Net model significantly reduced the number
of parameters compared to other models. In contrast, the ResNet model demonstrated high
accuracy in handling highly variable signals.



Sensors 2023, 23, 7093 14 of 17

This observation prompted us to combine the advantages of both models, sequentially
integrating them and combining between one and four signals. This innovative approach
leveraged the strengths of the different model architectures, thus potentially resulting in
more robust and accurate predictions.

In order to achieve the benchmark performance of 99%, a reliance solely on model
ensemble techniques is not sufficient. We found it necessary to combine 10 signals in a signal
ensemble to surpass this performance threshold. However, as shown in the Table 9, the
best performance can be achieved by a combination of just four signals and two models.
Additionally, the computational cost in terms of FLOPs for this configuration was less than half
of that required when utilizing 10 signals. This demonstrates that with strategic selection and
the combination of models and signals, high performance can be achieved more efficiently.

Table 9. The distribution of accuracy varies as the number of people changes when using an ensemble
of FC Net and ResNet.

Num of People CIR Num 1 CIR Num 2 CIR Num 3 CIR Num 4

0 99.87% 100% 100% 100%
1 93.33% 99.27% 100% 100%
2 83.76% 93.44% 98.18% 99.02%
3 74.42% 88.83% 93.45% 95.63%
4 70.67% 84.71% 88.36% 95.14%
5 77.58% 91.02% 96.00% 98.05%

Mean 83.27% 92.88% 96.00% 98.98%
FLOPs 80,300 k 161,000 k 241,000 k 321,000 k

8. Limitation

In Figure 7, we illustrate the effect on different environments by the CIR waves, which
is achieved by visualizing the mean and variance of the 100 CIR waveforms that were
measured in various settings. With the environment depicted in Figure 1, we compare
two versions, with and without a desk present in between the Rx and Tx in the top row of
Figure 7 (denoted as environment-1 and environment-1+desk). It was visible that even the
placement of the desk had a clear effect on the basic waveform. In addition to the impact of
moving objects, the static elements within different environments, such as those observed
in the two additional settings of the bottom row of Figure 1 (denoted environment-2 and
environment-3), also considerably modified the CIR.

These variations indicate that training must be performed for each environmental
condition. Furthermore, if there are moving objects within the environments, which further
complicate the influence on the CIR, it will be desirable to perform training on the data
achieved, which includes the motion of the objects. While this may incur initial costs,
we believe that acquiring the ground truth number of people in the training data can be
conducted by various methods, e.g., manual counting, motion sensors at entrances, etc.

We acknowledge that the experiments conducted in this paper are limited in the
number of counted people. For applications such as maintaining room occupancy under a
certain limit, it is likely that the number of people will be much higher. In future works,
we plan to expand our system for the estimation of larger range of people, including
experimentation on systems including multiple Rx and Txs.



Sensors 2023, 23, 7093 15 of 17

Figure 7. The change in CIR waveform depends on the environment. Each plot represents the mean
and variation calculated from 100 individual CIR waveforms within the Line of Sight (LoS).

9. Conclusions

In this paper, we presented the process of acquiring CIR data via UWB, and integrated
it into an artificial intelligence model. The experiment involved training the AI model to
recognize the changes in the CIR waveforms that corresponded to the number of people,
and to estimate the headcount based on the experimental data.

The highest-performing model yielded an accuracy of 81.86% when using a single
CIR to estimate the number of people. This accuracy improved significantly to 86.32%
when we applied a model fusion technique, and impressively reached 100% with the use of
consecutive CIRs. Furthermore, by combining multiple models and signals—specifically
for just four CIR signals—we were able to achieve an accuracy of 99%. This approach
proved to be more efficient than using only model ensemble or signal ensemble techniques.

This approach can be adapted based on the computational capacity and type of board
used to implement the AI model. By integrating the AI model with UWB technology, we
can expect advancements in smart home and security applications.

Author Contributions: Conceptualization, B.-J.J. and S.L.; Methodology, G.L. and S.L.; Software, G.L.;
Validation, G.L., S.A. and S.L.; Investigation, G.L.; Writing—original draft, G.L.; Writing—review &
editing, S.A. and S.L.; Project administration, B.-J.J. and S.L.; Funding acquisition, B.-J.J. and S.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Samsung Research Funding Center of Samsung Electronics
under Project SRFC-IT1801-51.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this work is publicly available at: https://github.
com/LeeGun4488/UWB_people_counting/tree/main/data%201d, accessed on 6 August 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jang, B.J. Principles and Trends of UWB Positioning Technology. J. Korean Inst. Electromagn. Eng. Sci. 2022, 33, 1–11. [CrossRef]
2. Heo, J.D.; Lee, H.J.; Park, G.R.; Nam, Y.S. WiMedia UWB Standardization and Technology. Mag. IEIE 2007, 34, 17–28.
3. Fontana, R.J.; Richley, E.A. Observations on low data rate, short pulse UWB systems. In Proceedings of the 2007 IEEE International

Conference on Ultra-Wideband, Singapore, 24–26 September 2007; pp. 334–338.
4. IEEE 802.15.4-2015; IEEE Standard for Low-Rate Wireless Networks. IEEE: Piscataway, NJ, USA, 2016.
5. Lee, H.; Shin, C. UWB technology definition and characteristics. Electromagn. Wave Technol. 2002, 13, 3–8.

https://github.com/LeeGun4488/UWB_people_counting/tree/main/data%201d
https://github.com/LeeGun4488/UWB_people_counting/tree/main/data%201d
http://doi.org/10.5515/KJKIEES.2022.33.1.1


Sensors 2023, 23, 7093 16 of 17

6. Cha, H.; Yoon, M.; Jang, B. Measurement and Analysis of Channel Impulse Response of HRP UWB. J. Korean Electromagn. Soc.
2022, 33, 607–617. [CrossRef]

7. Choi, J.W.; Yim, D.H.; Cho, S.H. People Counting Based on an IR-UWB Radar Sensor. IEEE Sensors J. 2017, 17, 5717–5727.
[CrossRef]

8. Mohammadmoradi, H.; Yin, S.; Gnawali, O. Room occupancy estimation through WiFi, UWB, and light sensors mounted on
doorways. In Proceedings of the 2017 International Conference on Smart Digital Environment, Rabat, Morocco, 21–23 July 2017;
pp. 27–34.

9. De Sanctis, M.; Conte, A.; Rossi, T.; Di Domenico, S.; Cianca, E. CIR-based device-free people counting via UWB signals. Sensors
2021, 21, 3296. [CrossRef] [PubMed]

10. Han, S.; Cha, H.; Yoon, M.; Jang, B. Identification of the number of Indoor People using the Change in Channel Characteristics of
HRP UWB Communication. J. Korean Electromagn. Soc. 2022, 33, 855–863. [CrossRef]

11. Choi, J.H.; Kim, J.E.; Kim, K.T. People counting using IR-UWB radar sensor in a wide area. IEEE Internet Things J. 2020,
8, 5806–5821. [CrossRef]

12. De Sanctis, M.; Cianca, E.; Di Domenico, S.; Provenziani, D.; Bianchi, G.; Ruggieri, M. Wibecam: Device free human activity
recognition through wifi beacon-enabled camera. In Proceedings of the 2nd Workshop on Workshop on Physical Analytics,
Florence, Italy, 22 May 2015; pp. 7–12.

13. Pham, C.T.; Luong, V.; Nguyen, D.K.; Vu, H.; Le, M. Convolutional neural network for people counting using UWB impulse
radar. J. Instrum. 2021, 16, P08031. [CrossRef]

14. Yang, X.; Yin, W.; Li, L.; Zhang, L. Dense People Counting Using IR-UWB Radar With a Hybrid Feature Extraction Method. IEEE
Geosci. Remote. Sens. Lett. 2019, 16, 30–34. [CrossRef]

15. Moro, G.; Di Luca, F.; Dardari, D.; Frisoni, G. Human Being Detection from UWB NLOS Signals: Accuracy and Generality of
Advanced Machine Learning Models. Sensors 2022, 22, 1656. . [CrossRef]

16. Choi, J.H.; Kim, J.E.; Kim, K.T. Deep Learning Approach for Radar-Based People Counting. IEEE Internet Things J. 2022,
9, 7715–7730. [CrossRef]

17. Lee, J.; Yoon, J. A Study on Motion Recognition Using IR-UWB Radar. J. Korean Electromagn. Soc. 2019, 30, 236–242. [CrossRef]
18. Kalyanaraman, A.; Zeng, Y.; Rakshit, S.; Jain, V. Caraokey: Car states sensing via the ultra-wideband keyless infrastructure. In

Proceedings of the 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON),
Como, Italy, 22–25 June 2020; pp. 1–9.

19. Bocus, M.; Piechocki, R.; Chetty, K. A Comparison of UWB CIR and WiFi CSI for Human Activity Recognition. In Proceedings of
the IEEE Radar Conference (RadarCon), Atlanta, GA, USA, 8–14 May 2021.

20. Sung, S.; Kim, H.; Jung, J.I. Accurate Indoor Positioning for UWB-Based Personal Devices Using Deep Learning. IEEE Access
2023, 11, 20095–20113. [CrossRef]

21. IEEE Std 802.15.4z-2020; Standard for Low-Rate Wireless Networks–Amendment 1: Enhanced Ultra Wideband (UWB) Physical
Layers (PHYs) and Associated Ranging Techniques; Amendment to IEEE Std 802.15.4-2020. IEEE: Manhattan, NY, USA, 2020.

22. Ledergerber, A.; D’Andrea, R. Ultra-wideband angle of arrival estimation based on angle-dependent antenna transfer function.
Sensors 2019, 19, 4466. [CrossRef]

23. Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark.
Neurocomputing 2022, 503, 92–108. [CrossRef]

24. Fukushima, K. Visual Feature Extraction by a Multilayered Network of Analog Threshold Elements. IEEE Trans. Syst. Sci. Cybern.
1969, 5, 322–333. [CrossRef]

25. Boltzman, L. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Wien. Berichte 1969,
58, 517–560.

26. Ranzato, M.A.; Boureau, Y.L.; Cun, Y. Sparse Feature Learning for Deep Belief Networks. In Proceedings of the NeurIPS 2007,
Vancouver, B.C., Canada, 3–5 December 2007; Volume 20.

27. LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten Digit Recognition with a
Back-Propagation Network. In Proceedings of the NeurIPS 1989, Burlington, MA, USA, 1989; Volume 2.

28. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

29. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
30. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Hong Kong, China, 20–22 November 2015; pp. 448–456.
31. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
32. Wan, L.; Zeiler, M.; Zhang, S.; Le Cun, Y.; Fergus, R. Regularization of Neural Networks using DropConnect. In Proceedings of

the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 28, pp. 1058–1066.
33. Good, I.J. Rational Decisions. J. R. Stat. Soc. Ser. (Methodol.) 1952, 14, 107–114. [CrossRef]
34. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the NeurIPS 2012, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.

http://dx.doi.org/10.5515/KJKIEES.2022.33.8.607
http://dx.doi.org/10.1109/JSEN.2017.2723766
http://dx.doi.org/10.3390/s21093296
http://www.ncbi.nlm.nih.gov/pubmed/34068773
http://dx.doi.org/10.5515/KJKIEES.2022.33.11.855
http://dx.doi.org/10.1109/JIOT.2020.3032710
http://dx.doi.org/10.1088/1748-0221/16/08/P08031
http://dx.doi.org/10.1109/LGRS.2018.2869287
http://dx.doi.org/10.3390/s22041656
http://dx.doi.org/10.1109/JIOT.2021.3113671
http://dx.doi.org/10.5515/KJKIEES.2019.30.3.236
http://dx.doi.org/10.1109/ACCESS.2023.3250180
http://dx.doi.org/10.3390/s19204466
http://dx.doi.org/10.1016/j.neucom.2022.06.111
http://dx.doi.org/10.1109/TSSC.1969.300225
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1111/j.2517-6161.1952.tb00104.x


Sensors 2023, 23, 7093 17 of 17

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

36. Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [CrossRef] [PubMed]
37. Trefethen, L.N.; Bau, D. Numerical Linear Algebra; Siam: Philadelphia, PA, USA, 2022; Volume 181.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1162/jocn.1991.3.1.71
http://www.ncbi.nlm.nih.gov/pubmed/23964806

	Introduction
	Previous Work
	UWB Dataset
	UWB Data Acquisition
	UWB CIR Data Format

	Neural Network Components for CIR Signals
	Fully Connected Layer
	Convolutional Layer
	Activation Function
	Pooling Layer
	Normalization Layer
	Dropout Layer
	Loss Function

	Neural Network Structures
	Fully Connected Neural Network
	Convolutional Neural Network
	Mix Neural Network
	AlexNet Style Network
	ResNet Style Network

	Ensembling Model and Signal
	Model Ensembling
	Signal Ensembling

	Experiments
	Experimental Setting
	Baseline Method
	Network Structure Search
	Network Hyperparameter Tuning
	Implementation Ensembling of Model and Signal
	Model Ensembling
	Signal Ensembling
	Model Signal Ensembling


	Limitation
	Conclusions
	References

