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Abstract: The intelligent monitoring of cutting tools used in the manufacturing industry is steadily
becoming more convenient. To accurately predict the state of tools and tool breakages, this study
proposes a tool wear prediction technique based on multi-sensor information fusion. First, the vibra-
tional, current, and cutting force signals transmitted during the machining process were collected,
and the features were extracted. Next, the Kalman filtering algorithm was used for feature fusion,
and a predictive model for tool wear was constructed by combining the ResNet and long short-term
memory (LSTM) models (called ResNet-LSTM). Experimental data for thin-walled parts obtained
under various machining conditions were utilized to monitor the changes in tool conditions. A
comparison between the ResNet and LSTM tool wear prediction models indicated that the proposed
ResNet-LSTM model significantly improved the prediction accuracy compared to the individual
LSTM and ResNet models. Moreover, ResNet-LSTM exhibited adaptive noise reduction capabilities
at the front end of the network for signal feature extraction, thereby enhancing the signal feature
extraction capability. The ResNet-LSTM model yielded an average prediction error of 0.0085 mm
and a tool wear prediction accuracy of 98.25%. These results validate the feasibility of the tool wear
prediction method proposed in this study.

Keywords: tool wear prediction; LSTM network; deep residual network; multi-sensor information fusion

1. Introduction

With the rapid development of modern industries and scientific technology, manufac-
turing equipment is gradually becoming larger, more integrated, faster, more automated,
and intelligent. In the manufacturing industry, computer numerical control (CNC) milling
is widely used, and the importance of cutting tools is evidenced by how they directly affect
the dimensional accuracy and surface quality of products. In addition, it is more convenient
to replace tools according to the specific piece and time required to cope with large-scale
processing environments. However, this method has certain limitations. First, it relies
heavily on worker experience to judge tool wear. Second, replacing tools through piece
and time methods cannot accurately determine the service life of the tools, which may
lead to unnecessary tool waste and, more significantly, affect the quality of the products.
Developing tool wear prediction technology can avoid tool damage and other problems, as
well as helping to improve tool chip speed and leading to substantial savings in production
costs [1].

Tool wear prediction methods can be divided into two general categories: direct and
indirect [2]. Direct measurement methods involve directly measuring tool wear using
equipment such as microscopes to determine the degree of tool wear. In contrast, indirect
measurement methods predict tool wear based on relevant machining parameters. Using
high-magnification microscopes to directly capture images of the cutting edges of tools
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can yield more accurate measurement results. However, this method also has limitations.
Because machine tools cannot be arbitrarily stopped during the machining process, they
cannot be dismantled and measured at any time. Therefore, indirect measurement methods
have been extensively investigated.

Some researchers have used a single sensor to collect information that can characterize
tool wear. For example, Xu et al. [3] conducted experiments on high-speed steel drills using
the wavelet packet transform coefficients of the cutting force and torque as inputs to train a
backpropagation (BP) neural network model. In addition, Liu and Kumagai [4] developed a
system for monitoring drill wear during boring processes using a combination of BP neural
networks and adaptive fuzzy reasoning to monitor tool wear classification, achieving
a wear classification accuracy of 100%. In addition to traditional indirect monitoring
methods that use current, power, vibration, and force sensors, scholars have also explored
various other types of sensor signals for monitoring tool wear in CNC machine tools (e.g.,
tool temperatures [5] exhibited in the machining process) and have conducted tool stress
analyses [6]. The exploration and applications of these methods provide diverse options
for tool wear monitoring, enabling research on CNC machine tool processing technology to
be more comprehensive and diverse.

Many studies on multi-sensor fusion have been conducted. For example, Kul et al. [7]
developed a multi-sensor flutter detection system for industrial sites, collecting data using
accelerometers and axial force sensors, and used neural network technology with wavelet
packet decomposition processing and analysis techniques for flutter monitoring. This
method, which combined multiple sensors and advanced signal processing techniques,
aimed to improve the accuracy and reliability of flutter monitoring by providing effective
real-time monitoring and warnings regarding the status of industrial equipment. In addi-
tion, Othman et al. [8] comprehensively analyzed different vibration signals and methods
for processing acoustic emission signals and compared the diagnostic results of the fused
signals with those of single-signal sources, demonstrating the superiority of fused signals.
Furthermore, Duro [9] constructed a multi-sensor fusion framework for monitoring the
machining process of CNC machine tools, combining all the key steps from signal feature
extraction, data filtering, data normalization, and standardization for weight allocation and
data fusion. Using a combination of maximum likelihood estimation and autocorrelation
coefficient analysis, signals from different mounting positions of acoustic emission sensors
were fused together. Moreover, Segreto [10] built a BP neural network to improve the tool
wear prediction accuracy by collecting and fusing cutting force, acoustic emission, and vi-
bration signals. These examples highlight the widespread application of information fusion
technology in different fields to improve the accuracy and performance of tool monitoring
and diagnosis and optimize the results of the decisions required to maintain tools. Bagga
et al. [11] proposed a multi-sensor data fusion method to measure and predict rear tool
wear using various parameters, such as vibration, power, temperature, force, and surface
roughness, and constructed an artificial neural network model for tool wear measurement
and prediction. Wang et al. [12] proposed a novel virtual tool wear sensing technology
based on multi-sensor data fusion and artificial intelligence models, fusing multi-sensor
data (such as force and vibration signals) with dimensionality reduction techniques and
support vector regression models to infer tool wear parameters that are difficult to measure.

Generally, tool wear states are predicted by extracting feature signals from detection
signals. Traditional machine learning methods are widely used in the fault diagnosis of me-
chanical equipment and tool wear prediction. For example, Zhu [13] and Jia et al. [14] used
sparse decomposition theory and autoencoder neural network technology to diagnose me-
chanical equipment faults, achieving superior prediction results. In addition, He et al. [15]
proposed the construction of a dynamic Bayesian network model and used fused data as
monitoring signals to predict tool wear. Furthermore, Cheng et al. [16] proposed a method
combining empirical mode decomposition to extract latent features, and constructed a tool
wear prediction model based on generalized multiclass support vector machines. These
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studies demonstrate the diverse applications of traditional machine learning methods in
tool wear prediction.

Deep learning methods are also very common in the fields of feature extraction
and tool wear prediction. Convolutional neural networks (CNNs) are typically used
to extract key features and predict tool wear amounts [17]. For example, Lu et al. [18]
proposed the use of shallow CNNs in the feature extraction of monitoring signals. In
addition, Kong et al. [19] proposed a tool wear prediction model based on an integrated
radial basis function kernel principal component analysis (KPCA_IRBF) and a relevant
vector machine (RVM). Compared with traditional methods, such as partial least squares
(PLS), artificial neural networks (ANN), and support vector machines (SVM), the RVM
method provided more accurate predictions and offered additional advantages in terms of
confidence intervals. Zhang et al. [20] proposed an improved integrated estimation method
based on long short-term memory (LSTM) networks and particle filter (PF) algorithms. The
integrated PF-LSTM recognition method predicted the random tool wear process based
on historical measurement data, and the accuracy of the PF-LSTM method was verified
through micromilling experiments.

Mathematical and modeling methods are also used to diagnose tool wear. For example,
Awasthi et al. [21] developed a physics-based digital twin method for tool wear diagnosis
during machining. For milling tools, information theory methods were used to optimize
the test design and sensor suites were used for fault detection, thereby improving the
inference of the tool wear. The robustness of the design was verified using dynamic time
warping and k-NN classification methods. Li et al. [22] proposed a new physics-based
meta-learning framework to predict tool wear at different wear rates. Piecewise fitting
parameters were used to combine data-driven analysis and parameter estimation, which
ensured the accuracy of the parameters, improved the interpretability of the tool wear
prediction, and accurately reflected changes in tool wear rates.

However, regardless of whether a single-sensor detection method, multi-sensor fusion
method, or machine learning algorithm is used, none of these methods consider the influ-
ence of multiple operating conditions during processing. Most methods primarily focus on
monitoring processing under a single working condition and cannot adapt to the complex
and dynamic conditions in actual processing situations.

Therefore, in this study, we conducted an analysis of the characteristics of the pro-
cessed parts to select appropriate sensors as signal sources. To ensure the processing quality
and efficiency of the parts and avoid losses caused by tool breakage, a tool wear predic-
tion technology based on multi-sensor information fusion is proposed. The technology
monitors changes in tool status during the processing of thin-walled parts. To improve
the accuracy of tool wear prediction, data collected by sensors during processing were
used for model training and prediction, and a predictive model for tool wear based on
combining the ResNet and long short-term memory (LSTM) models (called ResNet-LSTM)
was constructed. Experimental data for thin-walled parts under various machining condi-
tions were utilized to monitor the changes in tool conditions. The proposed ResNet-LSTM
model significantly improved the prediction accuracy compared to the individual LSTM
and ResNet models.

The basic structure of the method developed in this study is shown in Figure 1. The
rest of this paper is organized as follows. Section 2 introduces the data fusion method and
describes the construction of the model, and Section 3 describes the data collection process.
Section 4 analyzes the results of the processing experiments and model predictions, and
validates the accuracy of the model. Finally, Section 5 concludes the study.
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2. Data Fusion Method and Model Construction
2.1. Multi-Sensor Information Fusion Technology

The complexity of the tool-cutting process results in the generation of signals in
a non-stationary state, which poses challenges for tool monitoring. Traditional single-
sensor monitoring methods can reduce the accuracy and reliability of analyses, particularly
when they are utilized improperly. In addition, the complex and interrelated structures
of machine tool systems can easily lead to one-sidedness when single-sensor monitoring
methods are used.

Multi-sensor information fusion technology is a comprehensive automated information-
processing method that has become widely researched. Bayesian inference, Kalman fil-
tering, fuzzy set theory, neural networks, and wavelet analysis methods are commonly
used for information fusion. The application of these methods enables more accurate data
processing and more effective decisions, thereby improving the performance and reliability
of systems. The main goal of information fusion is to extract as much valid information
as possible from the measured objects and environment by optimizing the combination of
observations from various sensors.

The structure of a state-recognition system based on multi-sensor information fusion
is illustrated in Figure 2.
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This study utilized the weighted observation fusion Kalman estimation algorithm to
handle the problem of fusing large amounts of data from multiple sensors. Details of the
equations can be found in Reference [23]. Based on data fusion, the initial values of x0
and P0 are set. At time k, measurements are obtained from the sensors, and these values
are denoted as z. Then, using a recursive method, the state estimation value at time k,
denoted as xk(k = 1, 2, · · ·, N), is calculated. These steps are repeated continuously until
the estimation requirements are satisfied, which terminates the recursive calculations. The
basic principle of Kalman filtering involves the “predict-measure-correct” logical sequence
to eliminate interference data from the collected sensor data and reconstruct the system’s
state vector using the measured values, thereby effectively estimating the state data. The
state equation of the system infers the current state based on the previous state and control
variables, and is calculated as follows:

xk = Axk−1 + Buk−1 + wk−1, (1)

where xk is the n-dimensional vector of state components, A denotes the state transition
matrix, uk−1 is the external input that the system can accept, B is the matrix that converts
the inputs into states, and wk−1 is the noise of the prediction process (corresponding to the
noise of each component in xk), with an expectation of 0 and a covariance of Q, representing
Gaussian white noise. The system’s observation equation is expressed as follows:

zk = Hxk + vk, (2)

where zk is the measurement value and input of the filter, H is the matrix used to transform
the state variables, and vk is the observation noise that follows a Gaussian distribution
N(0, R). The basic steps involved in the Kalman filter are as follows:

Step 1: Predict an estimate:

x̂k = Ax̂k−1 + Buk−1. (3)

Step 2: Compute the covariance:

Pk = APk−1 AT + Q. (4)

Step 3: Compute the Kalman gain Kk:

Kk =
Pk HT

HPk HT + R
. (5)

The noise w (system error) and observation noise v (measurement error) in the state
and measurement equations are generally assumed to be Gaussian white noise that follows
a normal distribution P(w)–(0, Q), P(v)–(0, R), where Q and R are different covariance
matrices at time k:

Q = E[wk, wT
k ], R = E[vk, vT

k ]. (6)
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Step 4: Update the estimate:

x̂k = x̂k + Kk(zk − Hx̂k). (7)

Step 5: Update the estimate covariance for the next time step using the following:

Pk = (I − Kk H)Pk, (8)

where x̂k and x̂k−1 represent the posterior state estimate values at times k and k − 1,
respectively (which is one of the results of the filtering process); x̂k is the prior state estimate
value at time k (which is an intermediate calculation of the filtering); Pk and Pk−1 represent
the posterior estimate covariance at times k and k − 1, respectively (which are one of the
results of the filtering process); and Pk is the prior estimate covariance at time k (which is
an intermediate calculation of the filtering).

In this study, the spindle current, cutting force, and vibration signals were detected by
sensors during the CNC machining process because they have the greatest influence on the
state of the tool and can best characterize its state. These signals were then used for tool
wear monitoring via multi-sensor signal fusion.

2.2. Signal Denoising and Feature Extraction Methodology
2.2.1. Wavelet Packet Transform

In the practical collection of spindle vibration signals from machine tools, the obtained
signals often contain not only the original vibration signal, but also other noise or interfer-
ence signals with high randomness. Noise signals are a common problem in signal analysis
and may originate from various sources of interference, such as electromagnetic waves and
mechanical vibrations. In the analysis process, a series of denoising measures is required to
reduce the influence of noise, thereby improving the reliability and accuracy of the signal.

The wavelet packet transform is a multiscale time-frequency domain transformation
method commonly used in signal analysis [24]. It can decompose high-frequency band sig-
nals into subsignals with local characteristics, thereby providing more detailed information
about the signal. This method can be applied to analyze and extract changes in the state of
the monitoring equipment [25].

The wavelet packet is defined as follows:{
uj

2n(t) =
√

2∑k h(k)uj
n(2t − k)

uj
2n+1(t) =

√
2∑k g(k)uj

n(2t − k)
(n = 0, 1, 2, · · ·; k = 0, 1, 2, · · ·m). (9)

when decomposing using a low-pass filter, the coefficients are denoted as h(k); for a high-
pass filter, the coefficients are denoted as g(k). At the j-th level of the wavelet packet
decomposition, there are a total of 2j wavelet packet bases, denoted as j. When n = 0, the
scaling function ϕ(t) and basic wavelet function ψ(t) are defined as follows:{

u0
0 = ϕ(t)

u0
1 = ψ(t)

, (10)

respectively. Using the method for determining the number of decomposition levels
mentioned above, the optimal number of decomposition levels was determined to be three.
Therefore, the signal was subjected to three-level wavelet packet decomposition, as shown
in Figure 3.

In the figure, signal X(t) represents the original signal before decomposition. This
is decomposed into a low-frequency component signal (obtained using low-pass filter
coefficients g(k)) and a high-frequency component signal (obtained using high-pass filter
coefficients h(k)). The high- and low-pass filter coefficients must satisfy the following
orthogonal relationship:

g(k) = (−1)kh(1 − k). (11)
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The decomposed signals obtained at different decomposition levels are calculated layer-by-
layer using the following equations:

si+1,2j(n) = ∑
k

g(k − 2n)si,j(k), (12)

si+1,2j+1(n) = ∑
k

g(k − 2n)si,j(k). (13)

Following the aforementioned decomposition method, after the signal undergoes wavelet
packet decomposition at the i-th level, 2i characteristic signals are obtained, each corre-
sponding to a specific frequency band.
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2.2.2. Time-Frequency Domain Feature Extraction Based on Wavelet Packet
and Sample Entropy

Sample entropy, proposed by Richman and Moorman in 2000 as an improvement
on approximate entropy, is a method for measuring the complexity of a time series. This
method can be used to analyze the time series obtained from continuously sampled pro-
cesses. In theory, the sample entropy reflects the irregularity and complexity of signals and
is considered a useful tool for analyzing vibration signals [26]. By applying sample entropy,
a better understanding of the characteristics of the vibration signals can be attained. The
specific steps of the algorithm are as follows.

Step 1: Assume that the sampling obtains an n-dimensional time series x(1), x(2), · · · , x(n)
with equal time intervals.

Step 2: Denoting the pattern dimension as m, construct an m-dimensional vector from
the original sequence:

x(i) = [x(i), x(i + 1), · · ·, x(i + m − 1)], i = 1, 2, · · ·, n − m + 1. (14)

Step 3: Define the distance between x(i) and x(j) as follows:

d(i, j) = max
k=1∼m−1

|x(i + k)− x(j + k)|, k = 0, 1, · · ·, m − 1. (15)

Step 4: Set a threshold value r, and for each i, compute the ratio of the number of
d(i, j) < r occurrences to the distance n – m + 1, denoted as Bm

i (r):

Bm
i (r) =

COUNTIFS[d(i, j) < k]
n − m + 1

, 1 ≤ j ≤ n − m, i ̸= j. (16)
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Calculate the mean of Bm
i (r) for all i values:

Bm(r) =
1

n − m + 1
Bm

i (r). (17)

Step 5: For m + 1 dimensions, repeat steps (2)–(4) to obtain Bm+1
i (r). The sample

entropy of the sequence is then obtained as follows:

SampleEn(m, r) = lim
n→∞

[
− ln

Bm+1(r)
Bm(r)

]
. (18)

In practical vibration signals, n adopts a finite value; therefore, the estimated sample
entropy of the sequence is:

Bm(r) =
1

n − m + 1

n−m+1

∑
i=1

Bm
i (r). (19)

2.3. LSTM-Based Tool Wear Prediction Model

LSTM is a special variant of recurrent neural networks (RNN). It features unique
“gate” structures that address the drawbacks of traditional RNNs, such as the problem of
weight impacts being too significant (which leads to issues such as gradient explosion or
vanishing). LSTM networks converge faster and more effectively, resulting in an improved
prediction accuracy.

LSTM networks consist of three crucial gates: forget, input, and output. These gates
collaborate to determine what information is memorized and forgotten at each moment.
Specifically, at each moment, they control the amount of new information added to the cell,
whether information is forgotten, and whether any information is used as output. This
gate control mechanism enables LSTM networks to more effectively capture long-term
dependencies in time-series data, qualifying them as excellent tools for processing data
with temporal properties, such as speech and text. In addition, the gate mechanisms of
LSTM effectively address the issues with traditional RNNs, making neural networks more
suitable for handling sequential data as well as improving model performance and learning
capabilities. The basic structure of LSTM is illustrated in Figure 4.
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Equations are detailed in Reference [27]. In the forget gate, a sigmoid function deter-
mines the information discarded from the cell state and is expressed as follows:

Γ f = σ(ω f

[
αt−1, xt

]
+ b f ), (20)

where the output at time step t − 1 is denoted by αt−1, the input at time t is denoted by
αt−1, the weight of each variable is represented by ω f , the bias term is denoted by b f , and
σ(x) represents the form of the sigmoid function, which is defined as follows:

σ(x) = (1 + e−x)
−1, (21)

where Γ f ranges between 0 and 1, which indicates the extent to which each value in the
cell state ct−1 should be preserved; a value of 1 indicates “fully retained” and a value of 0
indicates “completely discarded”.

Updating the information stored in the cell state is the primary function of the output
gate and involves the following three steps.

Step 1: The sigmoid function of the input gate is used to compute the result Γu, which
determines which values to update.

Step 2: A new candidate value vector c̃(t) is created based on the tanh function and
added to the new cell.

Step 3: The old cell state is multiplied by the forget gate to forget some of the old
information. Then, the product of Γu ∗ c̃(t) is added. The new candidate value continuously
changes the degree of each state. Finally, the current cell state is updated. The formulas are
expressed as follows:

Γu = σ(ωu

[
αt−1, xt

]
+ bu), (22)

c̃(t) = tanh(ωc

[
αt−1, xt

]
+ bc), (23)

ct = Γu ∗ c̃(t) + Γ f ∗ ct−1. (24)

The Γu values range from 0 to 1, whereas the tanh function is a hyperbolic tangent activation
function with an output range of −1–1. Therefore, the cell state value at time t − 1 is
denoted as ct−1, c̃(t) and represents the recorded information to be extracted from the input
information at time t, while ct denotes the updated cell state value.

The sigmoid function determines the amount of output information controlled by the
output gate. The value of ct is determined using the tanh function to obtain the output
value at time t. This can be achieved by multiplying Γ0 and ct, as expressed by

Γ0 = σ(ω0

[
αt−1, xt

]
+ b0), (25)

αt = Γ0 ∗ ct. (26)

Finally, processing within a single neuron requires the assistance of three control
gates, a mechanism that allows the highest utilization of input data, and the formation of
memories of past long-term data in the LSTM model.

(1) Building the LSTM network model
According to [27], the use of up to three layers yields optimal results for LSTM models.

Therefore, a two-layer LSTM network was constructed for this experiment. Its structure is
displayed in Figure 5.

First, the data collected from the sensors, including the X-, Y-, and Z-axis vibra-
tions, force signals, and the current signal, were preprocessed. When each signal com-
ponent was treated separately, the input layer dimension was set to 6, resulting in X =
[x1, x2, x3, x4, x5, x6, x7]. However, when the feature vectors were used as the input, the
input layer dimension was set to 40, resulting in X = [x1, x2, x3, . . . , x40].
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Next, the number of neurons in the hidden layer was set to 100 to retain both the
long- and short-term memory information. Subsequently, the number of neurons in the
hidden layer was adjusted to 50 and then reduced to 20 before proceeding with tool wear
prediction. The dimension of the fully connected output layer was set to 1, enabling the
tool wear to be predicted based on the output value. This structural design aimed to fully
utilize the hierarchical structure of neural networks and memory units at different levels to
achieve a more accurate tool wear prediction.
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(2) Network parameter configuration
Step 1: Normalization:
The data were normalized via

x′ =
x − min(x)

max(x)− min(x)
. (27)

Step 2: Loss function calculation:
The root mean square error (RMSE) was selected as the loss function in the LSTM

prediction; it was defined as follows:

RMSE =

√√√√ 1
T

T

∑
t=1

(yt − yt)
2, (28)

where yt represents the predicted value, yt is the true value, and T is the number of samples.
Step 3: Evaluation metrics:
The selection of the evaluation metrics significantly affected the assessment of the

experimental results. In this study, three coefficients, namely, the mean absolute error
(MAE), RMSE, and coefficient of determination R2, were chosen as indicators to evaluate
the model’s prediction capability. The latter (R2) represents the degree of fit between the
predicted and actual data (the higher the value of R2, the better the fit), and served as the
criterion to determine the accuracy of the model’s predictions. It is expressed as follows:

R2 = 1 − ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − y)2 , (29)
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where yi represents the true value, ŷi denotes the predicted value, and y is the mean of the
actual values. The initialization parameters for the LSTM network model are shown in
Table 1.

Table 1. Initialization parameters for the LSTM network model.

Parameter Definition Parameter Settings

Optimization method Adam
Network input dimension 3 × 40

Loss function RMSE
Batch size 20
Dropout 0.5

Initial learning rate 0.1
Epoch 200

2.4. Predictive Model of Tool Wear Based on ResNet

ResNet addresses an insufficiency in feature extraction capability by introducing the
concept of identity mapping. This concept allows the network to learn residuals instead of
directly learning low-level features, thereby facilitating gradient propagation. The ResNet
network model proposed by Yu et al. [28] consists of multiple residual modules that are
stacked together. The structure of these residual modules helps maintain a stable gradient
propagation, enabling the network to learn features at deeper levels. The structure of
residual modules is shown in Figure 6.
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Firstly, the residual module transforms the input x into an output H(x). Here, H(x)
can be computed by simply adding F(x) and x: H(x) = F(x) + x. This formula indicates
that the output H(x) is composed of the residual part F(x) and the input x. The purpose of
this design is to maintain the integrity of information propagation via identity mapping,
which maps the input directly to the output without any change. By introducing identity
mapping, residual networks can prevent the degradation of network performance as the
depth increases.

Second, networks designed with identity mapping can focus on learning the residual
part F(x). Because the identity mapping part remains unchanged, the network only needs
to focus on learning how to better utilize the residual information to improve performance.
The advantage of this design is that it simplifies the complexity of the training process.
Researchers can focus more on optimizing the residual part to enhance the network’s
learning ability without being concerned with how identity mapping will degrade the
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performance. This approach significantly reduces the difficulty of network training because
the model only needs to capture the differences between the input and expected outputs.

In the predictive model, metrics such as the MAE, RMSE, and R2 were primarily used
as evaluation indicators, and they were defined as follows:

MAE =
∑n

i=1|yi − ŷi|
n

, (30)

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
, (31)

SSR = ∑n
i=1 (ŷi − y)2, (32)

SSE = ∑n
i=1 (yi − ŷi)

2, (33)

SST = SSR + SSE = ∑n
i=1 (yi − y)2, (34)

R2 = 1 − SSE
SST

, (35)

where yi represents the true tool wear value, ŷi represents the tool wear value predicted
by the model, y represents the mean of the predicted values, SSR is the “sum of squares
due to regression” and measures the total variation explained by the regression model,
SSE is the “sum of squares due to error” and measures the variation that is unexplained
by the regression model, and SST is the “total sum of squares” and represents the total
variation in the true tool wear values. In regression analysis, these metrics are fundamental
for assessing how well the model’s predictions align with the actual values and how much
of the total variation in the data is explained by the model.

3. Data Collection Experiment
3.1. Introduction to Tool Wear States

Tool wear can be broadly categorized as normal or abnormal. Normal tool wear
is primarily caused by friction, high temperatures, and vibrations. In CNC machining,
the contact between the tool and metal generates friction, leading to high temperatures
and vibrations under complex working conditions. Gradual tool wear occurs during the
machining process, which affects tool performance and lifespan. Abnormal wear is caused
by various sudden tool failures, which are primarily caused by impact forces generated
during milling processes [29]. Tool failure manifests primarily as chipping, cracking,
delamination, or plastic deformation.

Figure 7 illustrates a typical tool wear curve, which indicates that tool wear evolves
with increasing cutting time in three main stages: the initial wear, normal wear, and rapid
wear stages [30].

The characteristics of the tools vary across different wear stages, as shown in Figure 8,
which illustrates the three tool wear stages:

(a) Initial wear stage. Figure 8a shows an image of a tool in the initial wear stage. During
this stage, the tool exhibits minor wear patterns as it engages with the workpiece. The
initial wear is characterized by a slight removal of material from the tool’s surface.

(b) Normal wear stage. After machining operations, the tool progresses to the normal wear
stage, as depicted in Figure 8b. In this stage, the wear pattern becomes more pronounced,
reflecting a consistent removal of material from the tool’s surface as the machining
operations continue. Although the tool experiences wear, it remains functional.

(c) Rapid wear stage. Figure 8c displays an image of the tool in the rapid wear stage, in
which the tool undergoes significant wear, signaling that the end of its lifespan is near.
At this stage, the tool exhibits severe damage, such as chipping, cracking, or plastic
deformation, indicating imminent failure.
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3.2. Experimental Design and Data Collection

To obtain raw data for the development of data functions and construction of the
algorithms described in the subsequent sections, milling experiments on heat-resistant
stainless steel were designed and conducted using an intelligent monitoring system for
cutting processes. The workpiece material chosen for acquiring multisource physical data
during machining was heat-resistant stainless steel (1Cr11Ni2W2MoV). To collect the data,
cutting experiments were conducted on a VMC-1000B vertical machining center. The
workpiece was wire-cut into a rectangular block measuring 200 mm × 100 mm × 30 mm
to facilitate clamping. Vibration data were collected using an NI acquisition box, filtering
amplifier, and RS485 temperature and vibration sensor, as shown in Figure 9a. The cutting
tools that were used were HRC550 LYD-type hard alloy end mills, including D8, D10, D12,
and D16 double-edge end mills, as shown in Figure 9b.

The milling process involved face milling with a cutter path length of 200 mm and
cutting width of 75% the tool diameter. In the face milling experiments, the cutting data
were obtained under different conditions and the tool was worn to the stage required for
the machining experiments.

To develop a predictive model of tool wear applicable to various conditions, milling
experiments were conducted by varying the cutting parameters. Signals such as the cutting
force and vibration acceleration were collected for different sets of cutting parameters and
tool wear stages (initial wear, normal wear, and rapid wear). The machining path and
structure of the finished parts are shown in Figures 10a and 10b, respectively. In total,
105 milling experiments were conducted using different cutting parameters. After each
cutting operation, the tool wear was measured using an HY-H2100 portable electronic
microscope, as shown in Figure 11. This allowed the tool wear to be measured after each
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cutting operation. After machining, each part was examined using a micrometer, as shown
in Figure 12a. To efficiently gather additional data, targeted supplementary experiments on
thin-walled specimens were designed and conducted, as shown in Figure 12b.
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3.2.1. Selection of Experimental Data

To ensure the completeness of the experimental data, each operating condition was
treated as a separate experimental objective. Complete thin-wall milling was performed to
collect the data and validate the results. The five best thin-walled pieces produced during
the experiment were selected for analysis. For each thin-walled piece, 20 datasets were
chosen based on the processing parameters. Thus, a total of 100 sets of experimental data
were analyzed. The selection of the data focused on the x-axis owing to the intense spindle
vibration that occurred when the tool was being machined. The experimental parameters
and machining conditions are listed in Table 2.
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Table 2. Experimental parameters and machining conditions in the milling process.

Number
Spindle
Speed
(r/min)

Feed
(mm/min)

Cutting
Depth
(mm)

Tool Wear
Status Remarks

1 3000 400 0.2

Normal wear
stage Normal

2 3000 400 0.3
3 3000 400 0.4
4 3000 400 0.5
5 3000 400 0.6

6 3000 500 0.2

Moderate
wear stage Normal

7 3000 500 0.3
8 3000 500 0.4
9 3000 500 0.5

10 3000 500 0.6

11 3000 600 0.2

Rapid wear
stage Abnormal

12 3000 600 0.3
13 3000 600 0.4
14 3000 600 0.5
15 3000 600 0.6

16 3000 800 0.2
Tool

breakage
stage

Abnormal
17 3000 800 0.3
18 3000 800 0.4
19 3000 800 0.5
20 3000 800 0.6

3.2.2. Feature Signal Analysis

Studies on the technology used to monitor machine tool spindle vibrations is crucial
for reducing downtime and ensuring product quality. Effective monitoring and diagnostic
techniques are often required to monitor the status of equipment. Among the various
signals that reflect machine tool status, vibration signals can directly indicate the machining
status and dynamic characteristics of a machine tool. Therefore, they are widely used to
monitor and identify a machine tool’s status. Taking the collected vibration signal as an
example, the vibration signal after the three-level wavelet packet decomposition is shown
in Figure 14, and the frequency-domain signals reconstructed after the three-level wavelet
packet decomposition are illustrated in Figure 15. Figure 16 shows the spindle vibration
signals and their frequency spectra for four different states.

Directly observing the working status of the machine tool spindle from the sensor
feature data alone is challenging. Therefore, it is necessary to extract feature coefficients
that can effectively characterize the overall spindle and feature parameters that represent
the working state under different conditions. These feature parameters can be obtained
by analyzing the vibration signal amplitudes, frequencies, and phases. By comparing
the feature parameters corresponding to different conditions, the trends in the machine
tool spindle vibrations can be determined, which enables abnormal states or faults to be
identified. The timely monitoring and diagnosis of the machine tool spindle vibrations can
prevent potential failures and enable appropriate maintenance and repair measures to be
taken, thus minimizing downtime and maximizing product quality. This process provides
critical information for identifying the vibration status and enables a deeper understanding
of the operational status of the machine tool.

As shown in Figure 16, the x-axis represents the number of points that are sampled
and the y-axis represents the amplitude of the vibration signal. Figure 16a shows that
during normal stable cutting, the changes in the vibration signal are relatively smooth and
regular. This occurs because, during normal wear, the wear intensity of the tool edge is
uniform, resulting in a stable signal.

The vibration signals exhibited during moderate wear are shown in Figure 16b. Com-
pared to normal wear, very few transient impacts and abrupt high-frequency components
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are present. When the wear becomes severe, the temporal signal changes become more
pronounced. In the rapid wear signal, a large number of nonstationary random components
and abrupt frequency components are present, as shown in Figure 16c. Finally, Figure 16d
indicates that the signal changes dramatically when the tool reaches the chipped edge stage.
The energy of the chipped edge signal reaches its maximum, which produces transient
impact components with much greater intensities than the wear signal.
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4. Results, Discussion, and Analysis

The data collected in the experiments described in the previous section were used
to train the model. During the experiment, data were collected from vibration, cutting
force, and current sensors on the CNC milling machine worktable in the X-, Y-, and
Z-directions. This diverse dataset provided an accurate and comprehensive basis for
monitoring tool wear.

4.1. LSTM-Based Tool Wear Prediction Model

First, feature extraction was performed on the data collected from the sensors, followed
by feature selection. The selected feature vectors were then fed into the LSTM prediction
model, and the actual tool wear that occurred during machining served as the training set
for the model.

LSTM neural network models possess strong self-learning capabilities for handling
sequential data. They possess both long- and short-term memories that enable them to
extract deep features from sequential data. This implies that LSTM networks can predict
and classify sequential data by learning the patterns and rules within the data. In this
section, the preprocessed signal data are used as input to directly train the LSTM model
and validate its self-learning capabilities.



Sensors 2024, 24, 2652 19 of 24

The specific steps of Experiment 1 were as follows. First, feature vectors were obtained
from the preprocessed normalized signals of the tools, and they served as input for training
the model. This approach effectively connected the tool wear with the features of the
monitored signals. During the training phase, the collected wear data were used as labels
for supervised model training. In the testing phase, the preprocessed signals were used as
the test set to validate the LSTM model’s predictions. After approximately 120 iterations,
the results showed that the overall change in the loss function stabilized, yielding an RMSE
of 0.0281. This indicated that the model performed well in predicting tool wear.

Subsequently, the preprocessed monitoring signal data were used to test the model,
and the LSTM model was employed for tool wear prediction. The evaluation of the
prediction results for the training and test sets is shown in Figure 17. The average MAE of
the tool wear prediction was 0.0036 mm for the training set and 0.0181 mm for the test set.
These results demonstrated the accuracy and feasibility of the proposed method.
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4.2. ResNet-Based Tool Wear Prediction Model

The model training process is illustrated in Figure 18. A fusion feature matrix combin-
ing the vibration, current, and cutting force signals was constructed, and this matrix was
used to train the tool wear prediction model.

The specific steps of Experiment 2 were as follows. First, feature vectors were obtained
from the tool’s full-life monitoring signals, and they served as input for training the model.
This approach effectively connected the tool wear with the features of the monitored signals.
The experiment indicated that, although the convergence speed of the loss function was
relatively slow for the same number of iterations, the overall change in the loss function
was significantly smaller, resulting in an RMSE of 0.0182. This indicated that the model
performed well in predicting tool wear.

To further extract features from the monitoring signals, a wavelet packet transform
was applied. This method allowed a more refined feature extraction, which improved the
accuracy of the tool wear prediction. The feature vectors obtained were used as inputs
for the ResNet model. To predict the tool wear, the ResNet model was used, yielding
satisfactory results. The evaluation of the prediction results for the training and test sets is
shown in Figure 19. The average MAE of the tool wear prediction was 0.0037 mm for the
training set and 0.0117 mm for the test set. These results demonstrated the accuracy and
feasibility of the proposed method.
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Therefore, the results indicated that using feature vectors and the ResNet model for
tool wear prediction was effective. Hence, this approach is not only capable of improv-
ing the prediction accuracy, but also of contributing to the timely replacement of worn
tools during the manufacturing process, thereby enhancing the production efficiency and
product quality.
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4.3. Prediction Model of Tool Wear Based on ResNet-LSTM

The ResNet-LSTM network model is illustrated in Figure 20.
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Figure 20. ResNet-LSTM network model.

The feature signals, which were preprocessed but not denoised, were converted into
grayscale images. Two 3 × 3 convolutional layers were used. The convolutional layer of
each residual module was defined as a 2 × 2 pooling layer to achieve maximum pooling.
The number of neurons was set to 100, and they were connected to the LSTM layer through
the pooling layer. Two LSTM layers were set up with a number of hidden layer neurons,
as shown in Figure 20. The fully connected layer had one neuron, and its output value
represented the predicted tool wear.

Because of the small input dimensions of the ResNet-LSTM network model, the
training speed was relatively slow. To improve the training speed, the network model was
initialized using the rectified linear unit (ReLU) activation function and the network input
dimensions were set to 70 × 70. The batch size of the model was set to 30.

The input parameter of the ResNet-LSTM network model is the preprocessed signal.
The number of iterations was set to 500, and the other training parameters were the same
as previously described. The tool life data collected by the sensors during the machining
process were used as the training set. The differentiation between the training and test
sets was the same as that described in previous sections. After training the model, the loss
function approached zero and remained stable. The loss function of the validation set had
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an RMSE of 0.0101. Therefore, the experimental results indicated that the model achieved
the expected convergence after approximately 100 iterations.

Subsequently, the tool wear data were tested using the test set, and the predicted
results are shown in Figure 21. The average error of the tool wear prediction for the training
set was MAE = 0.0021 mm and that for the test set was MAE = 0.0085 mm. These results
indicated that this model provided the most accurate prediction, and that the experimental
results were consistent with the expected ideal outcomes.
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Table 3 compares the prediction accuracy and wear error of the three network models
using the same tool data as the test set. By comparing the prediction results of each model,
the following conclusions can be drawn. When using the ResNet network model, wear
prediction was performed by extracting the feature vectors of the signal. The experimental
results showed that as the number of model layers increased, the loss function significantly
decreased. Moreover, as the network depth increased further, the accuracy approached sat-
uration without decreasing. However, after adding two LSTM layers, the accuracy further
improved, indicating that the feature extraction of the LSTM model was more effective,
improving the tool wear prediction. Finally, the ResNet-LSTM model was proposed by
combining residual neural networks with the LSTM network model, which significantly
improved the prediction accuracy of the model compared to the individual LSTM and
ResNet models. The ResNet-LSTM model yielded an average prediction error of 0.0085
mm and a tool wear prediction accuracy of 98.25%.

Table 3. Comparison of tool wear prediction results.

Model MAE (mm) RMSE (mm) R2

LSTM 0.0182 0.0281 0.8744
Resnet 0.0118 0.0182 0.9745

ResNet-LSTM 0.0085 0.0101 0.9825

5. Conclusions

With the widespread application of CNC machine tools, the accurate monitoring of
machining process states and the precise identification of tool wear have become increas-
ingly important. Experiments on tool wear prediction during machine tool processing were
designed, and a tool wear prediction system based on multi-sensor information fusion was
proposed. The main conclusions of this study are as follows:

(1) The use of the Kalman filtering algorithm for feature extraction and the fusion of
multi-sensor signals provided a basis for subsequent model training.
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(2) Using the LSTM network model and training it with the fused features of three signals
generated a favorable prediction performance, although the signal features were
not distinct.

(3) The ResNet model was constructed for experiments with the same tool wear data,
resulting in improved accuracy but a slower convergence speed for the loss function.

(4) The ResNet-LSTM model was constructed by combining residual neural networks
with the LSTM network model, which significantly improved the prediction accuracy
compared to the individual LSTM and ResNet models. Moreover, the combination of
residual neural networks and LSTM networks exhibited a certain adaptive denoising
capability at the front end of the network for feature extraction, thereby enhancing
the signal feature extraction capability.

(5) Finally, the reliability of the method was verified through actual machining experiments.

However, in actual production and machining processes, more complex machining
phenomena, in which the machining efficiency involves multiple influencing factors, are
often encountered. This study collected and processed data from only four working condi-
tions. Therefore, in future research, we will aim for a more comprehensive understanding of
the tool wear status that occurs during machining and conduct more in-depth experiments
and data analyses of the complex working conditions encountered during machine tool
processing. In addition, high temperatures significantly affect tool life, but the influence
of high temperatures on tool life was not considered in this study because of the use of
cutting fluids. Accordingly, in future work, we will consider adding external temperature
sensors to monitor the impact of high temperatures on tool life.
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