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Abstract: Individuals with obstructive sleep apnea (OSA) face increased accident risks due to exces-
sive daytime sleepiness. PERCLOS, a recognized drowsiness detection method, encounters challenges
from image quality, eyewear interference, and lighting variations, impacting its performance, and
requiring validation through physiological signals. We propose visual-based scoring using adaptive
thresholding for eye aspect ratio with OpenCV for face detection and Dlib for eye detection from
video recordings. This technique identified 453 drowsiness (PERCLOS ≥ 0.3 || CLOSDUR ≥ 2 s) and
474 wakefulness episodes (PERCLOS < 0.3 and CLOSDUR < 2 s) among fifty OSA drivers in a 50 min
driving simulation while wearing six-channel EEG electrodes. Applying discrete wavelet transform,
we derived ten EEG features, correlated them with visual-based episodes using various criteria,
and assessed the sensitivity of brain regions and individual EEG channels. Among these features,
theta–alpha-ratio exhibited robust mapping (94.7%) with visual-based scoring, followed by delta–
alpha-ratio (87.2%) and delta–theta-ratio (86.7%). Frontal area (86.4%) and channel F4 (75.4%) aligned
most episodes with theta–alpha-ratio, while frontal, and occipital regions, particularly channels F4
and O2, displayed superior alignment across multiple features. Adding frontal or occipital channels
could correlate all episodes with EEG patterns, reducing hardware needs. Our work could potentially
enhance real-time drowsiness detection reliability and assess fitness to drive in OSA drivers.

Keywords: CLOSDUR; discrete wavelet transform; driving simulator; drowsiness; electroencephalography;
image processing; obstructive sleep apnea; PERCLOS

1. Introduction

Obstructive sleep apnea (OSA) is a common condition presenting with snoring, recur-
rent breathing pauses during sleep, disturbances in oxygenation, and frequent arousals
during sleep [1]. These disruptions result in symptoms like fatigue and excessive daytime
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sleepiness (EDS), significantly impacting attention and cognitive functions, especially dur-
ing driving tasks [2,3]. OSA affects around 2% to 4% of women and 4% to 11% of men in
the middle-aged population [4]. OSA patients face a notably higher risk of motor vehicle
accidents, with rates two to seven times higher compared to the general population [5,6].
A specific study highlighted the increased accident risk in individuals with OSA compared
to those without OSA (crash relative risk = 2.43, 95% CI: 1.21–4.89, p = 0.013) [7]. The US
National Highway Traffic Safety Administration (NHTSA) estimates that over 100,000 road
accidents occur annually due to drowsiness, resulting in 800 fatalities and 50,000 injuries [8].
Given these statistics, detecting drowsiness in OSA patients is critical for road safety and
assessing their driving fitness.

While the Multiple Sleep Latency Test (MSLT) and Maintenance of Wakefulness Test
(MWT) are established in sleep medicine [9,10] for measuring daytime drowsiness, their
limitations arise from operating in non-interactive, sleep-inducing settings. These restric-
tions limit their ability to mimic real-world driving conditions, hindering the accurate
evaluation of a driver’s readiness. The multifaceted nature of driving involves perceptual,
motor, and cognitive abilities [11], making these tests inadequate for assessing drowsiness
effectively.

Simulated driving environments are also an established method for detecting drowsi-
ness, proving highly effective in replicating real-world scenarios [12–14]. These environ-
ments encompass three primary data classifications: (1) physiological-based signals [15–17],
comprising EEG, EOG, EMG, and ECG; (2) behavior-based signals such as eye move-
ment [18,19], yawning [20], and head-nodding [21]; and (3) vehicle-based signals, which
include lane deviation, steering entropy, and out-of-road events [22,23]. Research highlights
EEG measurements as highly effective in promptly identifying drowsiness onset, surpass-
ing both behavior-based and vehicle-based systems [24–26]. Although, behavior-based
system lags subtly behind EEG measures in identifying drowsiness onset, detecting early
signs such as eye-blinking linked to drowsiness before any lateral vehicle displacement
occurs [27]. Since vehicle-based systems issue alerts later in the initial drowsiness phase,
potentially limiting accident prevention opportunities, relying solely on this technique is
not advisable. Instead, combining it with other methods to detect a driver’s drowsiness
proves to be more effective [24].

PERCLOS, a behavior-based signal approved by NHTSA for drowsiness detection
independently, measures the duration of eyes at least 80 percent closed within a minute [28].
It can be calculated using built-in algorithms in eye-tracking systems (ETSs) like Smart-
Eye [27] or via image processing from recorded facial videos [18,19]. However, limitations
in image processing include challenges with video/image quality, eyewear interference,
varying lighting, and head movement, impacting performance [24,26,27]. Addressing
these constraints is crucial, as relying solely on this technique may lack reliability. Hence,
validating it against established physiological signals and mitigating the limitations tied to
it are essential for enhanced dependability in real-world scenarios.

1.1. Related Works

Previous research identified drowsiness via PERCLOS, albeit with limitations. One
study [18] achieved 88.9% precision by employing skin color identification, Sohel edge
operator for eye localization, and dynamic templates for eye tracking. Additionally, another
study [19] developed a real-time application utilizing the Viola–Jones detector, achieving
90% accuracy through nearest neighbor IBk and J48 decision tree algorithms. Several
studies have integrated PERCLOS with additional behavioral parameters, such as average
eye closure speed [29], head movement [30], and yawning episodes [31], enhancing the
effectiveness of drowsiness detection. Furthermore, study [27] correlated PERCLOS-based
drowsiness with neural patterns, revealing increased theta and delta powers as PERCLOS
escalated during driving tests. Study [28] utilized photoplethysmography imaging (PPGI)
to derive heart rate variability (HRV) and LF/HF ratio, achieving 92.5% accuracy by
correlating these HRV-derived parameters with PERCLOS measurements. Moreover, a
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couple of studies [32,33] integrated PERCLOS with vehicle-based signals, such as steering
wheel movement [32] and lane position [33], while another [34] merged PERCLOS with
a galvanic skin response (GSR) sensor using Multi-Task Cascaded Convolutional Neural
Networks (MTCNNs), effectively predicting the driver’s transition from an awake to a
drowsy state at 91% efficacy.

1.2. Limitations in Previous Studies and a Proposed Solution

Study [18] considered a 250-millisecond eyeblink indicative of drowsiness, despite
normal blinks lasting between 100–400 milliseconds [35]. Studies [18,19] exclusively relied
on PERCLOS for drowsiness detection. Studies [29–31] did not validate their drowsiness
detection systems, which integrated PERCLOS with other behavioral parameters, against
any physiological signals. Study [27] used SmartEye for PERCLOS calculation, noted as
reliable but cost ineffective. A study [28] obtained PPGI from facial images, showing a lower
accuracy compared to conventional PPG. Studies [32,33] attempted to correlate PERCLOS
with vehicle-based signals, but they did not address the potential time lag between the
two signals. Limitations in calculating PERCLOS via image processing were unaddressed
in all studies except one [27]. Furthermore, none of the studies established a one-to-one
correlation between visual-based scoring from PERCLOS and physiological signals; they
examined their general association. Lastly, no one identified EEG channel or brain region
sensitivity when correlating visual-based scoring with EEG patterns.

In our study, we aim to enhance drowsiness detection reliability using a driving
simulator in clinically diagnosed OSA patients. Our approach involves adopting adaptive
thresholding for calculating eye aspect ratio (EAR) to minimize limitations related to
PERCLOS computation via image processing. Additionally, we seek to validate this method
by establishing a direct correlation between episodes of visual-based scoring and EEG
patterns, leveraging ten distinct features. Furthermore, we evaluate the sensitivity of
individual EEG channels and brain regions in producing this correlation. Through these
steps, our approach effectively addresses the limitations encountered in prior studies. Thus,
the major contributions of this paper are as follows:

1. Introducing a visual-based scoring method to detect episodes of drowsiness and
wakefulness using adaptive thresholding—instead of fixed thresholding—for eye
aspect ratio computation. This method leverages OpenCV for face detection and Dlib
for eye region extraction (Sections 2.4 and 3.1).

2. Proposing an integrated approach that correlates visual-based scoring with EEG
patterns using ten distinct features to enhance the reliability of drowsiness detection
(Sections 2.5 and 3.1).

3. Computing the sensitivity of various EEG channels and brain regions to determine the
optimal electrode count for this correlation, leading to minimizing hardware requirements,
enhancing wearable applications, and prioritizing user comfort. (Sections 2.6 and 3.2).

2. Materials and Methods
2.1. Experimental Setup

The experimental setup utilized in this study (Figure 1) was developed in our prior
research [36], encompassing the XBUS PRO Driver Training Simulator (DTS) by ANGRUP
Co, Istanbul, Turkey, the NOX-A1 EEG system from Nox Medical Inc. in Reykjavik, Iceland,
and a 1080p camera as its core components. The DTS offered both manual and automatic
transmission options, equipped with sensors monitoring throttle and brake usage, road
deviations, steering irregularities, and potential accidents. Housed within a soundproof
cabin, it provided a controlled environment with a constant temperature of 22 ◦C for all
participants and a wide 135-degree field of view. Using ANGRUP Software Technologies
(version: Professional 5.2.3), the simulator replicated diverse road conditions such as
straight stretches, circular tracks, curved paths, and low-traffic highways to simulate
various driving scenarios. The EEG device, featuring 6 channels (Frontal: F4 and F3,
Central: C4 and C3, Occipital: O1 and O2) and operating at a sampling rate of 200 Hz,
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captured neural activity based on the standardized 10–20 electrode placement for consistent
positioning [37]. Simultaneously, the dome camera recorded the driver’s facial expressions
at a rate of 30 frames per second.
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Figure 1. (a) A high-fidelity driver training simulator comprising a driver cabin, camera system, voice
communication setup, acceleration and brake pedals, steering controls, offering both automatic and
manual transmission modes, and providing diverse training scenarios [36]; (b) facial video recording
conducted by a 1080p camera mounted atop the middle view screen; (c) the international 10–20
system utilized for EEG electrode placement on the subject’s scalp, positioning electrodes at F3 and
F4, C3 and C4, O1 and O2, with M1 and M2 serving as references.

2.2. Study Population and Subject Demographics

Previous studies have shown a significantly elevated prevalence of OSA in heavy vehi-
cle professional drivers (42.2%) compared to the general population (5%) [38]. Furthermore,
OSA prevalence in men (14–50%) is higher than in women (5–23%) [39,40]. In our study, we
used a bus driving simulator with professional drivers. It was conducted in Turkey, where
bus driving is male dominated, resulting in the exclusive recruitment of male participants.
Therefore, we recruited fifty professional male drivers diagnosed with OSA based on their
previous night’s polysomnography results (apnea–hypopnea index [AHI] ≥ 5.0 events/h)
from the Sleep Laboratory for a simulator-assisted visual-based drowsiness detection [41].
Table 1 presents the demographics of the subjects. The study protocol was approved by the
Koç University Committee on Human Research (2020.292.IRB2.083; 19 June 2020), and a
written informed consent was obtained from all participants. Participants with no acute
illness were included. Additionally, participants were advised to abstain from consuming
caffeinated beverages, such as coffee and energy drinks, as well as other stimulants for 24 h
preceding the experiment [42].

Table 1. Demographics of fifty subjects. Each row displays the minimum–maximum (mean ± standard
deviation) of a corresponding characteristic.

Parameter Value

Sex All are males
Age 32–68 (47.9 ± 7.6) year

Body Mass Index (BMI) 23.5–41.9 (31.3 ± 4.4) kg/m2
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Table 1. Cont.

Parameter Value

Last night sleep hours 1–11 (6.3 ± 1.8) hour
Apnea–Hypopnea Index (AHI) 5–103.5 (29.8 ± 23.2)/hour

Oxygen Desaturation Index (ODI) 1.0–87.8 (24.4 ± 22.7)/hour

2.3. Experimental Design

Participants meeting eligibility criteria underwent a simulated driving session sched-
uled between 08:00 a.m. and 10:00 a.m., aligning with research indicating increased risks
during nighttime or early morning driving hours [43]. Ahead of the experiment, a 10 min
training session familiarized drivers with vehicle controls and various driving scenarios,
aiming to prepare them for the simulated tasks and improve their performance. Addition-
ally, the interior lights of the cabin were turned off to mimic real-world driving conditions.
During the experiment, drivers engaged in a fifty-minute simulated driving session on a
two-way highway, maintaining low traffic density, and not exceeding a maximum allowable
speed of 62 mph (80 km/h). Figure 2 presents the experimental design used in this study.
They wore a 6-channel EEG electrode setup to record their neural activity, and a frontal
camera captured their facial expressions, with instructions to abate head movements.
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Figure 2. The experiment design began with the acquisition of facial videos and EEG signals, followed
by data processing and feature extraction. Subsequently, a concurrent analysis was conducted to
validate visual-based scoring against EEG patterns, confirming the onset of drowsiness.

2.4. Data Acquisition
2.4.1. Video-Based Data Acquisition and Visual-Based Scoring

In our study, we employed visual-based scoring—an established technique for de-
tecting drowsiness—by capturing facial video recordings of drivers engaged in simulated
driving. Initially, we utilized Python-based OpenCV (version: 2.4.9) library to detect faces
in facial video recordings [44]. Detected faces then underwent facial detection procedure
using the Dlib library, allowing the estimation of landmark positions on each detected
face [45]. The Dlib library’s pre-trained face landmark detector provided coordinates for
68 points, encompassing regions around the eyes, eyebrows, mouth, nose, and chin, as
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depicted in Figure 3a. Next, the eye aspect ratio (EAR) was computed using the Euclidean
distance between the identified eye landmarks (see Figure 3b), as outlined in Equation (1).

EAR =
|P2 − P6|+ |P3 − P5|

2|P1 − P4|
(1)
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Figure 3. (a) A total of 68 facial landmark points provided by Dlib library. (b) Open and closed eyes
with detected landmark points. These points around the eye are used to calculate EAR.

The EAR value typically maintains stability when the eye is open but drops to zero
during a blink. Past studies have proposed different EAR thresholds, suggesting that values
below 0.28 [46], 0.25 [47], 0.20 [48], 0.18 [49], and 0.16 [50] indicate eye blinking or closure.
However, utilizing a fixed threshold value across different individuals, varied lighting con-
ditions, and eyewear presence does not yield precise EAR calculations. Momentary facial
expressions like yawning or smiling, as well as head rotations, underscore the necessity
for an adaptive threshold value that accommodates diverse individuals and situational
factors. The adaptive threshold incorporated a median filter to attenuate abrupt changes in
EAR values, effectively reducing noise. Next, employing a moving average filter ensured
smoother transitions in EAR values over time, mitigating the impact of environmental vari-
ations. Subsequently, the threshold value underwent dynamic readjustment by subtracting
a constant value (0.04) following the application of the median filter (of length 17) and
moving average filter (of length 5). The filter parameters were determined experimentally.
This iterative process continuously refined the threshold based on updated EAR values,
significantly improving the precision and adaptability of our technique. Figure 4 illus-
trates the steps of the adaptive threshold method and compares it with the fixed threshold
(EAR = 0.2, suggested by [48]). It highlights the successful detection of eye blinks marked
with green ellipses by the adaptive threshold method, contrasting instances missed by the
fixed threshold.

After employing adaptive thresholding to detect eye blinks throughout the driving
period, we computed two metrics: PERCLOS, indicating the ratio of the number of frames
with closed eyes to the total number of frames with both closed and open eyes, and
CLOSDUR, measuring the duration of eye closure. Utilizing an established criteria for
drowsiness (PERCLOS ≥ 0.3 or CLOSDUR ≥ 2 s) and wakefulness (PERCLOS < 0.3 and
CLOSDUR < 2 s) episodes [19], we identified a total of 927 instances encompassing both
drowsiness (n = 453) and wakefulness (n = 474) events throughout the entire driving period.
These instances were saved in a CSV file along with their respective timestamps.
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Figure 4. Steps of blink detection using eye aspect ratio: Following the extraction of EAR values from
video frames, (Step 1) applies a median filter to reduce sudden and fast variations, noticeable when
comparing the original signal and its median-filtered version. (Step 2) smoothens the signal and
reduces short-term swings with a moving average filter, as demonstrated by the Median-MA-EAR
signal. (Step 3) employs an adaptive threshold to enhance accuracy and make the signal condition
adaptive. (Step 4) finetunes the parameters and selects consecutive signals falling below the threshold
to identify blinks (green ellipses).

2.4.2. Physiological Signal-Based Data Acquisition

EEG signals from all six channels were recorded in the European Data Format (EDF)
using the Noxturnal software (version: 6.3.1.34324), a specialized tool designed for record-
ing, analyzing, and processing various physiological data types, including EEG signals [51].
Along with EEG data, temporal information including the start time and end time of the
recording was also noted.

2.5. Concurrent Analysis for Validating Visual-Based Scoring with EEG Patterns

Although visual-based scoring is a recognized method for detecting drowsiness [18,19],
the inherent limitations in accurately computing PERCLOS emphasize the need to validate
this technique using physiology-based signals. To bolster the precision and reliability of
visual-based scoring, we integrated data from drowsiness and wakefulness events, obtained
through visual-based scoring, with synchronous EEG patterns. This integration aimed to
establish a meaningful correlation between these two metrics. To achieve this goal, we
developed a customized MATLAB (R2022b) program with specific features tailored to
identify associations between visual-based scoring and EEG patterns.
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2.5.1. Filtering the Data

We designed finite impulse response (FIR) filters, both high-pass and low-pass, with
an order of 25 using the equiripple design method to balance filter complexity and achieve
sharpness in frequency response transition regions [36]. This design aimed at optimal
attenuation in the stopband while preserving passband characteristics essential for EEG
analysis. The high-pass filter, with a cutoff frequency of 1 Hz, effectively attenuates low-
frequency artifacts (0.17–0.24 Hz range) commonly caused by eye blinks [52]. Conversely,
the low-pass filter, with a cutoff frequency of 30 Hz, was intended to exclude high-frequency
noise and potential artifacts originating from electromyogram (EMG) signals [53].

2.5.2. Loading and Processing CSV File

The pertinent columns indicating the onset and cessation times for visual-based drowsi-
ness and wakefulness episodes were extracted for analysis. In between two consecutive
wakefulness events, there was a drowsiness episode, where the start time of the drowsiness
event coincided with the end time of the previous wakefulness episode, and the end time of
the drowsiness event matched with the start time of the next wakefulness episode.

2.5.3. Splitting EEG Data According to Visual-Based Scoring Timestamps and Computing
PSD Using DWT

In our study, we employed an established discrete wavelet transform (DWT) with
the ‘db2’ wavelet to analyze EEG data per visual-based episode. DWT is suitable for
analyzing non-stationary signals like EEG due to its optimal resolution in both time and
frequency domains, allowing precise localization of time–frequency components critical
for identifying specific EEG patterns related to brain activity [54,55]. It also aids artifact
removal by segregating artifacts based on frequency scales, enhancing data quality, and
denoising EEG signals by decomposing them into different scales and selectively reducing
noise components, resulting in an improved signal–noise ratio [36,56,57]. We chose the ‘db2’
wavelet function for its established effectiveness in EEG analysis, particularly valuable in
dynamic contexts [58,59]. A study on EEG signal classification showed that the Daubechies
wavelets, specifically the db2 wavelet, achieved 97.2% accuracy, surpassing coeif4, sym10,
db1, and db6 [60]. At level 3 decomposition, we extracted approximation and detail
coefficients, representing unique frequency components within the EEG signal. These
coefficients were separated into beta (15–30) Hz, alpha (7.5–15) Hz, theta (4–7.5) Hz, and
delta (1–4) Hz frequency bands, as detailed in Figure 5.
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Figure 5. Detail and approximation coefficients associated with their respective frequency bands
(beta, alpha, theta, and delta) obtained through the implementation of DWT.
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Power spectral density (PSD) was computed for each band (PSD alpha, PSD theta,
and PSD delta) using MATLAB’s ‘bandpower’ function to measure the signal’s power
within these specific ranges, including their respective ratios (theta–alpha, delta–alpha, and
delta–theta), for each episode identified through visual-based scoring. We hypothesized
that during the transition from wakefulness to drowsiness, PSD alpha decreases, while
PSD theta, PSD delta, and theta–alpha, delta–alpha, delta–theta ratios exhibit opposite
trends. Additionally, we also calculated spectral entropy (SE), spectral spread (SS), spectral
centroid (SC), and spectral rolloff (SRO) using the following computations:

• SE quantifies the level of complexity or randomness present in the power spectrum of
an EEG signal. A high SE value indicates a signal with high complexity and unpre-
dictability, often associated with a wakeful state. In contrast, a low SE value suggests a
more predictable and periodic signal, commonly observed during drowsiness or sleep
states [61,62].

H = −∑ L−1
f=0n f · log2(n f ) (2)

SE is calculated by first normalizing the spectral energy across all frequency bands.
This normalization involves dividing the energy in each frequency band by the total
energy across all bands. Following the normalization, SE is determined by summing
the product of the normalized energy in each band and the logarithm (typically base 2)
of that normalized energy. This summation is performed across all frequency bands
involved in the analysis [63].

• SS quantifies the variability in the distribution of spectral energy within an EEG signal.
It assesses the breadth of the power spectrum and reveals how energy is distributed
around the spectral centroid, providing insight into the ‘sharpness’ or ‘flatness’ of
the spectrum. We suggested that higher SS values are associated with drowsiness
episodes, while lower values are indicative of wakefulness episodes.

Si =

√√√√∑
W f L
k=1 (k − Ci)

2 Xi(k)

∑
W f L
k=1 Xi(k)

(3)

SS is computed as the square root of the weighted variance of the squared differences
between each frequency and the spectral centroid. It represents the standard deviation
of the frequency components around the spectral centroid. This computation requires
the value of Ci, the spectral centroid, to be determined first [63].

• SC represents the ‘center of mass’ of the power spectrum of an EEG signal. It corre-
sponds to the average frequency of the power spectrum, weighted by the amplitude
of each frequency component. We hypothesized that elevated SC values are associated
with wakefulness episodes, whereas lower values tend to indicate drowsiness.

Ci =
∑

W f L
k=1 kXi(k)

∑
W f L
k=1 Xi(k)

(4)

The value of the spectral centroid, Ci, for the ith frame is computed by taking the
sum of each frequency multiplied by its corresponding amplitude divided by the sum
of all amplitudes where k represents the frequency index, Xi(k) is the amplitude at
frequency k, and W f L is the windowed frame length over which the computation is
performed [63].

• SRO is the frequency below which a defined percentage (typically 85% to 95%) of the
total spectral energy is contained. It is a measure used to describe the skewness of the
power spectrum. We proposed that higher SRO values are linked with wakefulness,
whereas lower values suggest drowsiness.

∑ m
k=1Xi(k) = C ∑ W f L

k=1 Xi(k) (5)
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SRO for the ith frame is calculated by identifying the frequency bin, m, such that the
cumulative sum of amplitudes up to frequency bin m is equal to a percentage C of the
total sum of amplitudes, where C is the rolloff percentage (e.g., 0.9 for 90%) [63].

The objective of computing the aforementioned ten EEG features was to pinpoint
the most robust correlation between EEG patterns and visual-based scoring by examining
these features. To achieve this, we established ten separate comparative criteria for each
feature. These criteria aimed to identify whether a feature’s value during a drowsiness
event exceeded or fell below neighboring wakefulness episodes, as detailed in Table 2.

Table 2. Ten criteria illustrate distinct EEG features for correlation with visual-based scoring, where
‘i’ represents drowsiness episodes, and ‘i − 1′ and ‘i + 1′ denote the preceding and subsequent
wakefulness episodes derived from visual-based scoring.

EEG Feature Criterion for Correlation

Theta–alpha ratio theta_alpha_ratio(i) > theta_alpha_ratio(i − 1) && theta_alpha_ratio(i + 1)
Delta–alpha ratio delta_alpha_ratio(i) > delta_alpha_ratio(i − 1) && delta_alpha_ratio(i + 1)
Delta–theta ratio delta_theta_ratio(i) > delta_theta_ratio(i − 1) && delta_theta_ratio(i + 1)
PSD Alpha PSD_alpha(i) < PSD_alpha(i − 1) && PSD_alpha(i + 1)
PSD Theta PSD_theta(i) > PSD_theta(i − 1) && PSD_theta(i + 1)
PSD Delta PSD_delta(i) > PSD_delta(i − 1) && PSD_delta(i + 1)
Spectral Entropy PSD_entropy(i) < PSD_entropy(i − 1) && PSD_entropy(i + 1)
Spectral Spread PSD_spread(i) > PSD_spread(i − 1) && PSD_spread(i + 1)
Spectral Centroid PSD_centroid(i) < PSD_centroid(i − 1) && PSD_centroid(i + 1)
Spectral Rolloff PSD_rolloff(i) < PSD_rolloff(i − 1) && PSD_rolloff(i + 1)

This analytical process, encompassing steps labeled ‘2.5.1’ to ‘2.5.3’, was executed on
EEG data across all channels for each participant. This methodology was then replicated
across all fifty subjects within our study cohort. We categorized visual-based drowsiness
and wakefulness episodes based on adherence to these established criteria. Episodes
meeting the criteria were classified as indicating a correlation, while those not conforming
were deemed indicative of a lack of correlation, as depicted in Figure 6. Employing these
predefined criteria, the algorithm evaluated Spearman’s correlation between episodes from
visual-based scoring and instances where individual EEG features matched with these
episodes across all channels. Spearman’s correlation evaluates the relationship between two
variables using a monotonic function, which suits our data that do not meet the normality
assumption [64]. Figure 7 shows the concurrent analysis of visual-based scoring and EEG
patterns (theta–alpha ratio) captured by channel F4. Notably, episodes 5, 16, 17, 24, 25, and
26 did not meet the established criteria, thus indicating a lack of correlation.
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Figure 6. A comparative approach used to determine the presence of correlation by combining
episodes from visual-based scoring with EEG patterns.
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Figure 7. This figure presents a concurrent analysis of a participant (ID:1055). Blue and red bars
represent neighboring wakefulness and drowsiness episodes determined by visual-based scoring
throughout the entire driving period, with the length of the bar indicating the corresponding EEG
patterns (theta–alpha ratio). In this instance, visual-based scoring recorded 15 wakefulness and
14 drowsiness events (total: 29 episodes). Comparative criterion for theta–alpha ratio reveals that
EEG patterns correlate with 23 episodes of visual-based scoring, demonstrating F4-channel sensitivity
of 79.3% (23/29) × 100).

2.6. Sensitivity of EEG Channels and Brain Regions in Correlating Visual-Based Scoring with
EEG Patterns

Our hypothesis aimed to assess the sensitivity across individual EEG channels and
brain regions in establishing correlations between visual-based scoring and EEG patterns,
characterized by ten distinct features, across fifty drivers. Our goal was to pinpoint the
feature that exhibits the strongest correlation and determine which specific EEG channel or
brain region contributes most significantly to this correlation. To assess this, we initially
computed the average sensitivity (refer to Equation (7)) of individual EEG channels in
detecting this correlation across a cohort of fifty drivers based on each feature’s comparative
criterion. Next, we evaluated the average combine sensitivity of paired EEG channels
(F4/F3, C4/C3, and O1/O2) and then the average combine sensitivity of all EEG channels
for each feature, using the same cohort and criterion (refer to Equation (9)).

Sensitivity of a Channel =
Episodes showing correlation

Total Number of episodes
∗ 100 (6)

Average Sensitivity =
Sum of sensitivty of a channel across all subjects

Total number of subjects
(7)

Combine Sensitivity =

[
1 − Events not correlated by merging channels

Total number of episodes

]
∗ 100 (8)

Average Combine Sensitivity =
Sum of combine sensitivity across all subjects

Total number of subjects
(9)

3. Results
3.1. Significant Correlation between Visual-Based Scoring and EEG Patterns across All Channels

The concurrent analysis successfully validated visual-based scoring by establishing
one-to-one correlations between synchronous EEG patterns, characterized by ten specific
features, and episodes of drowsiness and wakefulness derived from it. Among 927 visual-
based scoring episodes, 878 matched with EEG patterns across all channels, thereby en-
hancing the reliability of drowsiness detection (see Table 3). Although all EEG features
displayed statistically significant correlations, as demonstrated in Table 4, the theta–alpha
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ratio exhibited a stronger association (r = 0.9971, p < 0.001) with visual-based scoring com-
pared to other analyzed features. Furthermore, we observed variations in this correlation
by altering the number of channels, their positions around the head, and distinct EEG
features, as shown in Figure 8.

Table 3. This table presents the number of episodes where visual-based scoring aligns with EEG
patterns (theta–alpha ratio) across all channels analyzed concurrently.

Episodes Visual-Based Scoring Matched Episodes

Drowsiness 453 427 (94.3%)
Wakefulness 474 451 (95.1%)
Total Episodes 927 878 (94.7%)

Table 4. Spearman’s correlations calculated between episodes derived from visual-based scoring and
instances where individual EEG features matched with these episodes across all six channels. This
analysis encompassed a cohort of fifty subjects.

EEG Feature Spearman’s Correlation

Theta–alpha ratio r = 0.9942, p < 0.001
Delta–alpha-ratio r = 0.9768, p < 0.001
Delta–theta-ratio r = 0.9826, p < 0.001
PSD Alpha r = 0.9757, p < 0.001
PSD Theta r = 0.9633, p < 0.001
PSD Delta r = 0.9777, p < 0.001
Spectral Entropy r = 0.9268, p < 0.001
Spectral Spread r = 0.9816, p < 0.001
Spectral Centroid r = 0.9843, p < 0.001
Spectral Rolloff r = 0.9826, p < 0.001
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Figure 8. This figure depicts the matching between visual-based scoring and EEG patterns (subject
ID:1025), showcasing variations with the number of channels. The top row presents visual-based
scoring, encompassing six drowsiness and seven wakefulness events. Subsequent rows demonstrate
the matching of these episodes with EEG patterns based on different channels: the second row with
channel F4, the third by combining channels F3 and F4, and the last using all channels. Notably, all
visual-based episodes corresponded with EEG patterns in the combined channel setup.
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3.2. Enhanced Sensitivity of F4 and O2 Channels and Frontal and Occipital Brain Regions in
Correlating Visual-Based Scoring with EEG Patterns

We evaluated the average sensitivity of individual EEG channels and distinct brain
regions in correlating visual-based scoring episodes with ten specific EEG features across
fifty drivers. Notably, channel F4 exhibited a higher average sensitivity (75.4%) in establish-
ing the correlation between visual-based scoring and the EEG feature (theta–alpha ratio),
as demonstrated in Figure 9. Table 5 illustrates the channel with heightened sensitivity
compared to all others for each EEG feature. No central channel (C3 or C4) showed higher
sensitivity for any EEG feature. Similarly, the frontal brain region displayed higher average
combine sensitivity (86.4%) in depicting the correlation between episodes of visual-based
scoring with the theta–alpha ratio compared to other regions, as seen in Figure 10. Table 6
presents the brain region with increased sensitivity compared to all other areas for each EEG
feature. An extensive analysis across all channels demonstrated that the theta–alpha ratio
exhibited the highest average combine sensitivity (94.7%) in correlation with visual-based
scoring, as shown in Figure 11. Furthermore, other metrics, including the spectral spread
(87.8%), spectral centroid (87.4%), delta–alpha ratio (87.2%), delta–theta ratio (86.7%), and
spectral rolloff (86.4%), also displayed notable sensitivity. Figure 12 illustrates the variabil-
ity in sensitivity across channel F4, the frontal brain region, and all channels among fifty
subjects considering theta–alpha ratio.
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Figure 9. This figure shows the average sensitivity of individual EEG channels in detecting correla-
tions between episodes of visual-based scoring and ten specific EEG features across fifty drivers. The
theta–alpha ratio emerged as a crucial feature for effectively correlating EEG patterns with visual-
based scoring and channels F4 and O2 maintained consistent superiority across most EEG features.

Table 5. This table illustrates the heightened average sensitivity of a single EEG channel for each EEG
feature. Additionally, it presents the trend depicting how each EEG feature varies with increasing
drowsiness.

EEG Feature EEG Channel Average Sensitivity Trend

Theta–alpha ratio F4 75.4% ↑
Delta–alpha-ratio O2 58.0% ↑
Delta–theta-ratio O1 54.2% ↑
PSD Alpha O1 54.2% ↓
PSD Theta F4 56.5% ↑
PSD Delta O2 56.1% ↑
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Table 5. Cont.

EEG Feature EEG Channel Average Sensitivity Trend

Spectral Entropy F3 55.1% ↓
Spectral Spread O2 55.6% ↑
Spectral Centroid O2 57.5% ↓
Spectral Rolloff F4 57.0% ↓
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Figure 10. This figure illustrates the average combine sensitivity of paired EEG channels across
brain regions in detecting correlations between episodes of visual-based scoring and ten specific EEG
features in a cohort of fifty drivers. Notably, the frontal and occipital regions sustained consistent
supremacy across most EEG features in establishing this correlation. The central region did not
exhibit supremacy for any of the features.

Table 6. This table illustrates the heightened average combine sensitivity of a brain region for each
EEG feature. Notably, the theta–alpha ratio significantly matched with visual-based scoring in the
frontal brain region across all fifty subjects.

EEG Feature Brain Region Average Combine Sensitivity

Theta–alpha ratio Frontal 86.4%
Delta–alpha-ratio Occipital 69.7%
Delta–theta-ratio Occipital 67.3%
PSD Alpha Occipital 61.3%
PSD Theta Frontal 65.1%
PSD Delta Occipital 64.1%
Spectral Entropy Frontal 56.3%
Spectral Spread Frontal 65.6%
Spectral Centroid Occipital 66.1%
Spectral Rolloff Occipital 68.4%
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Figure 11. This figure illustrates the average combine sensitivity of all EEG channels
(F3/F4/C3/C4/O1/O2) in detecting correlations between episodes of visual-based scoring and
ten specific EEG features across a cohort of fifty drivers. Notably, all of the features except spectral
entropy demonstrated average combine sensitivity of more than 75%.
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Figure 12. This figure illustrates the decrease in the variability of channel sensitivity with an increasing
number of channels.

4. Discussion

To address limitations in PERCLOS computation, we employed adaptive thresholding
for eye aspect ratio calculation and to enhance the reliability of visual-based scoring, we
established a one-to-one correlation between episodes derived from visual-based scoring
and corresponding EEG patterns, categorized by ten distinct features.

Studies [46–50] computed EAR by employing a fixed threshold method prone to
inaccuracies due to factors like image quality, eyewear interference, lighting variations, and
head movements [26,27]. To address these limitations, we applied adaptive thresholding
by fine tuning the parameters of the median filter, moving average filter, and subtracting
a constant value. Before implementing it on our dataset, we validated its performance
using publicly available datasets (eyeblink8 and TalkingFace) [65]. Eyeblink8 comprises
eight videos, including footage of one individual wearing glasses among four participants,
while TalkingFace involves a single video primarily featuring a person facing the camera
with slight variations that may pose challenges for precise eye detection. Our adaptive
thresholding technique demonstrated its capability by accurately detecting 365 out of
399 actual eye blinks [66]. In our current study, it successfully detected eye blinks that
were overlooked by the fixed threshold [48] methodology and recorded 453 episodes
of drowsiness and 474 episodes of wakefulness. To further enhance the reliability of
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drowsiness detection, we effectively correlated it with physiological signals, specifically
EEG patterns—an advancement not explored in prior studies [18,19,29–31]. A total of
427 (94.3%) episodes of drowsiness matched with EEG patterns. Likewise, 451 (95.1%)
episodes of wakefulness paired with EEG patterns.

A couple of studies observed heightened theta [27] and delta [27,67] brain activities
when drivers transition from wakefulness to drowsiness. Other research indicated that
drowsiness is often linked to decreased EEG activity and marked by increased theta
frequency band dominance [9,68] or a decline in alpha activity, especially evident when
eyes are closed [69]. In our previous study [36], we noticed an increase in theta–alpha
ratio during microsleep episodes and a decrease during wakefulness events, mirroring
the trend found in [70]. A couple of studies [61,62] found higher mean spectral entropy
values during wakefulness compared to periods of increased sleepiness. Leveraging these
findings, we calculated alpha, theta, and delta power values, as well as their respective
ratios and additional spectral features for episodes of drowsiness and wakefulness derived
from visual-based scoring. Our study revealed a consistent pattern across various EEG
features: a decrease in alpha activity during drowsiness and an increase during wakefulness
episodes (708 out of 927 events), mirrored by a similar trend observed in spectral entropy
(551 out of 927 events). Correspondingly, an increase in theta activity was noted during
drowsiness, contrasted by a decrease during wakefulness episodes (712 out of 927 events),
which echoed a parallel shift in delta activity (761 out of 927 events). Notably, the theta–
alpha ratio highlighted superior performance among all features analyzed, displaying
an increase during drowsiness and a decrease during wakefulness episodes (878 out
of 927 events). These findings, consistent with prior studies [36,66,67], underscore a
strong alignment between these EEG features and visual-based scoring across all drivers.
Additionally, introducing new parameters enriched our analysis: the delta–alpha ratio
mirrored a similar trend to delta–theta, increasing during drowsiness and decreasing
during wakefulness episodes (808 and 804 out of 927 events, respectively). Furthermore,
the spectral centroid and rolloff both demonstrated a decrease during drowsiness and an
increase during wakefulness episodes (811 and 802 out of 927 events, respectively). In
addition, spectral spread indicated an increase during drowsiness and remained elevated
during wakefulness episodes (814 out of 927 events).

Our study also aimed to determine the optimal count of individual channels and brain
regions sensitive to correlations between visual-based scoring and distinct EEG features.
A couple of studies [36,71] have identified that the frontal brain region exhibits higher
sensitivity in detecting changes within the theta and alpha frequency bands as a driver
transitions from an awake to a drowsy state. In our study, channel F4 and the frontal region
exhibited superior sensitivity in detecting variations in the theta–alpha ratio and theta
activity during the transition from wakefulness to drowsiness, surpassing other individual
channels and brain regions. Our analysis also highlighted that channel O2, along with
the occipital brain region, consistently demonstrated heightened sensitivity across various
EEG features, particularly in detecting alpha and delta activity. These findings align with
previous research that highlighted the significant correlation between EEG alterations in the
occipital region and levels of driver drowsiness [72,73]. Furthermore, another study [74]
established a direct association between eye closure degree (ECD) and occipital alpha
activity. Our analysis also revealed that the central brain region did not demonstrate
superiority across the analyzed features.

In contrast to prior studies [28,75,76] that defined drowsiness at PERCLOS thresholds
of ≥0.15 and ≥0.20, our research employs a higher PERCLOS threshold of ≥0.30 to better
accommodate unusual blinking patterns. To enhance the reliability of our drowsiness
detection, we integrated visual-based assessments with EEG patterns, ensuring that in-
stances flagged as potential drowsiness due to abnormal blinking are correctly classified
as wakefulness instead of drowsiness based on EEG patterns. For example, while visual-
based scoring identified 453 episodes as drowsiness, upon validation with EEG patterns,
427 episodes were found to align with EEG patterns.
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Studies have reported high accuracy in correlating PERCLOS measurements with
various physiological and driving-related parameters: a study achieved 92.5% accuracy
by linking heart rate variability-derived parameters, a couple of studies [32,33] found an
average accuracy of 90.7% and 94% by associating PERCLOS with driving lane positions
and steering wheel movement, and yet another [34] determined 91% accuracy by linking
PERCLOS with galvanic skin response (GSR). In contrast, our study demonstrated a higher
average sensitivity (94.7%) between episodes of visual-based scoring and EEG patterns
(theta–alpha-ratio).

Although recent machine learning and deep learning methodologies have contributed
to accurately classifying EEG signals [77–79], we intentionally avoided them in our research
for several reasons. Firstly, our study segmented EEG data based on visual-based episodes.
Given the intrinsic variability in the duration of these episodes, both within and across
subjects, the length of EEG segments was not uniform. Consequently, employing a fixed-
length window for EEG signal segmentation, as is common in deep learning frameworks,
was not feasible [53,80]. To accommodate the heterogeneous EEG segment lengths and
preserve the integrity of subject-specific EEG patterns, we devised a novel approach.
Secondly, we aimed to establish one-to-one correlations using selected EEG features instead
of employing a black-box approach inherent in deep learning methods. Lastly, due to the
limited data set consisting of 927 episodes (474 wakefulness and 453 drowsiness), using
deep learning methods during training could potentially lead to overfitting [81,82]. Our
methodology has demonstrated additional benefits that cannot be achieved using deep
learning methods, as depicted in Table 7.

Table 7. Analytical comparison of contemporary drowsiness detection approaches utilizing deep
learning and our methodology.

Study
Reference Sensing Method Methodology Findings and Limitations

Safarov F et al.
[83] Camera Threshold + DL-Based

• Accuracy: 95.8%
• Not validated with

physiological signal

Bajaj, J.S. et al.
[34]

Camera + Galvanic Skin
Response (GSR) MTCNN

• Accuracy: 91%
• (GSR) is less reliable than EEG

for detecting drowsiness

Arefnezhad, S. et al.
[27] SmartEye + EEG Electrodes Encoder–Decoder

Architecture

• Generalized correlation between
EEG patterns and PERCLOS up
to 70%

• Cost ineffective

Arefnezhad, S. et al.
[23] Vehicle-Based CNN + RNN

• Accuracy: 96%
• Not validated with

physiological signal

Wang, F et al.
[84] EEG Electrodes CNN

• Accuracy: 91.5%
• Only EEG signals were used to

detect drowsiness

Our Study Camera + EEG Electrodes One-to-one
correlation

• Validation of PERCLOS with
EEG patterns

• Correlation up to 94.7%
• Explored the sensitivity of

different EEG channels
• Subject-specific approach

Limitations of the Study and Future Perspective

Our deliberate choice to exclusively recruit male drivers was methodically justified
in the ‘Study Population’ section. While humidity levels were not directly monitored, we
believe their impact on driving drowsiness to be minimal given the controlled temperature
environment. As both PERCLOS and EEG can effectively detect the onset of drowsiness, we
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refrained from integrating them with driving attributes due to the potential delay between
driving cues and the onset of drowsiness [27]. Importantly, certain studies [85,86] have
highlighted instances of drowsiness or microsleeps occurring with open eyes, rendering
these episodes unidentifiable through visual-based scoring methods. We also avoided the
manual interpretation of EEG patterns due to their highly challenging nature, which is
prone to human error and labor-intensive [9,36]. The utilization of only two frontal and
two occipital EEG channels in our study may pose a potential limitation in not matching
all episodes of visual-based scoring with EEG patterns, as our findings suggest that aug-
menting the number of frontal or occipital channels within their respective regions notably
enhances this correlation. Although our study focused solely on traditional frequency
bands, their ratios, and spectral features, exploring non-linear features might yield stronger
correlations. Additionally, amalgamating the features into a metric might enhance the corre-
lation. Our approach to assessing fitness to drive in OSA drivers is based on quantifying the
frequency of drowsiness episodes during simulated driving rather than directly evaluating
driving performance or attributes. This method indirectly contributes to understanding
the fitness to drive by highlighting the potential risk posed by drowsiness episodes. In our
study, we could not perform uniform normalization process across subjects, as it could
obscure the unique contributions of specific channels and features within individual EEG
profiles. Future research could center on enhancing frontal or occipital channels specifically,
amalgamating existing features and identifying novel nonlinear EEG features to achieve
greater alignment with visual-based scoring events. Moreover, integrating PERCLOS with
electrooculography (EOG) may enhance visual-based scoring accuracy, with additional
improvement possible by incorporating mouth and head motion-based features. Lastly,
future research may develop a methodology to integrate EEG data, visual-based scoring,
and vehicle-based parameters, considering the lag between EEG signals (visual-based
scoring) and vehicle-based parameters.

5. Conclusions

Our concurrent analysis, integrating visual-based scoring episodes with EEG patterns
across ten distinct features, significantly enhances the reliability of drowsiness detection
through a one-to-one correlation. Additionally, our adaptive thresholding technique in
PERCLOS computation mitigates the associated limitations. We determined the average
sensitivity of EEG channels and brain regions across fifty drivers in correlating visual-based
scoring with EEG patterns, highlighting enhanced sensitivity in specific EEG channels (F4
and O2) and brain regions (frontal and occipital). Augmenting the number of frontal or
occipital channels beyond those used in this study may align all instances of visual-based
scoring with their corresponding EEG patterns. Notably, among the analyzed features,
the theta–alpha ratio exhibited the highest alignment with visual-based scoring, followed
by the delta–alpha and delta–theta ratios, respectively. Combining these features into a
collective metric might further improve this correlation.

Our study offers a crucial tool for healthcare professionals and road safety experts by
facilitating fitness-to-drive assessments for drivers with OSA. Additionally, it establishes a
framework to enhance the reliability of real-time drowsiness detection while minimizing
the hardware requirements.
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