
Citation: Zhang, Y.; Yi, P.; Hong, Y.

Cooperative Safe Trajectory Planning

for Quadrotor Swarms. Sensors 2024,

24, 707. https://doi.org/10.3390/

s24020707

Academic Editors: Bo Zhang, Yue Wei,

Shiyu Chen, Yu Hu and Yaohua Liu

Received: 8 December 2023

Revised: 10 January 2024

Accepted: 16 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Cooperative Safe Trajectory Planning for Quadrotor Swarms
Yahui Zhang 1 , Peng Yi 1,2,* and Yiguang Hong 1,2

1 Department of Control Science and Engineering, Tongji University, Shanghai 201804, China
2 Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201210, China
* Correspondence: yipeng@tongji.edu.cn

Abstract: In this paper, we propose a novel distributed algorithm based on model predictive control
and alternating direction multiplier method (DMPC-ADMM) for cooperative trajectory planning of
quadrotor swarms. First, a receding horizon trajectory planning optimization problem is constructed,
in which the differential flatness property is used to deal with the nonlinear dynamics of quadrotors
while we design a relaxed form of the discrete-time control barrier function (DCBF) constraint to
balance feasibility and safety. Then, we decompose the original trajectory planning problem by
ADMM and solve it in a fully distributed manner with peer-to-peer communication, which induces
the quadrotors within the communication range to reach a consensus on their future trajectories to
enhance safety. In addition, an event-triggered mechanism is designed to reduce the communication
overhead. The simulation results verify that the trajectories generated by our method are real-time,
safe, and smooth. A comprehensive comparison with the centralized strategy and several other
distributed strategies in terms of real-time, safety, and feasibility verifies that our method is more
suitable for the trajectory planning of large-scale quadrotor swarms.

Keywords: trajectory planning; model predictive control; alternating direction multiplier method;
differential flatness; control barrier function; quadrotor swarms

1. Introduction

In recent years, with the rapid development of communication, computing, and
automation technologies, intelligent UAV swarm systems inspired by the behavior of
biological swarms have received extensive attention from researchers and practitioners [1].
An intelligent UAV swarm system is a holistic system composed of a group of UAVs capable
of accomplishing complex tasks through cooperation and information sharing [2]. UAV
swarm systems have advantages in terms of timeliness, economy, and functionality [3].
Consequently, they have been widely used in both civil and military fields [4], such as
infrastructure inspection [5], logistics transportation [6], and search and rescue [7]. Among
them, trajectory planning, as a crucial and challenging component for UAV swarms to
perform tasks, needs to ensure the safety of a smooth trajectory from the initial position
to the target position under the dynamics constraints, especially in a confined space.
Furthermore, coordination among the UAVs is crucial.

There is increasing research that has emerged to address this safety-critical challenging
problem, including potential fields [8], velocity obstacles [9,10], dynamic windows [11],
and inter-robot prioritization [12]. However, these classical methods do not pay much
attention to the interaction among robots, making them ineffective for more complex
environments. Recently, learning-based methods [13,14] have been proposed to consider
inter-robot interaction to solve trajectory planning. However, they usually require high-
quality training data for generalization and lose the interpretability of the internal decision-
making process. The above problems can be overcome by constructing an optimization
problem using the MPC framework to handle complex objective functions and constraints
explicitly, as well as providing sequences of future state and control input information
predictively [15–17].

Sensors 2024, 24, 707. https://doi.org/10.3390/s24020707 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020707
https://doi.org/10.3390/s24020707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0004-0627-6478
https://orcid.org/0000-0002-2494-1505
https://doi.org/10.3390/s24020707
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020707?type=check_update&version=2

Sensors 2024, 24, 707 2 of 24

The major challenge of implementing MPC for the trajectory planning of quadrotor
swarms lies in the difficulties of guaranteeing the real-time feasibility and safety of the
system under various practical constraints. In this paper, we present a novel distributed
trajectory planning algorithm for quadrotor swarms based on DMPC-ADMM, referring to
Figure 1. Our contributions can be summarized as follows:

• A trajectory planning optimization problem for quadrotor swarms is constructed
based on MPC, which uses the differential flatness property to handle the nonlinear
dynamics of quadrotors. The dimension of the planning space is reduced compared to
directly utilizing the nonlinear model. Additionally, we design a relaxed form of DCBF
constraint to balance feasibility and safety. Due to the non-convexity of the DCBF, we
linearize the DCBF at each time step and use an iterative convex optimization scheme
to improve the solution’s efficiency.

• The high-dimensional optimization problem is decomposed to construct a fully dis-
tributed trajectory planning algorithm based on ADMM. In this distributed algorithm,
the quadrotors within the communication range reach a consensus on future trajecto-
ries through cooperation, thus enhancing the safety of trajectories. To further improve
communication efficiency, we design an event-triggered mechanism to reduce the
communication overhead.

• The simulation results verify that our method can generate safe and smooth trajectories
online under limited communication range, collision avoidance, and dynamic con-
straints. The comparison with the centralized strategy and several other distributed
strategies confirms that our method is more suitable for large-scale quadrotor swarms.

Trajectory

Planned future trajectory

Initial position

Goal position

Quadrotor

Communication

Communication range

Obstacle

Figure 1. Illustration of the trajectory planning based on DMPC-ADMM for a quadrotor swarm in a
crowded environment.

The remainder of this paper is organized as follows. In Section 2, we mainly review
the literature on the trajectory planning of UAVs. In Section 3, we introduce the differential
flatness and DCBF. The quadrotor swarm trajectory planning problem based on MPC and
DCBF is formulated in Section 4. In Section 5, we provide the distributed algorithm to
solve the optimization problem via ADMM and design an event-triggered mechanism to
reduce the communication overhead. We present the simulation experiments and results in
Section 6, followed by concluding remarks in Section 7.

2. Related Work

Ensuring the safety of generated trajectories has consistently been a central issue in the
field of multi-robotics, as well as a prerequisite for successful execution of tasks. As noted
in [18], the existing literature often adopts Euclidean norms to model distance constraints,
which are activated only when the reachable set intersects with the obstacles, resulting
in the robot taking action only when it is close to them. To overcome this shortcoming,
Ref. [18] combined CBF with MPC to avoid obstacles at an early stage and enhance the
safety of the trajectory. The MPC-CBF formulation was also investigated on different
platforms, including unmanned aerial vehicles [19,20] and autonomous vehicles [21].

Sensors 2024, 24, 707 3 of 24

The object of interest in this paper is a group of quadrotors whose underactuation and
intrinsic instability make generating safe trajectories challenging. An effective solution
involves leveraging the differential flatness property of quadrotors, as introduced in [22],
to simplify the optimization problem while preserving the nonlinear dynamics of the
quadrotors. This approach was successfully applied to UAV trajectory planning in crowded
environments [23], as well as avoiding obstacles [24]. Specifically, Ref. [19] used CBF
constraints to ensure trajectory safety for multi-quadrotor systems based on differential
flatness. In this paper, we propose a distributed algorithm for the trajectory planning of
quadrotor swarms with the MPC-CBF formulation.

UAV swarm trajectory planning is a complex optimization problem involving multiple
constraints, variables, and nonlinear effects. Several existing studies on the trajectory
planning of UAVs are summarized in Table 1. Centralized methods [24–26] have been
proposed for the trajectory planning of UAV swarms. Kumar et al. [24] resolved the
heterogeneous UAV formation reconfiguration and trajectory planning based on mixed
integer quadratic programming (MIQP). Ref. [25] considered the collision-free trajectory
generation for multiple UAVs in 3D space as a nonconvex optimization problem, which can
be solved by sequential convex programming (SCP). These centralized approaches require
the presence of a central node capable of acquiring the state information of the entire system
and transmitting the planning results to each UAV. Nevertheless, one of its disadvantages
is the large amount of computation, and once the center node fails, the whole system stops
working, resulting in poor real-time and scalability. Therefore, the distributed methods
have attracted much research attention in recent years. Compared to the centralized ones,
each UAV in the distributed framework uses peer-to-peer communication to compute its
trajectory without the need for a central node, referring to Figure 2. Hence, the distributed
framework is scalable and robust in the face of unexpected node and link failures.

Communication links Central node Local node

Figure 2. Centralized design (left) vs. our distributed design (right) for cooperative trajectory
planning of quadrotor swarms.

Distributed Model Predictive Control (DMPC) [27] has found successful applications
in various networked systems ranging from electric power networks [28] to multi-robot sys-
tems [29–31]. It is an appealing option for distributed trajectory planning. Borrelli et al. [29]
addressed the UAV formation problem based on a decentralized linear MPC approach
that guaranteed collision avoidance under constraints. Luis et al. [31] developed a DMPC
algorithm for online point-to-point flight trajectory generation in multi-UAV scenarios,
which employed on-demand collision avoidance and event-triggered replanning. However,
the second-order dynamics did not take into account the characteristics of quadrotors, and
the safe distance constraint was approximated by a first-order Taylor expansion of the
Euclidean distance. These limitations made it challenging to ensure trajectory safety in
confined environments. To solve the quadrotor navigation problem, an online decentral-
ized obstacle avoidance algorithm based on differential flatness and MPC was proposed
in [30], where Optimal Reciprocal Collision Avoidance (ORCA) was employed for obstacle
avoidance. However, the quadrotors lack cooperation to reach a consensus on their future
trajectories, potentially leading to collisions in dense environments.

Sensors 2024, 24, 707 4 of 24

Table 1. Existing studies on the trajectory planning of UAVs.

References UAV Model Methods Collision
Avoidance Evaluation

Kumar et al. [24] Differential flatness MIQP and downwash effect Yes Centralized methods:
optimal global planning,
poor real-time,
high computational
complexity,
poor scalability

Augugliaro
et al. [25] Differential flatness Discrete planning and continuous

refinement Yes

Preiss et al. [26] Second-order dynamics SCP and posteriori
vehicle-specific feasibility check Yes

Borrelli et al. [29] Second-order dynamics MILP and inter-vehicle
coordination rules Yes

Distributed methods:
good real-time,
strong robustness,
suitable for large-scale
swarms

Arul et al. [30] Linear flat model
ORCA, downwash effect, and
flatness-based feedforward
linearization

Yes

Luis et al. [31] Second-order dynamics On-demand collision avoidance Yes

Distributed optimization theory and its applications have gained increasing attention
in recent years. The alternating direction multiplier method (ADMM) [32], as one of them,
has been proven to show significant advantages in terms of convergence speed and compu-
tational efficiency in multi-robot task scenarios [33]. A series of examples combining MPC
and ADMM approaches for multiple robots [3,34–36] illustrate the effectiveness and scala-
bility of such a distributed framework. For instance, Ref. [34] proposed a distributed MPC
method utilizing ADMM decomposition to coordinate the control problem of waterborne
AGVs. Chen et al. [35] employed MPC and ADMM to achieve formation navigation of
multiple vessels under environmental perturbations. In [3], a flocking control framework
based on MPC and ADMM was presented to enable multi-vehicle systems to track desired
trajectories while considering limited communication distances, collision avoidance, and
bounded speed and control inputs. Compared to the methods above, we address a more
complex quadrotor scenario that takes into account the quadrotor’s dynamics. Moreover,
we utilize the linearized DCBF instead of the Euclidean norms and incorporate MPC to
ensure the real-time generation of safe trajectories.

3. Preliminaries

In this section, we present an overview of differential flatness and DCBF. We highlight
the linear flat model of the quadrotor and a relaxed form of the DCBF constraint. In
addition, the main symbols used in this paper are defined in Abbreviations.

3.1. Differential Flatness and Quadrotor Dynamics

A nonlinear system ẋ = f (x, u) is considered differentially flat if it can be described
using a set of differentially independent variables ζ ∈ Rm called flat output, i.e., the state
and input of the system can be expressed as algebraic functions of the flat output and its
finite-order derivatives [37]. The definition is as follows:

ζ = Φ(x, u, u̇, . . . , u(p)), (1)

x = Ψx(ζ, ζ̇, . . . , ζ(q−1)), (2)

u = Ψu(ζ, ζ̇, . . . , ζ(q)), (3)

where Φ, Ψx, and Ψu are smooth functions. Both Ψx and Ψu are also called endogenous
transformations of the system. Here, p and q are the maximum orders of the derivatives
of u and ζ required to describe the system. The quadrotor has been shown to have the
differential flatness property [22] with a flat output ζ = [x, y, z, ψ]T .

Sensors 2024, 24, 707 5 of 24

Consider a quadrotor with its control input u = (T, ϕcmd, θcmd, ψ̇cmd), where T is the
commanded thrust, ϕcmd and θcmd are the commanded roll and pitch angles, and ψ̇cmd is
the commanded yaw rate. The state x = (x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ) includes position, velocity,
and roll, pitch, and yaw angles. As in [38], the inner-loop attitude dynamics are written
as follows:

ϕ̇ =
1
τϕ

(kϕϕcmd − ϕ),

θ̇ =
1
τθ
(kθθcmd − θ),

ψ̇ = ψ̇cmd,

(4)

where kϕ, kθ and τϕ, τθ are the gains and time constants of the roll and pitch angles, re-
spectively. Then the following equation gives the relationship between T, ϕ, θ and flat
output ζ.

T = m
z̈ + g

cos ϕ cos θ
,

ϕ = arctan
(

ẍ sin ψ− ÿ cos ψ

z̈ + g
cos θ

)
,

θ = arctan
(

ẍ cos ψ + ÿ sin ψ

z̈ + g

)
.

(5)

From (4) and (5), we can then compute u in terms of flat output ζ and its derivatives.
Hence, we simplify the quadrotor trajectory generation process by seeking a sufficiently
smooth flat output trajectory within a reduced planning space dimension.

Hagenmeyer et al. [37] introduced the notion of exact feedforward linearization based
on differential flatness. The differential flat system ẋ = f (x, u) can be transformed into
an equivalent linear discrete-time flat model that can provide the benefit of reducing
computation overload. The linear flat model of the quadrotor [38] is shown as:

zk+1 = Azk + Bvk,

ζk = Czk,
(6)

where

A =


I3×3 I3×3Ts I3×3

T2
s

2 03×1
03×3 I3×3 I3×3Ts 03×1
03×3 03×3 I3×3 03×1
01×3 01×3 01×3 1

, B =


I3×3

T3
s

6 03×1

I3×3
T2

s
2 03×1

I3×3 03×1
01×3 Ts

,

C =

[
I3×3 03×3 03×3 03×1
01×3 01×3 01×3 1

]
,

and z = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈, ψ]T denotes the flat state of the quadrotor, including position,
velocity, acceleration, and yaw angle. v = [

...
x ,

...
y ,

...
z , ψ̇]T denotes the flat input, including

the third-order derivatives of the position and the yaw rate. In this paper, we consider (6)
as the quadrotor dynamics model to generate a smooth collision-free trajectory.

3.2. Discrete-Time CBF

Consider a discrete-time dynamical system as

xk+1 = f (xk, uk), (7)

where xk ∈ X ⊂ Rn denotes the state of the system at time k, uk ∈ U ⊂ Rm is the control
input, and f is a continuous dynamics function. Obstacle avoidance requires the invariance
of a trajectory with respect to a safe, connected set. Specifically, if the system (7) is safe with

Sensors 2024, 24, 707 6 of 24

respect to a set C, then any trajectory starting inside the set C will remain inside it. The set
C is defined to be a superlevel set of the continuously differentiable functions h : X → R.

C = {x ∈ X ⊂ Rn : h(x) ≥ 0}. (8)

Here, C is called a safety set. The function h is a discrete-time CBF (DCBF) [18] if the
following condition (9) is satisfied.

∃ uk s.t. ∆h(xk, uk) ≥ −γh(xk), 0 < γ ≤ 1, (9)

where ∆h(xk, uk) := h(xk+1)− h(xk), and γ is a hyperparameter. The constraint (9) implies
h(xk+1) ≥ (1− γ)h(xk), i.e., the lower bound of h(x) decays exponentially at time k with
the rate 1− γ. Incorporating a valid DCBF constraint (9) into an optimization problem
ensures the safety of the generated trajectories. If γ decreases, the system becomes more
capable of avoiding obstacles, but it might lead to an unfeasible problem. On the other
hand, if γ increases, the problem is more likely to be feasible, but the trajectory rapidly
approaches the boundary of the safe set ∂C, making the system unsafe. Therefore, the
fixed γ is challenging to adapt to complex and changing environments; see [18] for details.
To better balance feasibility and safety, we design a relaxed form of the DCBF constraint
as follows:

h(xk+1)− (1− γ)h(xk) + ωk ≥ 0. (10)

Here, the slack variable ωk ∈ R will be adaptively optimized along with other variables
in the optimization problem. The collision-free trajectory needs to consider both the
neighbors and the obstacles in the external environment, so two types of safety constraints
are added. One is the DCBCij constraint between quadrotor i and quadrotor j, and the
other is the DCBCio constraint between quadrotor i and obstacle o ∈ O. The formulation of
DCBCij and DCBCio are shown in the next section.

4. Problem Formulation

In this section, we present an undirected adjacency graph representing communication
among quadrotors and then formulate a trajectory planning optimization problem based
on MPC and DCBF.

4.1. Proximity Network

To realize cooperative trajectory planning, quadrotors need to communicate and
exchange information with each other. In this paper, we use an undirected proximity graph
Gk = (V , E k) to represent the communication topology of quadrotors at time k, where
V := {1, 2, . . . , N} is the set of vertices and E k ∈ V × V is the set of edges. In graph Gk,
vertex i stands for quadrotor i. The edge E k

ij stands for a communication link between
quadrotor i and quadrotor j at time k, as

E k = {(i, j) | dk
ij < ∆dect, i, j ∈ V , i ̸= j}, (11)

where dk
ij = ∥pi − pj∥ and ∆dect > 0 is the maximum distance that quadrotors can commu-

nicate. At time k, the neighbors of quadrotor i are defined as N k
i ≜ {j | (i, j) ∈ E k}. The

graph Gk is time-varying due to the movement of the quadrotors. Therefore, N k
i may be ∅,

i.e., quadrotor i does not communicate with any other quadrotors at time k.

4.2. Trajectory Planning Based on MPC and DCBF

Cooperative trajectory planning for quadrotor swarms is a multi-variable and multi-
constraint optimization problem. Combining MPC and DCBF, we aim to generate a safe
and smooth trajectory under collision avoidance and dynamics constraints. Consider
a swarm system with N quadrotors in a shared workspace W ∈ R3. This finite-time

Sensors 2024, 24, 707 7 of 24

optimization problem with constraints at time k within a prediction horizon H can be
formulated as follows:

min
vk:k+H−1|k

i , ω0:H−1
i

N

∑
i=1

Jk
i (z

k:k+H|k
i , vk:k+H−1|k

i) + Jk
i (ω

0:H−1
i) (12a)

s.t. zk+t+1|k
i = Azk+t|k

i + Bvk+t|k
i , (12b)

ζ
k+t|k
i = Czk+t|k

i , (12c)

zk+t|k
i ∈ Ω, (12d)

zk|k
i = zk

i , (12e)

DCBCk+t|k
ij ≥ 0, ∀j ∈ Ni, (12f)

DCBCk+t|k
io ≥ 0, ∀o ∈ O, (12g)

∀t ∈ {0, 1, . . . , H − 1}, (12h)

where N is the number of quadrotors, and k + t | k denotes the prediction at time k for the
state at time k + t. The cost function (12a) is composed of two parts along the prediction
horizon H, i.e., the cost Jk

i (z
k:k+H|k
i , vk:k+H−1|k

i) with respect to the variables zk:k+H|k
i and

vk:k+H−1|k
i , and the additional cost Jk

i (ω
0:H−1
i) with respect to the slack variables ω0:H−1

i .
(12b) and (12c) are the linear flat model of the quadrotor described by (6), while (12d)
and (12e) denote the system dynamics constraints and initial state conditions, respectively.
To ensure the safety of the trajectory, (12f) and (12g) give two types of DCBF constraints
defined by (10). The specific forms of the cost function and constraints in the optimization
are described in detail below.

(1) Cost Jk
i (z

k:k+H|k
i , vk:k+H−1|k

i): The cost function consists of three parts, including the

terminal cost p(zk+H|k
i), the stage cost q(zk+t|k

i , vk+t|k
i), and the input change rate cost

r(vk+t|k
i , vk+t−1|k

i), as shown below:

Jk
i (z

k:k+H|k
i , vk:k+H−1|k

i) = p(zk+H|k
i) +

H−1

∑
t=0

q(zk+t|k
i , vk+t|k

i) +
H−1

∑
t=1

r(vk+t|k
i , vk+t−1|k

i), (13)

p(zk+H|k
i) = ∥zk+H|k

i − zd
i ∥2

P, (14)

q(zk+t|k
i , vk+t|k

i) = ∥zk+t|k
i − zd

i ∥2
Q + ∥vk+t|k

i ∥2
R, (15)

r(vk+t|k
i , vk+t−1|k

i) = ∥vk+t|k
i − vk+t−1|k

i ∥2
S, (16)

where P, Q, R, and S denote the weight matrices of the corresponding parts, respec-
tively. zd

i is the target state of quadrotor i. From Equations (14)–(16), it can be seen
that this cost penalizes the deviation of the predicted state from the target state, the
size of the input, and the size of the input variations along the prediction horizon H.
Therefore, the objective of the optimization problem is to enable the quadrotors to
rapidly approach the target state while minimizing input size and its variation.

(2) Cost Jk
i (ω

0:H−1
i): The additional cost function Jk

i (ω
0:H−1
i) is to drive the slack variables

ω0:H−1
i = [ω0:H−1

ij , ω0:H−1
io] close to 0 to ensure the safety of the generated trajectories

as follows:

Jk
i (ω

0:H−1
i) =

H−1

∑
t=0

α(ωt
ij)

2 + α(ωt
io)

2, (17)

where α is a weighting coefficient. It is advisable to set α to a large value to pre-
vent excessive relaxation of the DCBF constraints, which is also verified in the sim-
ulation experiments. In addition, the cost function Jk

i (ω
0:H−1
i) can be tuned for

different performance.

Sensors 2024, 24, 707 8 of 24

(3) DCBF Constraints: To generate collision-free trajectories, (12f) and (12g) provide safety

constraints DCBCk+t|k
ij and DCBCk+t|k

io in the optimization problem to ensure the
forward invariance of the corresponding safety set C. The formulation is as follows:

DCBCk+t|k
ij ≜ hij(ζ

k+t+1|k
i , ζ

k+t+1|k
j)− (1− γij)hij(ζ

k+t|k
i , ζ

k+t|k
j) + ωt

ij ≥ 0, ∀j ∈ Ni, (18)

DCBCk+t|k
io ≜ hio(ζ

k+t+1|k
i , po)− (1− γio)hio(ζ

k+t|k
i , po) + ωt

io ≥ 0, ∀o ∈ O. (19)

We model each quadrotor i as a closed rigid sphere with radius ri and each obstacle
o as a closed ellipsoid with semi-major axis (ao, bo, co). Similar to [18], the corresponding
h-functions are given by

hij(ζ
k+t|k
i , ζ

k+t|k
j) = ∥pk+t|k

i − pk+t|k
j ∥ − ri − rj ≥ 0, (20)

hio(ζ
k+t|k
i , po) = ∥pk+t|k

i − po∥W − 1 ≥ 0, (21)

where pk+t|k
i represents the position of quadrotor i and is a component of the output ζ

k+t|k
i .

Correspondingly, po is the position of obstacle o. (20) implies that the sphere representing
quadrotor i does not intersect the sphere representing quadrotor j, see Figure 3 for details.
Similarly, (21) can be interpreted as approximating the obstacle o as an enlarged ellipsoid
to check whether the position of quadrotor i is inside it [16], and W = diag(1/(ao + ri)

2,
1/(bo + ri)

2, 1/(co + ri)
2). Since the DCBF is nonconvex, the real-time computation of

problem (12) is challenging when it has a large prediction horizon H. Therefore, we
linearize the DCBF around the result of the previous iteration at each time step using a
first-order Taylor expansion as follows:

hij(ζ
k+t|k
i , ζ

k+t|k
j) = ηT

ij(p
k+t|k
i − pk+t|k

j)− ri − rj ≥ 0,

hio(ζ
k+t|k
i , po) = ηT

ioW(pk+t|k
i − po)− 1 ≥ 0,

ηij =
p̂k+t|k

i − p̂k+t|k
j

∥p̂k+t|k
i − p̂k+t|k

j ∥
, ηio =

p̂k+t|k
i − po

∥p̂k+t|k
i − po∥

,

(22)

where p̂k+t|k
i is the result of the previous iteration for quadrotor i. Then, we can solve

problem (12) with an iterative convex optimization. The detailed steps of the solution are
described in the following section.

Remark 1. In this paper, we consider that the yaw direction of the quadrotor is fixed as ψ = 0 in
the desired trajectory, and the focus is on the spatial position of the quadrotor.

The above is the optimization problem for trajectory planning. We will introduce a
fully distributed trajectory planning algorithm for efficiently computing future trajectories
for all quadrotors in a swarm, as explained in the following section.

Sensors 2024, 24, 707 9 of 24

Predicted trajectories for quadrotors

Quadrotor j

Quadrotor i
(1|)k k+

(2|)k k+

(|)k H k+

Closed rigid sphere

Area between the quadrotors Boundaries of DCBF

(|)k k

Figure 3. DCBF-based collision avoidance between quadrotor i and quadrotor j. The black solid
arrows indicate the positions at the identical global time. The boundaries of the DCBF are defined by
the corresponding constraints to prevent the quadrotors from approaching each other too fast.

5. DMPC-ADMM Based Trajectory Planning

In this section, we reformulate the trajectory planning (12) for quadrotor swarms based
on ADMM, converting it into a fully distributed framework. This approach decomposes
the original high-dimensional optimization problem into N low-dimensional optimization
subproblems, allowing each quadrotor i to compute its optimal trajectory in parallel to
speed up the online solution of the problem. The focus lies in determining the commu-
nication information and mode to coordinate the quadrotors in order to avoid collision
among them.

5.1. General ADMM Formulation

Here, we present a brief overview of ADMM. For more details, the readers can refer
to [32]. ADMM is an iterative algorithm for solving distributed optimization problems. It
decomposes the original problem into several subproblems and solves them by updating
the multipliers and alternating iterations. The standard ADMM considers the following
optimization problem with equation constraints.

min
x,z

f (x) + g(z) s.t. Ax + Bz = c, (23)

where x ∈ Rn1 and z ∈ Rn2 are the original decision variables. f : Rn1 → R, g : Rn2 → R,
A ∈ Rn3×n1 , B ∈ Rn3×n2 , and c ∈ Rn3 . ADMM utilizes the augmented Lagrangian
function with an additional quadratic penalty term to obtain better convergence. (24)
is the augmented Lagrangian function of problem (23). The steps of ADMM iteratively
solving (23) are described in Algorithm 1 until the predefined stopping iteration condition
is satisfied.

Lρ(x, z, λ) = f (x) + g(z) + λT(Ax + Bz− c) +
ρ

2
∥Ax + Bz− c∥2

2, (24)

where λ ∈ Rn3 is the Lagrange multiplier and ρ > 0 is the penalty coefficient. Although ρ is
independent of the convergence of the optimization problem (23), it affects the convergence
rate. And we can obtain a suitable ρ by sufficient experiments. The next subsection
describes how to reformulate the trajectory planning problem (12) as an adaptation of the
structure of problem (23) to solve it in a distributed manner.

5.2. Problem Decomposition Based on ADMM

For trajectory planning of quadrotor swarms, the only coupling among quadrotors is
represented by the collision avoidance constraints (18). The purpose of interactions among
quadrotors is to tell the neighbors about their own future trajectories so that they can

Sensors 2024, 24, 707 10 of 24

avoid collision in advance. In such scenarios, quadrotors need to agree on safe trajectories
within the confined space. Motivated by [36], each quadrotor maintains communication
with its neighbors while computing trajectories by introducing duplicates of its neighbors’
trajectories. Specifically, we use wi to represent the duplicate of the trajectory ζi, and
wi→j is the duplicate of quadrotor i for the trajectory ζ j of quadrotor j, which can also be
interpreted as the desired trajectory proposed by quadrotor i for quadrotor j. Then the
control barrier function hij(ζ

k+t|k
i , ζ

k+t|k
j) ≥ 0 can be reformulated as

h̄ij(w
k+t|k
i , wk+t|k

i→j) ≥ 0,

wk+t|k
i = ζ

k+t|k
i , wk+t|k

i→j = ζ
k+t|k
j , ∀j ∈ Ni.

(25)

It can be seen that using wi and wi→j, the coupling among quadrotors is successfully
decoupled. Here, we use I to denote an indicator function, defined as

IA(x) :=

{
0 if x ∈ A,
∞ otherwise.

(26)

Compared to the problem (23), we replace the cost function of the optimization
problem (12) with f (zk:k+H|k

i , vk:k+H−1|k
i , ω0:H−1

i) + g(wk:k+H|k
i , wk:k+H|k

i→j) as follows:

f (zk:k+H|k
i , vk:k+H−1|k

i , ω0:H−1
i) =

N

∑
i=1

[Jk
i (z

k:k+H|k
i , vk:k+H−1|k

i) + Jk
i (ω

0:H−1
i)

+ IΦ(z
k:k+H|k
i , vk:k+H−1|k

i)],

(27)

g(wk:k+H|k
i , wk:k+H|k

i→j) =
N

∑
i=1

[∑
j∈Ni

IDCBCij≥0(w
k:k+H|k
i , wk:k+H|k

i→j)], (28)

where the set Φ denotes all the constraints in (12) except for inter-quadrotor collision
avoidance. So, the optimization problem (12) can be transformed into the form as follows:

min
vk:k+H−1|k

i , wk:k+H|k
i , wk:k+H|k

i→j , ω0:H−1
i

f (zk:k+H|k
i , vk:k+H−1|k

i , ω0:H−1
i) + g(wk:k+H|k

i , wk:k+H|k
i→j)

s.t. wk+t|k
i = ζ

k+t|k
i , wk+t|k

i→j = ζ
k+t|k
j ,

∀t ∈ {0, 1, . . . , H − 1}, ∀j ∈ Ni.

(29)

Obviously, (29) is an optimization problem with equation constraints, whose aug-
mented Lagrangian form is given in (30), where λi and λi→j are the corresponding dual
variables and ρ is the penalty coefficient. This allows us to solve this optimization prob-
lem according to Algorithm 1, iteratively updating zk:k+H|k

i , vk:k+H−1|k
i , ω0:H−1

i , wk:k+H|k
i ,

wk:k+H|k
i→j , λ

k:k+H|k
i , and λ

k:k+H|k
i→j sequentially until the stopping condition is satisfied or

the maximum number of iterations is reached. Each quadrotor i computes its trajectory
while maintaining communication with its neighbors to exchange future trajectories of the
prediction horizon H.

Sensors 2024, 24, 707 11 of 24

Lρ = f (zk:k+H|k
i , vk:k+H−1|k

i , ω0:H−1
i) + g(wk:k+H|k

i , wk:k+H|k
i→j) +

N

∑
i=1

(Mi + ∑
j∈Ni

Mi→j)

=
N

∑
i=1

[Lρ,i(ζ
k+H|k
i , zk:k+H|k

i , vk:k+H−1|k
i , ω0:H−1

i , wk:k+H|k
i , λ

k:k+H|k
i)

+ ∑
j∈Ni

Lρ,i→j(ζ
k+H|k
j , wk:k+H|k

i→j , λ
k:k+H|k
i→j)]

=
N

∑
i=1

[Lρ,i(ζ
k:k+H|k
i , zk:k+H|k

i , vk:k+H−1|k
i , ω0:H−1

i , wk:k+H|k
i , λ

k:k+H|k
i)

+ ∑
j∈Ni

Lρ,j→i(ζ
k:k+H|k
i , wk:k+H|k

j→i , λ
k:k+H|k
j→i)]

(30)

Algorithm 1 ADMM.

repeat 1 : x← arg min
x
Lρ(x, z, λ)

2 : z← arg min
z
Lρ(x, z, λ)

3 : λ← λ + ρ
∂

∂λ
Lρ(x, z, λ)

until satisfaction of a stopping criterion

The last equation in (30) holds because a bi-directional interaction is assumed, i.e.,
j ∈ Ni ⇔ i ∈ Nj. So, we can flip the indexes i and j. Mi and Mi→j in (30) are defined
as follows:

Mi =
H

∑
t=0

λT
i (ζ

k+t|k
i −wk+t|k

i) +
ρ

2
∥ζk+t|k

i −wk+t|k
i ∥2

2,

Mi→j =
H

∑
t=0

λT
i→j(ζ

k+t|k
j −wk+t|k

i→j) +
ρ

2
∥ζk+t|k

j −wk+t|k
i→j ∥

2
2

(31)

According to Algorithm 1, we separate the Lagrangian function (30) into two sub-
problems. We first minimize Lρ over the local variables vk:k+H−1|k

i and ω0:H−1
i , and then

minimize it over the global variables wk:k+H|k
i and {wk:k+H|k

i→j }j∈Ni . Algorithm 2 describes
the steps of the distributed trajectory planning algorithm based on DMPC-ADMM, contain-
ing the steps of prediction, coordination, and mediation, as well as two communications,
all of which are executed iteratively on the quadrotors in parallel. The prediction step
ensures that each quadrotor i computes a trajectory ζ

k:k+H|k
i of prediction horizon H under

the constraints represented by Φ. The trajectory should be close to the target position
while not deviating too much from its collision-free trajectory wk:k+H|k

i and the desired

trajectories {wk:k+H|k
j→i }j∈Ni that its neighbors propose. Each quadrotor i then exchanges

the updated trajectory ζ
k:k+H|k
i with its neighbors in the first round of communication. In

the coordination step, each quadrotor i updates (wk:k+H|k
i , {wk:k+H|k

i→j }j∈Ni). This is done
by coordinating with its neighbors to avoid collision while staying as close as possible
to the trajectory ζ

k:k+H|k
i computed in the prediction step. In the mediation step, the La-

grange multipliers (λ
k:k+H|k
i , {λk:k+H|k

i→j }j∈Ni) that accumulate the deviation between the
trajectories computed in the prediction step and the coordination step are updated, further
facilitating the quadrotors to reach a consensus on the trajectories of prediction horizon
H. Finally, the desired Lagrange multipliers {λk:k+H|k

i→j }j∈Ni and trajectories {wk:k+H|k
i→j }j∈Ni

are exchanged with its neighbors in the second round of communication. The iteration is
finished when the stopping iteration condition (35) is satisfied or the maximum number of

Sensors 2024, 24, 707 12 of 24

iterations lmax is reached. The first control input vk
i is selected from vk:k+H|k

i to guide the
controller at time k + 1. Then, this algorithm repeats in this manner until all the quadrotors
have reached the target positions.

Algorithm 2 Distributed algorithm based on DMPC-ADMM.

1: ∀i ∈ {1, . . . , N}, Initialize z0
i , k = 0.

2: while target positions not reached do
3: for ∀i ∈ {1, . . . , N} in parallel do
4: Initialize λ

k:k+H|k
i , wk:k+H|k

i , {λk:k+H|k
i→j , wk:k+H|k

i→j }j∈Ni .
5: Set l = 0 and update Ni.
6: while l < lmax or stopping criterion (35) is not satisfied do
7: 1. prediction: update ζ

k:k+H|k
i with

arg min
vk:k+H|k

i , ω0:H−1
i

Lρ,i(ζ
k:k+H|k
i , zk:k+H|k

i , vk:k+H−1|k
i , ω0:H−1

i , wk:k+H|k
i , λ

k:k+H|k
i)

+ ∑
j∈Ni

Lρ,j→i(ζ
k:k+H|k
i , wk+t|k

j→i , λ
k:k+H|k
j→i)

(32)

8: 2. communication 1:
9: send ζ

k:k+H|k
i to j ∈ Ni;

10: receive {ζk:k+H|k
j } from j ∈ Ni.

11: 3. coordination:
12: update (wk:k+H|k

i , {wk:k+H|k
i→j }j∈Ni) with

arg min
wk:k+H|k

i , wk:k+H|k
i→j

Lρ,i(ζ
k:k+H|k
i , zk:k+H|k

i , vk:k+H−1|k
i , ω0:H−1

i , wk:k+H|k
i , λ

k:k+H|k
i)

+ ∑
j∈Ni

Lρ,i→j(ζ
k:k+H|k
j , wk:k+H|k

i→j , λ
k:k+H|k
i→j)

(33)

13: 4. mediation:
14: update (λ

k:k+H|k
i , {λk:k+H|k

i→j }j∈Ni) with

λ
k:k+H|k
i ← λ

k:k+H|k
i + ρ(ζ

k:k+H|k
i −wk:k+H|k

i),

λ
k:k+H|k
i→j ← λ

k:k+H|k
i→j + ρ(ζ

k:k+H|k
j −wk:k+H|k

i→j), ∀j ∈ Ni.

15: 5. communication 2 :
16: send (λ

k:k+H|k
i→j , wk:k+H|k

i→j) to j ∈ Ni ;

17: receive {λk:k+H|k
j→i , wk:k+H|k

j→i } from j ∈ Ni.
18: end while
19: Select the first control input vk

i from vk:k+H−1|k
i .

20: Update state zk+1 = Azk + Bvk, ζk+1
i = Czk+1

i .
21: end for
22: k← k + 1 and l ← l + 1.
23: end while

In (22), we give a specific formulation of the linearized DCBF such that (29) is a
convex problem with constraints. Here, we solve (32) and (33) in an iterative manner to
approximate the optimal solution; see Algorithms 3 and 4. In Algorithm 3, the updated

output ζ
k:k+H|k
i,d is passed between iterations allowing for the linearization of DCBCio.

The iteration is finished when the convergence criterion (34) is satisfied or the maximum

Sensors 2024, 24, 707 13 of 24

number of iterations dmax is reached. The updated optimal ζ
k:k+H|k
i is then exchanged with

its neighbors in the first round of communication. Algorithm 4 follows the same principle
as Algorithm 3, so it is not explained further here.∥∥∥ζ

∗,k:k+H|k
i,d − ζ

k:k+H|k
i,d

∥∥∥ ≤ ϵabs, (34)

where ϵabs > 0 is constant, (34) implies that the iteration of Algorithm 3 is finished when

the absolute value of the change in output ζ
k:k+H|k
i,d is less than ϵabs.

Algorithm 3 Iterative convex optimization of (32).

1: Set initial guess ζ
k:k+H|k
i,0 .

2: Initialize d = 0.
3: while d < dmax or convergence criteria (34) is not satisfied do

4: Linearize safety constraints DCBCio (12g) with ζ
k:k+H|k
i,d .

5: Solve a convex optimization problem with constraints and obtain the
optimal value of state ζ

∗,k:k+H|k
i,d .

6: Update ζ
k:k+H|k
i,d+1 = ζ

∗,k:k+H|k
i,d .

7: d← d + 1.
8: end while
9: Update ζ

k:k+H|k
i = ζ

∗,k:k+H|k
i,d .

Algorithm 4 Iterative convex optimization of (33).

1: Set initial guess wk:k+H|k
i,0 , wk:k+H|k

i→j,0 .
2: Initialize d = 0.
3: while d < dmax or convergence criteria is not satisfied do
4: Linearize safety constraints DCBCij (12f) with wk:k+H|k

i,d , wk:k+H|k
i→j,d .

5: Solve a convex optimization problem with constraints and obtain the
optimal value of state w∗,k:k+H|k

i,d , w∗,k:k+H|k
i→j,d .

6: Update wk:k+H|k
i,d+1 = w∗,k:k+H|k

i,d , wk:k+H|k
i→j,d+1 = w∗,k:k+H|k

i→j,d .
7: d← d + 1.
8: end while
9: Update wk:k+H|k

i = w∗,k:k+H|k
i,d , wk:k+H|k

i→j = w∗,k:k+H|k
i→j,d .

Remark 2. For the initialization of Algorithm 2, we use the optimal result of the previous loop of
DMPC-ADMM. Likewise, we use the optimal result of the previous iteration as the initial guess in
Algorithms 3 and 4. This hot-start strategy can speed up the convergence of the algorithm, especially
in slowly changing scenarios.

Each quadrotor i plans its trajectory ζ
k:k+H|k
i by taking into account its optimal trajec-

tory wk:k+H|k
i and the desired trajectories {wk:k+H|k

j→i }j∈Ni that are proposed by its neighbors.
Thus, the stopping iteration condition for each MPC-ADMM loop can be designed in the
following form: ∥∥∥ζ

k:k+H|k
i −wk:k+H|k

i

∥∥∥ ≤ ϵ1,∥∥∥∥∥ζ
k:k+H|k
i − 1

numnbrs
i

∑
j∈Ni

wk:k+H|k
j→i

∥∥∥∥∥ ≤ ϵ2,
(35)

where ϵ1 and ϵ2 represent tolerable deviation thresholds, respectively, and numnbrs
i is

the number of neighbors of quadrotor i. With sufficient iterations, the quadrotor i will

Sensors 2024, 24, 707 14 of 24

agree with its neighbors on the trajectories of prediction horizon H. However, extensive
simulations show that the algorithm reaches an accepted result after a certain number of
iterations. To reduce the computational burden, we present an empirical value of lmax that
allows us to compute a sub-optimal result.

5.3. Event-Triggered Mechanism

In general, the maximum communicable distance ∆dect is much greater than the dis-
tance that quadrotors can fly within the prediction horizon H. Consequently, Algorithm 2
exhibits substantial redundancy in inter-quadrotor communication, especially in scenarios
involving many quadrotors. Inspired by [39,40], we design an event-triggered mechanism
that initiates communication only when a specific trigger condition is met. The critical
element of the event-triggered mechanism lies in the design of the event detector. The
content and operational mode of the event detector determines the functioning of the
event-triggered mechanism, subsequently influencing the communication frequency of the
system, as shown in Figure 4.

trigger do not communicate

Yes

communicate

......

......

status monitoring
(trajectory information)

event-triggered
function

No

Neighbors

Neighbors

Figure 4. Structure of the event detector.

Considering a scenario in which two quadrotors are widely separated, there is no risk
of collision within the prediction horizon H, so they need not maintain communication
while generating trajectories. Within the distributed framework, at time k, quadrotor i
listens to the position of its neighbor j ∈ Ni to determine whether the event is triggered.
We design the trigger function of the event detector as follows:

E(pk
i , pk

j) = ∥pk
i − pk

j ∥ − 2HTsvmax − ri − rj, j ∈ Ni, (36)

where pk
i , pk

j are the positions of quadrotor i and its neighbor j ∈ Ni at time k, Ts is the time
step, and vmax is the maximum velocity of the quadrotor. The trigger condition holds when
the value of the trigger function (36) is negative. We then incorporate this event-triggered
mechanism into Algorithm 2, which reduces communication resources and the number of
collision avoidance constraints DCBCij ≥ 0.

Remark 3. The optimization problem may become infeasible when the flight space of the quadrotors
is highly competitive. In this case, we can slow down the quadrotors quickly, and after a few time
steps, the problem becomes feasible again.

6. Simulation Experiments and Results

In this section, we describe and evaluate the implementation of our method in sim-
ulation experiments. The simulation results validate the efficiency of our method. And
we use the RflySim platform [41] to validate the proposed method. The platform provides
quadrotor dynamics that are almost indistinguishable from actual scenario flights. The
trajectories of all quadrotors are generated by our method, and the PID controller is used
to track the trajectories. A video demonstration on the RflySim platform can be found at
https://www.bilibili.com/video/BV11u4y1w7HU (accessed on 15 January 2024).

https://www.bilibili.com/video/BV11u4y1w7HU

Sensors 2024, 24, 707 15 of 24

6.1. Experimental Setup

All the quadrotors have the same dynamics model, and we apply a box constraint set Ω
on the flat state as is done in [42] for trajectory generation, as shown in (37). The parameters
used in the simulation are shown in Table 2. Here, we define two scenarios, one for obstacle
avoidance flight in complex environments (Scenario 1) and one for exchanging positions
flight (Scenario 2). We provide a performance comparison of our method with centralized
MPC (CMPC), constant velocity MPC (CVMPC, treat the quadrotor as a constant velocity
model), and distributed MPC (DMPC, use the future trajectories computed by its neighbors
at the previous time as collision avoidance constraints) [16] for trajectory planning. The only
difference among these methods is the coordination strategies, where all parameters are
identical. All methods are solved using OSQP [43] with the modeling language Yalmip [44].
We use a Windows desktop with Intel Core i7-11700K (CPU 3.6 GHz) running MATLAB
for all computations. In the simulation, we assume that the environmental information is
known, the communication packets are not lost, and there are no external perturbations.

Ω = {z ∈ R10 | −3 ≤ ẋ, ẏ, ż ≤ 3;−1 ≤ ẍ, ÿ, z̈ ≤ 1; ψ ∈ [−π, π]}. (37)

Table 2. Parameters setting.

Parameters Values Parameters Values

H 15 P 50 · I10
Ts 0.08 s Q 50 · I10
γio, γij 0.6 R 1 · I4
r 0.2 m S 1 · I4
∆dect 20 m ϵabs, ϵ1, ϵ2 0.01
ρ 1 dmax 50
α 1 × 108 lmax 20

6.2. Performance Comparison of Different Methods

We compare the performance of our method with CMPC, CVMPC, and DMPC in
two scenarios. For Scenario 1 with ten quadrotors, Figures 5–7 show the simulation results
using our method and CMPC, respectively. Figures 8 and 9 show the simulation results of
the eight quadrotors in Scenario 2 using the four methods. From the velocity variations
of three of the quadrotors, we observe that our method generates smoother trajectories
compared to CVMPC and DMPC, and the statistics of the distance among quadrotors show
that our method is safer. Moreover, the performance of the trajectories generated by our
method is not much different from that of CMPC.

Figure 5. Generated trajectories of ten quadrotors (solid dots in different colors) cross a finite space
with obstacles using our method (DMPC-ADMM).

Sensors 2024, 24, 707 16 of 24

Figure 6. Generated trajectories of ten quadrotors (solid dots in different colors) cross a finite space
with obstacles using CMPC.

For further comparison, we report the trajectory length (minimum, maximum, mean
value, and standard deviation to compare cooperativeness), the minimum distance dij,min
among quadrotors, the minimum distance dio,min between quadrotors and obstacles, as well
as the average computation time of the four methods in Tables 3 and 4. It can be observed
that CVMPC and DMPC have a minimum distance lower than the safe distance due to
the lack of coordination and take more time than our method due to the need for a greater
number of iterations. Instead, our method and CMPC can achieve safe navigation, and the
computation time of our method is much less than that of CMPC.

In addition, Table 5 shows the comparison of the four methods in terms of average
computation time, collision probability, and feasibility in Scenario 2. For each method, we
generate trajectories of the quadrotors under 50 random initial and target states. We define
the method as infeasible when the collision probability is greater than 50%. We observe
that CMPC suffers from a large computational burden, while our method performs well
at a much lower computational cost. The collision probability of our method and CMPC
stays below 10% as the number of quadrotors increases. Instead, due to the deviation of
trajectory information, CVMPC and DMPC become infeasible with a significant increase
in collision probability, especially for CVMPC. Therefore, our method scales well with
the number of quadrotors. Figure 10 illustrates the trajectories of two, four, and sixteen
quadrotors for exchanging positions in flight.

Table 3. Comparison of the simulation results of the four methods for ten quadrotors cross a finite
space with obstacles. The safe distance among quadrotors is dij,sa f e = 0.4 m and the safe distance
between quadrotors and obstacles is dio,sa f e = 0.2 m.

Coordination Strategy
Trajectory Length (m)

dij,min (m) dio,min (m) Av. comp_time (ms)
min max av. std.

CMPC 44.09 44.41 44.28 0.12 1.04 0.22 546.6
CVMPC 44.11 44.87 44.44 0.22 1.22 0.15 57.6
DMPC 44.18 44.67 44.42 0.19 1.12 0.17 47.1

MPC-ADMM (ours) 44.09 44.55 44.30 0.14 1.13 0.21 7.7

Table 4. Comparison of the simulation results of the four methods for eight quadrotors exchanging
positions flight. The safe distance among quadrotors is dij,sa f e = 0.4 m.

Coordination Strategy
Trajectory Length (m)

dij,min (m) Av. comp_time (ms)
min max av. std.

CMPC 12.14 12.41 12.22 0.09 0.45 293.7
CVMPC 12.17 12.68 12.45 0.20 0.15 73.7
DMPC 12.08 13.07 12.45 0.30 0.28 74.8

MPC-ADMM (ours) 12.06 12.62 12.30 0.21 0.48 16.1

Sensors 2024, 24, 707 17 of 24

(a) (b)

(c) (d)

(e) (f)

Figure 7. Simulation results of ten quadrotors cross a finite space with obstacles using our method
(left) and CMPC (right). (a,b) Velocity variations. (c,d) Distance between quadrotors and ob-
stacles (Only distance statistics within 6 m are shown). (e,f) Distance among quadrotors (Only
distance statistics within 6 m are shown). The red dashed lines represent the maximum velocity
vmax = 3 m/s, the minimum velocity vmin = −3 m/s, the safe distance between quadrotors and
obstacles dio,sa f e = 0.2 m, and the safe distance among quadrotors dij,sa f e = 0.4 m, respectively.

Sensors 2024, 24, 707 18 of 24

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Simulation results of eight quadrotors (solid dots in different colors) exchanging positions
flight using our method (left) and CMPC (right). (a,b) Overall view of the trajectories. (c,d) Side view
of the trajectories. (e,f) Velocity variations. (g,h) Distance among quadrotors (Only distance statistics
within 6 m are shown). The red dashed lines represent the maximum velocity vmax = 3 m/s, the min-
imum velocity vmin = −3 m/s, and the safe distance among quadrotors dij,sa f e = 0.4 m, respectively.

Sensors 2024, 24, 707 19 of 24

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Simulation results of eight quadrotors (solid dots in different colors) exchanging positions
flight using CVMPC (left) and DMPC (right). (a,b) Overall view of the trajectories. (c,d) Side view of
the trajectories. (e,f) Velocity variations. (g,h) Distance among quadrotors (Only distance statistics
within 6 m are shown). The red dashed lines represent the maximum velocity vmax = 3 m/s, the min-
imum velocity vmin = −3 m/s, and the safe distance among quadrotors dij,sa f e = 0.4 m, respectively.

Sensors 2024, 24, 707 20 of 24

Table 5. Comparison of the four methods in terms of average computation time (Av), collision
probability (Cp), and feasibility (Fea) in Scenario 2.

Coordination Strategy
2 Quadrotors 4 Quadrotors 8 Quadrotors 16 Quadrotors

Av (ms) Cp (%) Fea Av (ms) Cp (%) Fea Av (ms) Cp (%) Fea Av (ms) Cp (%) Fea

CMPC 12.2 0 Yes 61.9 0 Yes 293.7 0 Yes 1301.9 3 Yes
CVMPC 24.1 0 Yes 47.5 13 Yes 73.7 56 No 104.1 85 No
DMPC 23.6 0 Yes 40.2 0 Yes 74.8 21 Yes 101.3 59 No

MPC-ADMM (ours) 3.5 0 Yes 6.0 0 Yes 16.1 2 Yes 44.4 8 Yes

(a) (b)

(c)

Figure 10. Generated trajectories of multiple quadrotors (solid dots in different colors) exchang-
ing positions flight using our method (DMPC-ADMM). (a) Two quadrotors. (b) Four quadrotors.
(c) Sixteen quadrotors.

6.3. Evaluation of Event-Triggered Mechanism

To verify the effectiveness of the event-triggered mechanism, we compare the perfor-
mance of the algorithm before and after adding the event-triggered mechanism under a
uniform spatial distribution of different numbers of quadrotors in Scenario 1. Define a
metric COMM as the communication cost and the communication ratio as the ratio of the
communication cost after adding the event-triggered mechanism to the original communi-
cation cost, as shown in (38). Figure 11 shows a significant reduction in communication
ratio and computation time after adding the event-triggered mechanism. Therefore, the
event-triggered mechanism greatly improves the performance of the distributed algorithm.

Sensors 2024, 24, 707 21 of 24

COMM =
N

∑
i=1

N

∑
j=1

commij,

commij =

{
1, i and j communicate,
0, otherwise.

(38)

Figure 11. Comparison of communication ratio and computation time before and after adding the
event-triggered mechanism.

6.4. Evaluation of Algorithm Robustness

We compare the sensitivity of our algorithm for different hyperparameters γ, maxi-
mum velocity vmax, and maximum acceleration amax of the quadrotors in Table 6. It can
be seen that the length of the trajectories does not vary much, and the minimum distance
dij,mim among quadrotors is always greater than the safe distance. Please note that as γ
increases, dij,mim gets closer to the safe distance, and the computation time gets shorter,
which is consistent with the explanation in Section 3. In addition, the computation time of
our algorithm is kept short. Therefore, our method has good robustness and can be applied
to different scenarios.

Table 6. Performance comparison of our algorithm for eight quadrotors exchanging positions flight at
different hyperparameter γij, maximum velocity vmax (m/s) and maximum acceleration amax(m/s2).
The safe distance among quadrotors is dij,sa f e = 0.4 m.

Parameters
Trajectory Length (m)

dij,min (m) Av. comp_time (ms)
min max av. std.

γij = 0.4, vmax = 3, amax = 1 12.07 12.58 12.30 0.20 0.62 16.4
γij = 0.6, vmax = 3, amax = 1 12.06 12.62 12.30 0.21 0.48 16.1
γij = 0.8, vmax = 3, amax = 1 12.05 12.43 12.24 0.14 0.47 14.4
γij = 1.0, vmax = 3, amax = 1 12.03 12.49 12.18 0.15 0.41 10.2
γij = 0.6, vmax = 5, amax = 1 12.07 12.83 12.32 0.25 0.56 15.4
γij = 0.6, vmax = 7, amax = 1 12.09 12.89 12.33 0.27 0.51 16.7
γij = 0.6, vmax = 5, amax = 2 12.12 13.12 12.57 0.35 0.53 16.2
γij = 0.6, vmax = 5, amax = 4 12.67 13.27 12.95 0.25 0.60 12.7

Sensors 2024, 24, 707 22 of 24

7. Conclusions

In this paper, we propose a fully distributed algorithm for cooperative trajectory
planning of quadrotor swarms based on DMPC-ADMM, which employs differential flatness
property to handle the complex dynamics of the quadrotor. Additionally, we design
a relaxed form of DCBF constraint to balance feasibility and safety. Due to the non-
convexity of the DCBF, we linearize the DCBF at each time step and use an iterative convex
optimization scheme to solve it. Simulation results show that our method can generate
safe and smooth trajectories while satisfying dynamics constraints. Compared with the
centralized strategy and several other distributed strategies in terms of computation time,
safety, and feasibility, our method is more suitable for the trajectory planning of large-scale
quadrotor swarms. Furthermore, the effect of the designed event-triggered mechanism for
reducing the communication overhead is also verified.

In future work, we will improve the event-triggered mechanism to enhance inter-
quadrotor communication efficiency. It is also worth exploring how to improve the ro-
bustness of the algorithm considering the presence of uncertainties in practice, such as
perceptual uncertainty, communication packet loss, and external perturbations. Addition-
ally, considering that the trajectory planning framework presented in this paper is currently
implemented synchronously, limiting its flexibility, we will develop an asynchronous
implementation.

Author Contributions: Conceptualization, Y.Z. and P.Y.; methodology, Y.Z.; software, Y.Z.; validation,
Y.Z., P.Y. and Y.H.; formal analysis, Y.Z.; investigation, Y.Z.; resources, Y.Z.; data curation, Y.Z.;
writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z., P.Y. and Y.H.; visualiza-
tion, Y.Z.; supervision, P.Y. and Y.H.; project administration, P.Y.; funding acquisition, P.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
MPC Model Predictive Control
ADMM Alternating Direction Multiplier Method
DCBF Discrete-time CBF
MILP Mixed Integer Linear Programming
MIQP Mixed Integer Quadratic Programming
SCP Sequential Convex Programming
ORCA Optimal Reciprocal Collision Avoidance
AGV Autonomous Guided Vessel
CMPC Centralized MPC
CVMPC Constant Velocity MPC
DMPC Distributed MPC
Symbols Definitions
z Flat state of the quadrotor, including position, velocity, acceleration, and yaw angle.
ζ Flat output of the quadrotor, including position and yaw angle.

v
Flat input of the quadrotor, including the third-order derivatives of the position and
yaw rate.

∆dect Maximum distance that quadrotors can communicate.
Ni Set of neighbors of quadrotor i.
O Set of obstacles.

Sensors 2024, 24, 707 23 of 24

Ω Dynamics constraint of the quadrotor.
H Prediction horizon of the optimization problem.
wi Duplicate of the trajectory ζi.
wi→j Duplicate of quadrotor i for the trajectory ζ j of quadrotor j.
Φ All the constraints in (12) except for inter-quadrotor collision avoidance.
DCBCij Safety constraints between quadrotor i and quadrotor j.
DCBCio Safety constraints between quadrotor i and obstacle o.

References
1. Ryan, A.; Zennaro, M.; Howell, A.; Sengupta, R.; Hedrick, J.K. An overview of emerging results in cooperative UAV control.

In Proceedings of the 2004 43rd IEEE Conference on Decision and Control (CDC), Nassau, Bahamas, 14–17 December 2004;
Volume 1, pp. 602–607.

2. Chen, W.; Liu, J.; Guo, H.; Kato, N. Toward robust and intelligent drone swarm: Challenges and future directions. IEEE Netw.
2020, 34, 278–283. [CrossRef]

3. Lyu, Y.; Hu, J.; Chen, B.M.; Zhao, C.; Pan, Q. Multivehicle flocking with collision avoidance via distributed model predictive
control. IEEE Trans. Cybern. 2019, 51, 2651–2662. [CrossRef] [PubMed]

4. Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput.
Commun. 2020, 149, 270–299. [CrossRef]

5. Bircher, A.; Kamel, M.; Alexis, K.; Oleynikova, H.; Siegwart, R. Receding horizon path planning for 3D exploration and surface
inspection. Auton. Robot. 2018, 42, 291–306. [CrossRef]

6. Tang, S.; Wüest, V.; Kumar, V. Aggressive flight with suspended payloads using vision-based control. IEEE Robot. Autom. Lett.
2018, 3, 1152–1159. [CrossRef]

7. Madridano, Á.; Al-Kaff, A.; Martín, D.; de la Escalera, A. 3d trajectory planning method for uavs swarm in building emergencies.
Sensors 2020, 20, 642. [CrossRef]

8. Tanner, H.G.; Kumar, A. Towards decentralization of multi-robot navigation functions. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation (ICRA), Barcelona, Spain, 18–22 April 2005; pp. 4132–4137.

9. Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 1998, 17, 760–772.
[CrossRef]

10. Peng, M.; Meng, W. Cooperative obstacle avoidance for multiple UAVs using spline_VO method. Sensors 2022, 22, 1947.
[CrossRef]

11. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.
[CrossRef]

12. Čáp, M.; Novák, P.; Kleiner, A.; Seleckỳ, M. Prioritized planning algorithms for trajectory coordination of multiple mobile robots.
IEEE Trans. Autom. Sci. Eng. 2015, 12, 835–849. [CrossRef]

13. Busoniu, L.; Babuska, R.; De Schutter, B. A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man
Cybern. Part C (Appl. Rev.) 2008, 38, 156–172. [CrossRef]

14. Chen, Y.F.; Liu, M.; Everett, M.; How, J.P. Decentralized non-communicating multiagent collision avoidance with deep reinforce-
ment learning. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29
May–3 June 2017; pp. 285–292.

15. Mayne, D.Q. Model predictive control: Recent developments and future promise. Automatica 2014, 50, 2967–2986. [CrossRef]
16. Zhu, H.; Alonso-Mora, J. Chance-constrained collision avoidance for mavs in dynamic environments. IEEE Robot. Autom. Lett.

2019, 4, 776–783. [CrossRef]
17. Lindqvist, B.; Mansouri, S.S.; Agha-mohammadi, A.a.; Nikolakopoulos, G. Nonlinear MPC for collision avoidance and control of

UAVs with dynamic obstacles. IEEE Robot. Autom. Lett. 2020, 5, 6001–6008. [CrossRef]
18. Zeng, J.; Zhang, B.; Sreenath, K. Safety-critical model predictive control with discrete-time control barrier function. In Proceedings

of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; pp. 3882–3889.
19. Wang, L.; Ames, A.D.; Egerstedt, M. Safe certificate-based maneuvers for teams of quadrotors using differential flatness. In

Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 3293–3298.

20. Endo, M.; Ibuki, T.; Sampei, M. Collision-free formation control for quadrotor networks based on distributed quadratic programs.
In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 3335–3340.

21. Ma, H.; Chen, J.; Eben, S.; Lin, Z.; Guan, Y.; Ren, Y.; Zheng, S. Model-based constrained reinforcement learning using generalized
control barrier function. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September–1 October 2021; pp. 4552–4559.

22. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 2520–2525.

23. Zhou, D.; Schwager, M. Vector field following for quadrotors using differential flatness. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 6567–6572.

http://doi.org/10.1109/MNET.001.1900521
http://dx.doi.org/10.1109/TCYB.2019.2944892
http://www.ncbi.nlm.nih.gov/pubmed/31634856
http://dx.doi.org/10.1016/j.comcom.2019.10.014
http://dx.doi.org/10.1007/s10514-016-9610-0
http://dx.doi.org/10.1109/LRA.2018.2793305
http://dx.doi.org/10.3390/s20030642
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.3390/s22051947
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1109/TASE.2015.2445780
http://dx.doi.org/10.1109/TSMCC.2007.913919
http://dx.doi.org/10.1016/j.automatica.2014.10.128
http://dx.doi.org/10.1109/LRA.2019.2893494
http://dx.doi.org/10.1109/LRA.2020.3010730

Sensors 2024, 24, 707 24 of 24

24. Mellinger, D.; Kushleyev, A.; Kumar, V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor
teams. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA,
14–18 May 2012; pp. 477–483.

25. Augugliaro, F.; Schoellig, A.P.; D’Andrea, R. Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1917–1922.

26. Preiss, J.A.; Hönig, W.; Ayanian, N.; Sukhatme, G.S. Downwash-aware trajectory planning for large quadrotor teams. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 250–257.

27. Christofides, P.D.; Scattolini, R.; de la Pena, D.M.; Liu, J. Distributed model predictive control: A tutorial review and future
research directions. Comput. Chem. Eng. 2013, 51, 21–41. [CrossRef]

28. Negenborn, R.R.; De Schutter, B.; Hellendoorn, J. Multi-agent model predictive control for transportation networks: Serial versus
parallel schemes. Eng. Appl. Artif. Intell. 2008, 21, 353–366. [CrossRef]

29. Borrelli, F.; Keviczky, T.; Balas, G.J. Collision-free UAV formation flight using decentralized optimization and invariant sets.
In Proceedings of the 2004 43rd IEEE Conference on Decision and Control (CDC), Nassau, Bahamas, 14–17 December 2004;
Volume 1, pp. 1099–1104.

30. Arul, S.H.; Manocha, D. Dcad: Decentralized collision avoidance with dynamics constraints for agile quadrotor swarms. IEEE
Robot. Autom. Lett. 2020, 5, 1191–1198. [CrossRef]

31. Luis, C.E.; Vukosavljev, M.; Schoellig, A.P. Online trajectory generation with distributed model predictive control for multi-robot
motion planning. IEEE Robot. Autom. Lett. 2020, 5, 604–611. [CrossRef]

32. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]

33. Halsted, T.; Shorinwa, O.; Yu, J.; Schwager, M. A survey of distributed optimization methods for multi-robot systems. arXiv 2021,
arXiv:2103.12840.

34. Zheng, H.; Negenborn, R.R.; Lodewijks, G. Robust distributed predictive control of waterborne AGVs—A cooperative and
cost-effective approach. IEEE Trans. Cybern. 2017, 48, 2449–2461. [CrossRef]

35. Chen, L.; Hopman, H.; Negenborn, R.R. Distributed model predictive control for vessel train formations of cooperative
multi-vessel systems. Transp. Res. Part C Emerg. Technol. 2018, 92, 101–118. [CrossRef]

36. Rey, F.; Pan, Z.; Hauswirth, A.; Lygeros, J. Fully decentralized admm for coordination and collision avoidance. In Proceedings of
the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; pp. 825–830.

37. Hagenmeyer, V.; Delaleau, E. Exact feedforward linearization based on differential flatness. Int. J. Control 2003, 76, 537–556.
[CrossRef]

38. Greeff, M.; Schoellig, A.P. Flatness-based model predictive control for quadrotor trajectory tracking. In Proceedings of the 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6740–6745.

39. Zhang, Z.; Yang, S.; Xu, W. Decentralized ADMM with compressed and event-triggered communication. Neural Netw. 2023, 165,
472–482. [CrossRef] [PubMed]

40. Liu, Y.; Xu, W.; Wu, G.; Tian, Z.; Ling, Q. Communication-censored ADMM for decentralized consensus optimization. IEEE Trans.
Signal Process. 2019, 67, 2565–2579. [CrossRef]

41. Dai, X.; Ke, C.; Quan, Q.; Cai, K.Y. RFlySim: Automatic test platform for UAV autopilot systems with FPGA-based hardware-in-
the-loop simulations. Aerosp. Sci. Technol. 2021, 114, 106727. [CrossRef]

42. Mueller, M.W.; D’Andrea, R. A model predictive controller for quadrocopter state interception. In Proceedings of the 2013
European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 1383–1389.

43. Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math.
Program. Comput. 2020, 12, 637–672. [CrossRef]

44. Lofberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE International
Conference on Robotics and Automation (ICRA), Taipei, Taiwan, 2–4 September 2004; pp. 284–289.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compchemeng.2012.05.011
http://dx.doi.org/10.1016/j.engappai.2007.08.005
http://dx.doi.org/10.1109/LRA.2020.2967281
http://dx.doi.org/10.1109/LRA.2020.2964159
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/TCYB.2017.2740558
http://dx.doi.org/10.1016/j.trc.2018.04.013
http://dx.doi.org/10.1080/0020717031000089570
http://dx.doi.org/10.1016/j.neunet.2023.06.001
http://www.ncbi.nlm.nih.gov/pubmed/37336032
http://dx.doi.org/10.1109/TSP.2019.2907258
http://dx.doi.org/10.1016/j.ast.2021.106727
http://dx.doi.org/10.1007/s12532-020-00179-2

	Introduction
	Related Work
	Preliminaries
	Differential Flatness and Quadrotor Dynamics
	Discrete-Time CBF

	Problem Formulation
	Proximity Network
	Trajectory Planning Based on MPC and DCBF

	DMPC-ADMM Based Trajectory Planning
	General ADMM Formulation
	Problem Decomposition Based on ADMM
	Event-Triggered Mechanism

	Simulation Experiments and Results
	Experimental Setup
	Performance Comparison of Different Methods
	Evaluation of Event-Triggered Mechanism
	Evaluation of Algorithm Robustness

	Conclusions
	References

