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Abstract: Image dehazing has become a crucial prerequisite for most outdoor computer applications.
The majority of existing dehazing models can achieve the haze removal problem. However, they fail
to preserve colors and fine details. Addressing this problem, we introduce a novel high-performing
attention-based dehazing model (ADMC2-net)that successfully incorporates both RGB and HSV color
spaces to maintain color properties. This model consists of two parallel densely connected sub-models
(RGB and HSV) followed by a new efficient attention module. This attention module comprises
pixel-attention and channel-attention mechanisms to get more haze-relevant features. Experimental
results analyses can validate that our proposed model (ADMC2-net) can achieve superior results on
synthetic and real-world datasets and outperform most of state-of-the-art methods.

Keywords: image dehazing; HSV color space; pixel-attention; channel-attention

1. Introduction

Image dehazing is a core concept in digital image processing, the process of eliminating
haze from images. It has become a crucial task in the field of computer vision due to its
extensive applications in areas such as maritime and air transport, driver assistance systems,
surveillance, and remote sensing. The challenge of dehazing lies in the fact that haze is an
atmospheric phenomenon that can substantially degrade the quality of images, obscuring
details and reducing contrast, color fidelity, and visibility.

In the literature, researchers first have used image enhancement based methods to
enhance image intrinsic properties (such as contrast, brightness) and details. In [1–3],
authors have employed common contrast enhancement techniques to enhance the visibility
of hazy images. However, these techniques can only handle hazy images with thin haze
and would lead to some distortions and halo effects in case of thick haze. Also, the Retinex
theory has been exploited to remove haze from single images [4,5] by enhancing the
brightness of the image. This technique can remove the haze and enhance the vividness of
colors, but it cannot be able to preserve edge properties.

Differently, using fusion-based strategy, Schechner et al. [6] and Liang et al. [7] have
combined the visible light image and the near-infrared image to obtain a high-quality
image free from haze. These methods also has attained satisfactory results, however, since
additional information is required, the restoration would be a little bit complicated, because
a single hazy image cannot provide easily much useful information.

Recently, the image restoration-based Dehazing strategy is extensively studied consid-
ering the image degradation source. With the appearance of this scattering degradation
model, many researchers have built their Dehazing solutions on it, to recover the scene
radiance of degraded hazy images. It can be expressed as follows:

I(x) = J(x)t̃(x) + A(1 − t̃(x)). (1)
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where I(x) is the captured hazy image, J(x) is the scene radiance to be recovered. A(x)
represents the atmospheric light and t̃(x) denotes the transmission medium. x symbolizes
image pixels.

Figure 1 describes how haze affects captured images.

Figure 1. Hazy Image Degradation Model.

This model requires the estimation of two crucial keys, transmission map t̃(x) and the
atmospheric light A to perform the Dehazing process.

Accordinly, He et al. [8] have proposed the dark channel prior (DCP) assumption that
sourced from remote sensing of natural haze-free images. Its principle is that for most
patches in clear outdoor images, at least one color channel contains very low intensity for
some pixels excluding sky region. This assumption can effectively handle thick-haze images
and provide the transmission map simply. Despite that, it has significant block effects and
halos on the transmission map of the sky region. On the other hand, it is computationally
expensive because of the soft matting used in the refinement. Plenty of image dehazing
techniques have been proposed [9–11]. Berman et al. [9] have proposed haze-lines based-
dehazing method to restore the scene radiance by estimating the transmission map distance.
Nevertheless, this method suffers from significant problems, such as color distortion and
fails for thick-haze images. In contrast, Fan et al. [10] have proposed a dehazing method
based on a fusion between a visible image and the near-infrared image. Despite, the pleasant
achievement of this method, it has divers halo artefacts may be seen, and it is not easy to
get the source images. Based on the fact that the haze thickness is related to the blurriness
of the hazy image, Haouassi et al. [11] have presented a powerful Dehazing algorithm that
produces excellent results, even so, it doesn’t work with nighttime hazy images.

With the success of machine learning in many image processing related fields, numer-
ous deep learning-based Dehazing methods [12–15] have been proposed to achieve better
Dehazing results and restore clear images with high visual quality. Such Dehazing methods
perform well on both synthetic and outdoor hazy images. An End-to-End framework called
“DehazeNet” has been presented in [12] that adopts the Convolutional Neural Networks
(CNN) algorithm. It takes as input a single hazy image and gives the estimated transmis-
sion map as output, and according to the experimental results, it attains high performance.
In [13], Golts et al. have designed a different dehazing network using real-world outdoor
images and minimizing the Dark Channel Prior (DCP) energy function. Song et al. [14]
proposed an efficient Dehazing method based on Ranking-CNN model, which facilitates
the haze-relevant feature extraction process. This proposed approach shows its high per-
formance through extensive experimental results on both synthetic and real-world hazy
images. However, it is computationally expensive because of the ranking layer.

In our previous paper [15], we proposed an efficient Dehazing algorithm based on
the estimation of both key components, transmission map and the atmospheric light. The
transmission map is generated automatically by a cascaded Multi-scale CNN termed as
(CMTnet), and the atmospheric light value is estimated using an effective algorithm called
A-Est. This method can produce high-quality free-haze images but it ability to preserve
colors is poor.
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So far, the majority of proposed Dehazing algorithms are suffering from non-preservation
of real-scene colors and fine details or unsatisfying results (for instance: halo effects in
specific regions, over-enhancement). Each of these proposed methods has its level of
success in haze removal process.

In summary, we can present our contributions on several points:

- To retain color properties (Saturation, brightness), we integrate the HSV color space
and RGB color space rather than RGB only.

- We propose an efficient attention module that incorporates both channel-level and
pixel-level to ensure improved color preservation and varying haze conditions adapt-
ability. This attention mechanism is powered by mixed-pooling technique (Fusion of
Max pooling and Average pooling) that can be beneficial to improve the performance
and robustness of the model.

- To generalize well the proposed model we train it with both synthetic data and
real-world challenging benchmarks (Reside [16], O-haze [17], Dense-haze [18], and
NH-haze [19]).

2. Related Works

Single image Dehazing has become a topic of interest in recent years, due to its great
importance in many computer vision-related fields. The traditional dehazing techniques
predominantly relied on image processing, involving the direct manipulation of pixels or
the utilization of manually crafted priors [1–11].

2.1. Prior-Based Dehazing Techniques

These methods employ diverse prior information or assumptions related to the scene,
haze distribution, or the image itself to estimate and remove the haze, such as DCP [8],
haze-line model [9], color attenuation prior [20], and Non-local Color Prior (NCP) [21].
He et al. [8] introduced the dark channel prior, positing that the minimum intensity within
the RGB channels at a local level should approximate zero in haze-free natural images. DCP
pixel tends to be associated with a non-hazy scene. It is used to estimate the transmission
map, which represents the scene’s haze. In [9], a Haze-Line based dehazing model is
proposed, it operates on the premise that the color of a scene undergoes linear changes in
relation to depth. This model employs this assumption as a basis for estimating the transmis-
sion map, allowing for the effective removal of haze from the image. Also, Zhu et al. [20]
have introduced a Color Attenuation Prior method that operates under the assumption
that the color of a scene exhibits greater consistency in the transmission-reflection model
in HSV color space. In [21] the Non-local Color Prior (NCP) is introduced, leveraging the
insight that a crisp image is characterized by a limited number of clusters within the RGB
color space.

Although these prior-based methods have proven effective in many scenarios, they
are not applicable in complex hazy scenes.

2.2. Deep Learning-Based Dehazing Methods

These techniques have carried about a revolutionary shift in the field of image dehaz-
ing, significantly improving performance over traditional techniques.

Unlike prior-based approaches that rely on evident assumptions or handcrafted priors,
deep learning models, in particular convolutional neural networks (CNNs), can adapt and
generalize across various landscapes. Moreover, deep learning models can easily handle
noise and learn scene-related features contributes to enhanced dehazing performance.

In [12] Cai et al. have proposed an end-to-end trainable CNN model that can gen-
erate transmission map for the input hazy image, which is subsequently used to recover
a clear image via the atmospheric scattering model. This model has shown superior de-
hazing results comparing with traditional methods, however, it can not fully capture the
diverse range of real-world hazy conditions. Likewise, MSCNN [22] introduced a dehazing
approach that progresses from coarse to fine by establishing a multi-scale convolution
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network. This model shows promising results in haze removal however it may suffer from
constructive errors. Differently, Li et al. [23] have introduced an All-in-One model that
employs a reformulated Equation (1) to estimate both transmission medium and airlight
simultaneously. Many studies [14,15,24,25] have employed deep learning-based technolo-
gies and show promising dehazing results, however, cannot handle complex senes and
varying haze conditions scenes. Additionally, most of these proposed deep-learning based
dehazing techniques may suffer from computational complexity because of the feature
redundancy, which leads to inaccurate dehazing outcomes particulary in challenging scenes
(non-uniform haze, variying light conditions,..., etc.).

To address these issues, several researchers have joined the attention mechanism with
deep learning techniques in image dehazing task, to selectively emphasize or de-emphasize
certain parts of the input hazy image.

2.3. Attention Mechanisms-Based Deep Learning Dehazing Methods

Recently, the integration of attention mechanisms into deep learning models for
image dehazing tasks has been pivotal for optimizing the model’s performance. Plenty
of works have adopted attention mechanisms to improve the effectiveness of dehazing-
based models. In [26], the authors have presented a robust attention-based multi-scale
network that consists of three key components and implements a novel effective attention
mechanism to capture haze-relevant features. It has been demonstrated to promote good
results; however, it has some inherent limitations, such as sensitivity to lighting conditions,
and poor performance on thick haze scenes. Also, in [27,28] authors have proposed pixel-
channel attention models to address the non-uniform distribution of haze at different
pixel levels. CP-net [27] incorporates a double attention module (DA), and FFA-net [28]
introduces a powerful feature attention module along a basic residual block. Furthermore,
an effective network was introduced in [29] it comprises a residual spatial and channel
attention module to adaptively adjust feature weights, considering haze distribution,
enhancing feature representation and dehazing performance. Moreover, Sun et al. [30] have
proposed a fast and robust semi-supervised dehazing method (SADnet) that incorporates
both channel and spatial attention mechanisms. This technique shows its effectiveness in
haze removal; however, it produces some color artefacts on dehazing outcomes.

It is evident that the above-discussed attention-based models [26–30] can exhibit
notable improvements in enhancing dehazing robustness. They outperform existing end-
to-end models, showcasing their efficacy in addressing haze-related challenges. However,
they can produce some color artefacts and cannot handle complex real-world scenarios.
Addressing these challenges and further refining the existing methodologies will be pivotal
in advancing the field and ensuring the practicality of these models in real-world settings,
with different lighting conditions and degrees of complexity.

To address such weaknesses, this paper leverages the synergistic advantages benifiting
from the fusion of channel and pixel attention, along with the use of various color spaces
(RGB and HSV). The fusion of channel and pixel attention allows the model to refine its
focus localy and globally, enabling a more precise and context-aware dehazing process.
Moreover, the incorporation of two color spaces further enriches the feature representation,
exploiting characteristics of each space. By integrating information from RGB, HSV color
representations, the model enhances its ability to deal with complex color variations in
hazy scenes, resulting in superior color restoration.

This multi-attentional and multi-colour space strategy contributes to the robustness
and adaptability of the proposed method, making it well-suited for a broad spectrum of
real-world dehazing scenarios. The proposed network (ADMC2-net) details are discussed
in the next section.

3. Proposed Learning-Based Image Dehazing Method

In this section, we discuss the detailed framework of the proposed Dehazing network
(ADMC2-net). The proposed model consists of a two-path block of trained dense units (D-



Sensors 2024, 24, 687 5 of 17

Unit), a concatenation module, a Channel-Pixel fusion attention module, and a restoration
module. First, we provide an overview of the proposed Dehazing network Figure 2. Second,
we present the network’s main components in detail, including color space used, dense
units (D-unit), concatenation, channel and pixel modules, fusion attention, and restoration
module. Then, we introduce the loss function to train the network.

Figure 2. Overall design of the proposed end−to−end model.

3.1. Overview of the Proposed Architecture

Inspired by the impressive success of end-to-end deep neural networks in image de-
hazing field [12,23], we propose a robust dehazing model (ADMC2-net), that can effectively
generate the mapping M(x) directly and minimize the reconstruction errors.

Our network (ADMC2-net) inspires AOD-Net’s [23] overall design as shown in
Figure 2 to generate clear images from hazy ones directly.

As shown in Figure 3, the input hazy image undergoes an RGB to HSV colorspace
conversion. Then, we create two paths, RGB and HSV, to extract more informative features
separately. After that, the input feature maps were fed into four consecutive dense units
(D-units) in each path, obtaining different representative and informative feature maps
from the two parallel paths, RGB and HSV.

Figure 3. Architecture of the proposed dehazing model (ADMC2-net).
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Densely connecting the RGB path’s features with the HSV path’s features can improve
the performance of the network D-unit block. The generated RGB and HSV features are
then input into a recovery module after being fed into a fusion attention module to extract
the most important features.

Our proposed dehazing network (ADMC2-net) can handle the image dehazing issue
effectively in terms of image quality and haze removal.

3.2. Network Architecture

Our proposed model (ADMC2-net) consists of four key components: HSV-RGB Color
Space Representation, dense units (D-unit), Fusion Attention Module, and Recovery Mod-
ule. In this section, we will explain each of these components in more detail.

3.2.1. Two-Color Space Model

Generally, most of proposed dehazing methods process in the RGB color space, it has
a strong physical color property that allows for easy image display and storage; However,
its channels have a high level of correlation, so the entire image’s appearance might be
affected easily through luminance changes, lights, shadows, white areas, haze drops, and
other factors. As we mentioned before, the majority of recent image dehazing techniques
have the ability to remove the haze from single hazy images in most cases, however; these
methods have shown their sensibility to lighting conditions and produced some color
artefacts on the dehazing outcomes.

Our proposed dehazing model takes a step further by incorporating feature extraction
from two color spaces, RGB and HSV. This unique combination offers significant benefits
for image dehazing, as it enables better representation of visual information and enhances
the ability to handle both color distortions and halo artifact challenges. By leveraging the
strengths of both color spaces, our model delivers superior results compared to traditional
dehazing techniques.

RGB is an additive color model widely used in electronic displays, such as computer
monitors, television screens, and digital cameras. It is composed of three color channels,
Red, Green, and Blue, each channel rangesfrom 0 to 255 (8 bits per channel).

HSV is a cylindrical model where the hue is the angle of the color relative to red, the
saturation is the intensity of the color relative to the hue, and the value is the brightness of
the color. HSV is often preferred for color representation and manipulation as it is more
intuitive and easier to work with. It consists of three independent attributes: hue (H),
saturation (S), and value (V). Hue specifies the property of color, saturation represents the
purity of a specific color, and value signifies pixel intensity and brightness.

• Hue (H): 0 to 360 degrees.
• Saturation (S): 0 to 1
• Value (V): 0 to 1

Furthermore, the HSV color space has proven to be highly effective in a variety
of image-related tasks [31–34], including image deahzing task, yielding exceptional re-
sults. This benefit has motivated us to combine the advantages of both the HSV and RGB
color spaces.

HSV-RGB color space integration solves most learning-based dehazing problems, color
costs, and halo artifacts. HSV promotes brightness and color, whereas RGB enhances detail.
A dehazing network using both color spaces increases data-driven learning and robustness.
Later layers may focus on intensity-related variables as the model learns to blend HSV and
RGB properties. Real-world applications with varied input images need this generalization.

Network funtionality: The input of our network is a single hazy image.
RGB−network: First, RGB channels are fed into a four D-units sub-network with

multiple skip connections. Denote IRGB is the input hazy image with three channels
{R, G, B}, and Wi, bi represent the weights and biases of the i-th D-units, respectively. f is
the activation function. The output of each D-unit can be expressed as:
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Y1 = f (W1 · IRGB + b1) (2)

Y2 = f (W1 · Y1 + b2) (3)

Y3 = f (W1 · Y2 + b3) (4)

Y4 = f (W1 · Y3 + b4) (5)

Then, the overall network expression can be expressed as:

Y4 = f (W4 · ( f (W3 · ( f (W2 · ( f (W1 · IRGB + b1)) + b2)) + b3)) + b4) (6)

HSV−network: First, the input hazy image is transformed to HSV representation
(RGB—HSV), it is used as an input for the HSV subnetwork. Then, the process is quite
similar to what we explained for RGB image. However, HSV image typically has three
channels (H,S,V), so the dimensions of matrices weights must be ajusted.

The final network formula can be expressed as:

Z4 = f (W4 · ( f (W3 · ( f (W2 · ( f (W1 · IHSV + b1)) + b2)) + b3)) + b4) (7)

where IHSV= h,s,v where H, S, and V are the individual channels. Wi, bi represent the
weights and biases of the i-th D-units, respectively. f is the activation function.

Finally, the output features Y4 and Z4 are fused and concatenated with the HSV-
network’s features. Finally, all these features passed through the proposed feature attention
module. In the next subsections we give details of D-unit and Feature Attention Module.

3.2.2. D-Unit Structure

The D-unit consists of dense convolutions network and a feature attention module.
Inspired by our previous work [15], we exploit the D-unit architecture to build the two-color
space dehazing model (ADMC2-net). Figure 4 shows the general internal structure of a
D-unit. To reduce the computational complexity while also increasing the receptive field,
we use (3 × 3) convolutions followed by a rectified linear unit (ReLU) (except for the last
convolutional layer). The DenseNet [35] framework inspired the basic concept of a D-unit,
in which each convolutional layer is connected to all other layers in a feed-forward manner.
For instance, feature maps of the first layer C1 are densely connected to all subsequent
layers C2, C3, and C4.

Figure 4. Structure of D-unit.

Most traditional deep learning-based dehazing methods treat pixel-wise and channel-
wise features equally. As a result, these methods cannot deal with dense haze and uneven
haze distribution scenes. In contrast, Qin et al. [28] proposed a robust feature atten-
tion mechanism that can be more flexible with different hazy scene types and treats all
haze levels well. It comprises channel attention and pixel attention, as explained in the
next section.
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The proposed unit architecture has many benefits that make it more advantageous
than other deep learning-based dehazing models. These benefits includes its ability to
avoid the gradient vanishing problem that deep CNNs have. In addition, this architecture
is designed to maximize the flow of information with non-redundancy of feature maps.
This proposed unit can highlight dense haze and bypass the less important information like
low frequency regions and thin haze, which can lead to outstanding haze removal results.

3.2.3. Feature Attention Module

Recently, the attention mechanism has become increasingly crucial in deep learning-
based dehazing methods. It shows an outstanding ability to help the model adaptively
process the most critical parts while ignoring irrelevant ones.

Several studies [28–30] have employed this mechanism to enhance the effectiveness
of DNN-based dehazing models by incorporating channel attention, pixel attention or
both. However, these attempts failed to yield satisfactory results because of the difficulty of
tackling intense haze in scenarios with dense haze, the complexity for integration to other
existing DNN-based dehazing methods, and limited robustness due to sensitivity to some
variations, such as scene complexity, lightning conditions, or weather.

By addressing these problems, we propose an efficient and robust attention module
that inspires the significant achievement of fusing channel and pixel mechanisms for image
dehazing task.

As depicted in Figure 5, our proposed attention module inspires FFA-Net [28] attention
architecture, which employs w fusion of both channel and pixel attention mechanisms.
However, for channel attention stage we employ a hybrid max-average pooling technique
that can capture a more comprehensive representation of the input by preserving global
and local informatioin within the model.

First, for channel attention we use max-average (MA) pooling to transform channel-
wise global spatial information into a channel descreptor.

MA = Fcat(Pmax{Fin}, Paverage{Fin}). (8)

Figure 5. Sheme of proposed Attention module.

Then, the features undergo two convolutional layers, with ReLU activation function λ
and then a sigmoid function σ.

Cc = σ(conv(λ(conv(MA)))) (9)

Finally, we perform element-wise multiplication between the input feature Finand the
channel weights Cc.

Fc = Cc ⊗ Fin (10)

Similarly, we input Fc (output of channel attention) to two convolutional layers with
ReLu λ and the sigmoid activation function σ.

PAc = σ(conv(λ(conv(Fc)))) (11)

In the end, multiplying the output PAc and the input Fc element-wise.
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Fatt = PAc. ⊗ FC (12)

This feature attention module adopts a lightweight architecture that can be smoothly
fused into existing image-dehazing models without imposing significant computational
costs. It aims improve the performance of image dehazing model by effectively augment-
ing the overall clarity and quality of the dehazed results and preserving varying haze
conditions adaptability.

Overall, the proposed attention model demonstrates its ability in dealing with most
of dehazing challenging problems in particuraly, varying lightening and vaze conditions,
color distortion, contextual information preservation.

3.2.4. Loss Function

Generally, image dehazing models employed L2 loss MSE (Mean Squared Error) to
train the model efficiently because of its simplicity and ease of converging to an optimal
solution. However, it has limitations regarding overly smoothed outputs that can not
preserve textures or details well. Its main goal is to minimize the error between output and
the ground truth of a hazy image. MSE loss is expressed below.

LMSE =
1
M

M

∑
i=1

(Igt − Ipred)
2 (13)

where Ig is the ground-truth image and Ipred represents the predicted output, M is the
number empirical values.

As we mentioned above, MSE is a pixel-wise metric that can not maintain the percep-
tual quality of an image and can produce overly smoothed mages. In contrast, a robust
dehazing system ought to not only effectively remove haze but also preserve edges, textures,
and fine details.

On the other hand, SSIM (Structural Similarity Index) encourages structural details
preservation. It considers three key components to evaluate the perceptual similarity
between two images: structure, contrast, and brightness. Its value varies between −1 and
1, where 1 represents an excellent similarity.

LSSIM = 1 − 1
M

M

∑
p=1

(
2µxµy + Ca

µ2
x + µ2

y + Cb
·

2σxy + Ca

σ2
x + σ2

y + Cb
) (14)

where Ca and Cb represent constants of regularization, x and y are the compared images.
µx and µy are averages of x and y, and σ2

x , σ2
y represent variances of x and y.

For image dehazing, choosing the loss function requires a trade-off between pixel
accuracy and perceptual feature preservation. Therefore, combining SSIM loss and MSE
loss can be beneficial for training and help the dehazing model handle all distortions and
challenging scene conditions.

In this research we employ a combination of L2 loss (MSE) and SSIM loss, which can
be defined as follows.

Lt = LMSE + LSSIM (15)

4. Results

In this section, we disscuss the dataset and experimental setup used in our study
(some visual results Figure 6). Furthermore, the proposed dehazing model is first assessed
by conducting various experiments using state-of-the-art dehazing methods on real-world
and synthetic data.

The validation of these investigations incorporates both qualitative visual effects
and quantitative assessment metrics. Finally, we perform ablation studys to prove the
significance of each unit in our proposed architecture.
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Figure 6. Some Visual Results of Proposed Dehazing Model: The hazy image, our result, Ground
truth, respectively.

4.1. Datasets and Implementation
4.1.1. Datasets

To assess the effectiveness of our innovative dehazing model, we performed com-
prehensive experiments on real-world images and synthetic datasets. For our experi-
ments, we chose the publicly accessible large-scale dataset RESIDE (REalistic Single Image
DEhazing) [16]. It contains thousands of pairs of indoor and outdoor hazy images as well
as their corresponding ground truth.

For training, we picked 2500 synthetic hazy and corresponding ground truth images
from OTS (Outdoor Training Set) and 500 from ITS (Indoor Training Set). For validation
on synthetic and real-world images, we select 400 synthetic hazy images from SOTS
(Synthetic Objective Testing Set) and 15 real-world foggy images from HSTS (Hybrid
Sujective Testing Set).

Furthermore, we trained our approach on real-world challenging haze-removal bench-
marks, Dense-Haze [18], NH-HAZE [19], and O-HAZE [17] datasets, 90% used for training
and 10% for evaluation.

4.1.2. Implementation Details

In our experiments, for training, we utilized an ADAM optimizer as an optimization
approach to update network parameters recurrently. The model was trained using the
standard learning rate of 0.001 and network parameters β1 and β2 set to 0.9 and 0.999,
respectively, with 200 epochs. We implement our network on a computer of 12th Gen
Intel(R) Core i5-12600k, GPU is NVIDIA RTX 2080Ti.

4.2. Comparisons and Experimental Results

In this section, we perform an experimental analysis by comparing our proposed
model to other existing approaches, both traditional and learning-based, TA-3DP [36], MB-
TF [37], GRIDdehaze-Net [26], CMTnet [15], GEN-ADV [38], DP-IPN [25], ADE-CGAN [39].
First, we conduct a qualitative comparison to assess the compared methods on both
synthetic and real-world hazy images. Then, to confirm the qualitative comparison analysis,
we perform a quantitative comparison using the extensively used metrics SSIM and PSNR,
and ∆E∗

ab [40] that can compare two images in terms of color, it is a color difference function.

4.2.1. Qualitative Comparison on Both Real-World and Synthetic Hazy Images

In this part, we conduct a qualitative comparative analysis, by presenting a range of
dehazing results for the above methods [15,25,26,36–39] including ours. In Figures 7–9, we
illustrate outcomes obtained from both synthetic (indoor, outdoor settings) and real-world
outdoor hazy images.
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Figure 7. Subjective comparison on synthetic dataset RESIDE. (a) hazy image, (b) TA-3DP [36],
(c) MB-TF [37], (d) GRIDdehaze-Net [26], (e) CMTnet [15], (f) GEN-ADV [38], (g) DP-IPN [25], (h)
ADE-CGAN [39], (i) Ours. (j) Ground truth.

Figure 8. Subjective comparison on Real-world datasets Dense-Haze, NH-HAZE, and O-HAZE.
(a) hazy image, (b) TA-3DP [36], (c) MB-TF [37], (d) GRIDdehaze-Net [26], (e) CMTnet [15], (f) GEN-
ADV [38], (g) DP-IPN [25], (h) ADE-CGAN [39], (i) Ours. (j) Ground truth.
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Figure 9. Some Visual comparisons of comparing methods on Real-world images (without ground
truth). (a) hazy image, (b) TA-3DP [36], (c) MB-TF [37], (d) GRIDdehaze-Net [26], (e) CMTnet [15],
(f) GEN-ADV [38], (g) DP-IPN [25], (h) ADE-CGAN [39], (i) Ours.

Figure 7 presents some dehazing outcomes from the Reside dataset (SOTS) on synthetic
hazy images. As illustrated in Figure 7b,c, the methods show good performance in haze
removal, however, TA-3DP [36] method’s shows some color distortion in the outputs. Also,
MB-TF [37] produces over-saturated colors. Figure 7d method’s shows some residual haze.

In contrast, learning-based methods perform well in haze removal in most cases.
However, they show some color distortions and poor saturation. For example, in Figure 7e
CMTnet [15] results are substantially obscure in most cases (trees in the fourth image). As
depicted from Figure 7f–h the results of GEN-ADV [38], DP-IPN [25], ADE-CGAN [39]
have higher illumination, and some color shifts. Overall, as shown through all results
in Figure 7, unlike our proposed model that can recover the real scene while preserving
colours and saturation, most state-of-the-art compared methods fail to restore the hazy
images and are unable to preserve colours and saturation.

Figure 8 shows some examples of haze removal results on three real-world challenging
datasets: Dense-Haze (dense haze), NH-HAZE (non-homogonous haze), and O-HAZE
(outdoor hazy images). At first glance, our results are visually almost identical to the
ground-truth images. Contrary, as displayed in Figure 8b,c the methods TA-3DP [36],
MB-TF [37] perform well in haze removal from dense-haze in most cases images and
non-homogonous. Also Figure 8d GRIDdehaze-Net [26] method’s shows some light haze
for example, the third and fourth images.

As shown in Figure 8e–h CMTnet [15], GEN-ADV [38], DP-IPN [25], ADE-CGAN [39]
can successfully remove haze for most images, and the results are close to the ground-truth
images to some extent. However, we can notice some color degradations for example, herbs
in the second image tend to be dark green unlike in the ground truth which is light green.
Also, these methods are unable to preserve edges and fine details, for example, the house
cone in the first image. Additionally, all comparing methods fail to handle images with
white objects or background (last image Figure 8).

To further assess the performance of our proposed approach, we carry out dehazig
results of the comparing methods, including ours on real-world hazy images(without
ground truth images), these images can be considered as challenging conditions hazy
images (images with sky area, images with non-homogonous haze, images with low light
condition). As demonstrated in Figure 9b,f,g TA-3DP [36], GEN-ADV [38], and DP-IPN [25]
method’s can remove most of haze fromhazy images, however, the outputs have some
color cost in sky area. Figure 9h shows ADE-CGAN [39] method’s results, it can be good
in haze removal but it produces over-saturated colors. Alghough most of the comparing
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methods can remove haze to some extent, however, they have severe colour degradation in
many scene parts, especially in the sky area (red frame shows the colour distortions and
show some detail loss in different parts).

Differently, our proposed system can perform well in haze removal with colour and
detail preserving. Overall, the proposed method can outperform the comparing methods
in most cases, and has a superior generalization ability.

To validate all these qualitative evaluations, we conduct a quantitative comparison
using FR-IQA (Full-reference Image Quality Assessement)and NR-IQA (no-reference Image
Quality Assessement) in the next section.

4.2.2. Quantitative Comparison on Both Real-World and Synthetic Hazy Images

In this section, we perform a quantitative comparison to rank the comparing methods,
including ours. As we mentioned before, in our study we selected hazy images from a
synthetic dataset Reside(SOTS, HSTS) and the three challenging real-world benchmarks
(O-hazy, NH-hazy, Dense-hazy). Table 1 shows the average values of SSIM, PSNR and ∆E∗

ab
indicators, where a higher value indicates the best one for all metrics.

Table 1. Average Values of SSIM, PSNR and ∆E∗
ab of Comparing Methods on Synthetic and

Real-world Datasets.

Dataset Indicators TA-3DP MB-TF GRIDdehaze CMTnet GEN-
ADV DP-IPN ADE-

CGAN Ours
[36] [37] [26] [15] [38] [25] [39]

SOTS
SSIM 0.8239 0.9032 0.7242 0.8123 0.8247 0.9270 0.8003 0.9372
PSNR 15.4630 19.2631 17.3572 18.0378 20. 3083 21.0383 19.0114 23.8275
∆E∗

ab 0.8264 0.8104 0.8192 0.8634 0.7945 0.8184 0.8400 0.9517

HSTS
SSIM 0.7503 0.8505 0.7314 0.7502 0.7986 0.8732 0.8402 0.8987
PSNR 15.0481 20.0072 16.8375 19.5837 17.5237 21.9170 18.4921 25.9730
∆E∗

ab 0.8390 0.8700 0.8058 0.8227 0.8154 0.8048 0.7412 0.9301

O-hazy
SSIM 0.8817 0.9164 0.8901 0.8304 0.7509 0.9208 0.7979 0.9327
PSNR 17.4005 20.1562 16.3421 17.4735 16.3782 19.0026 16.3420 22.7038
∆E∗

ab 0.8002 0.8264 0.7401 0.8542 0.6834 0.8735 0.8830 0.9607

NH-hazy
SSIM 0.8302 0.8902 0.8892 0.8421 0.7304 0.8940 0.7380 0.9100
PSNR 16.3971 25.0593 17.4217 16.8342 17.3179 22.9750 17.4400 27.3074
∆E∗

ab 0.7824 0.7660 0.7391 0.8167 0.7940 0.7475 0.8927 0.9364

Dense-hazy
SSIM 0.7392 0.9472 0.7973 0.7321 0.8347 0.9150 0.8918 0.9830
PSNR 18.6310 23.5809 16.5837 15.3791 18.9234 18.6832 18.3375 25.8373
∆E∗

ab 0.7900 0.7245 0.7691 0.7632 0.8264 0.7820 0.8955 0.9402

By analyzing Table 1 SSIM, PSNR and ∆E∗
ab values, our proposed model achieved the

best values for all SSIM, PSNR and ∆E∗
ab. This achievement indicates that our proposed

method outperforms state-of-the-art dehazing methods in terms of structural perception
and color preserving.

Additionally, we assess the accuracy of the restored images on both real-world and
synthetic images by using some common NR-IQA (FADE [41], e, r̄). The indexes e and r̄ are
two contrast enhancement indicators presented by Hautiere et al. [42], which measures
the ability to recover the invisible edges and the quality of the contrast enhancement,
respectively. FADE indicator evaluates the ability to remove haze from hazy images.
Table 2 shows the average scores of e, r̄, FADE, and running time (T) of the comparative
methods, including ours.
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Table 2. Average Values of FADE, e, r, and T(x) of Comparing Methods on Synthetic and
Real-world Datasets.

Indicators TA-3DP MB-TF GRIDdehaze CMTnet GEN-
ADV DP-IPN ADE-

CGAN Ours
[36] [37] [26] [15] [38] [25] [39]

Fade 2.9201 1.9036 3.9478 2.8002 4.0084 3.8103 1.9387 4.9036
r 2.7297 3.1207 1.9824 1.8074 1.5982 2.0791 2.8897 2.9727
e 3.9023 2.3978 1.8079 2.8671 2.0072 1.9783 3.1207 4.9802

T(x) 0.4089 1.0082 0.3002 0.8902 0.4628 0.4001 0.3903 0.3120

According to Table 2, our proposed model achieves the best scores (Values writen in
bold on the table) for most of comparing metrics and ranks the second in recovering the
visibility of edges.

In summary, both quantitative and qualitative analyses verify the effectiveness and
the outstanding performance of our proposed attentional dehazing model, in terms of haze
removal, color preserving, contrast enhancement, edges visibility and time complexity.

4.3. Ablation Studies

To validate the significance of the proposed attention module to enhance the perfor-
mance of our dehazing model, we investigate two ablation studies with and without the
attention module, as well as RGB-based model and RGB-HSV based model. Table 3 shows
the SSIM and PSNR values of testing the dehazing model with and without the attention
module with synthetic and both synthetic and real-world datasets. Table 4 shows the SSIM,
PSNR and ∆E∗

ab values of testing the dehazing model in these cases.

Table 3. Average Values of SSIM and PSNR.

Without Attention
Module

With Attention
Module

SSIM
T \ w S-H dataset 0.8097 0.9140

T \ w S and R
datasets 0.8257 0.9472

PSNR
T \ w S-H dataset 19.6783 22.8395

T \ w S and R
datasets 20.7103 25.8016

Table 4. Average Values of SSIM, PSNR and ∆E∗
ab.

RGB RGB-HSV

SSIM
T \ w S-H dataset 0.8997 0.9140

T \ w S and R
datasets 0.9035 0.9631

PSNR
T \ w S-H dataset 17.6021 19.0042

T \ w S and R
datasets 18.6453 23.7341

∆E∗
ab

T \ w S-H dataset 0.8541 0.9237
T \ w S and R

datasets 20.7103 0.9741

As demonstrated from Table 3, our attention module has an outstanding ability to
increase the performance of the dehazing process (SSIM and PSNR average values are
the best in case of using our attention module). Additionally, employing both synthetic
and real-world datasets has an excellent impact in enhancing dehazing performance (As
marked in bold).

By contrast, the employing the integration of both RGB and HSV color space to
implement our dehazing network contributes in enhancing color visibility and clarity while
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removing haze, Table 4 shows average values of SSIM, PSNR, and ∆E∗
ab are the best in case

of RGB-HSV with both synthetic and real-world datasets.

5. Disscussion and Failure Cases

Based on our comprehensive analysis, the proposed method demonstrates superior
performance compared to most state-of-the-art dehazing approaches, excelling in terms
of haze removal, visibility enhancement, edge preservation, color preserving, and time
complexity. Our method effectively addresses and overcomes the limitations observed in
existing approaches.

The outstanding success of our proposed method is underscored by its robustness,
efficacy, and efficient time complexity, achieved through the strategic utilization of both
RGB and HSV color spaces, as well as the incorporation of the proposed attention module.
These combined strengths significantly contribute to the exceptional results attained by
our approach.

Combining RGB and HSV color spaces with an attention module can lead to a more
comprehensive and adaptive approach for haze removal. This significant combination
enables the algorithm to better understand and address the complexities of haze in diverse
scenarios, contributing to more effective and robust results.

As any proposed network, our proposed network EIDC2-Net has a failure case, EIDC2-
Net fails to handling super-resolution hazy image. This failure may stem from the inherent
challenges associated with reconciling the intricate details required for super-resolution
with the complexities introduced by atmospheric haze. The challenge lies in develop-
ing a sophisticated algorithm that can navigate this trade-off without compromising the
effectiveness of either objective.

6. Conclusions

In this paper, we presented an innovative two-color space attention-based dehazing
model (ADMC2-net), employing both HSV color space and RGB color space. This model
structure incorporates two parallel densely connected sub-networks with an efficient fused
channel-pixel attention module. This integration can solve several image dehazing issues
(generalization, color degradation, and loss of fine details problems). Through extensive
qualitative and quantitative comparisons and by analyzing some image quality metrics
(SSIM, PSNR, ∆E∗

ab, e, r, FADE), our proposed model shows outstanding dehazing results
that can outperform state-of-the-art dehazing methods in terms of haze removability, color
preserving, time consumming, by solving most existing image dehazing limitations and
treating all haze and light scene conditions. As a future work, we would investigate
and incorporate advanced super-resolution techniques that can effectively handle hazy
conditions. This may involve exploring deep learning architectures specifically designed
for super-resolution in challenging environments.
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