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Abstract: The properties of small size, low noise, high performance and no wear-out have made
the hemispherical resonator gyroscope a good choice for high-value space missions. To enhance
the precision of the hemispherical resonator gyroscope for use in tasks with large angular velocities
and angular accelerations, this paper investigates the standing wave precession of a non-ideal
hemispherical resonator under nonlinear high-intensity dynamic conditions. Based on the thin shell
theory of elasticity, a dynamic model of a hemispherical resonator is established by using Lagrange’s
second kind equation. Then, the dynamic model is equivalently transformed into a simple harmonic
vibration model of a point mass in two-dimensional space, which is analyzed using a method of
averaging that separates the slow variables from the fast variables. The results reveal that taking the
nonlinear terms about the square of the angular velocity and the angular acceleration in the dynamic
equation into account can weaken the influence of the 4th harmonic component of a mass defect on
standing wave drift, and the extent of this weakening effect varies with the dimensions of the mass
defects, which is very important for steering the development of the high-precision hemispherical
resonator gyroscope.

Keywords: hemispherical resonator; dynamic model; frequency splitting; nonlinearity; method
of averaging

1. Introduction

The hemispherical resonator gyroscope (HRG) is a classic Coriolis vibration gyro-
scope [1-4], which utilizes the Coriolis effect on standing waves in an axisymmetric shell
to measure angular velocity with respect to the inertial space. Its characteristics of high
dynamics, high precision, high reliability, long service life, low power consumption and
miniaturization have attracted wide attention in recent years [5-11].

The basic fundamentals utilized in the HRG were discovered over a century ago by
G.H. Bryan [12]. The hemispherical shell, also known as the hemispherical resonator, is the
core component of the HRG. During the production of a hemispherical resonator, an uneven
distribution of mass can occur due to a workpiece clamping eccentricity, tool vibration, or
uneven tool wear, any of which will cause a decrease in the performance of the gyroscope.
There is a large amount of literature about mass defects in resonators [13-18]. However,
when studying dynamic models, researchers often use simple linear models, and few
pay attention to the effects of nonlinearity. In reference [7], the geometrical and electrical
nonlinearities of the hemispherical resonator were taken into account and the equation of
motion for the resonator was analyzed under parametric excitation. The nonlinear dynamic
equation for a rotating elastic ring resonator was established and solved by a numerical-
analytical method based on both the generalized Bubnov—Galerkin method (Kantorovich
method) and the direct method (Rothe method) [19]. In addition, with a linear law of
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Hemispherical resonator
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the angular rate, a nonlinear dynamic equation for the Coriolis vibratory gyroscope was
established, and the solution was expressed in terms of the Weber functions (the parabolic
cylinder functions) [20]. Due to the complexity of the nonlinear models, in reference [21] a
precise low-order model was studied by perturbation analysis with the Galerkin method
(or Ritz method), accounting for modal coupling and interactions. In reference [22], which
discussed the von Karman nonlinearity, a high-dimensional nonlinear dynamical equation
for the shell of revolution was formulated based on Love’s theory, and the influence of
meridian geometry on natural frequency was studied. The above references are crucial
resources for researching nonlinear dynamic models of hemispherical resonators. However,
they mainly focused on methods for solving natural frequencies or nonlinear equations,
without studying the influence of nonlinearity on standing wave precession.

In this paper, a dynamic model of a hemispherical resonator is established by consid-
ering the mass defects of the resonator and high-intensity dynamic processes. The dynamic
model is equivalent to a point mass harmonic vibration model in a two-dimensional space.
The equivalent model is analyzed using a method of averaging that separates the slow
variables from the fast variables to investigate the influence of nonlinear high-intensity
dynamic processes on the standing wave precession of a non-ideal hemispherical resonator.
The results reveal that taking into account the nonlinear terms about the square of the
angular velocity and the angular acceleration in the dynamic equation can weaken the
influence of the 4th harmonic component of the mass defect on standing wave drift. The
extent of this weakening effect varies with the dimensions of the mass defects.

2. Methods
2.1. Basic Structure and Working Principle of HRG

A hemispherical resonator gyroscope utilizes the rotation sensitivity of the second
order vibration mode of a hemispherical shell to measure the rotational angular velocity or
rotational angle of a carrier. This hemispherical shell is called a hemispherical resonator,
as shown in Figure 1a. When the resonator is vibrating in the second order mode, the
vibrating equatorial ellipse forms a standing wave with four equally-spaced antinodes
(locations of maximum displacement) and four nodes (locations of zero displacement, at
least in the radial direction) in between [5], as shown in Figure 1b. When such a standing
wave is present in the shell, a rotation about the shell axis (the symmetric axis of the stem)
produces Coriolis forces on the vibrating mass elements, causing the standing wave to
change its position on the shell, as shown in Figure 1c.
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o

Figure 1. (a) Structure diagram of the hemispherical resonator gyroscope; (b) Operation mode shape

Flat electrode bases ference poin

Nodes

of the hemispherical resonator; (c) Precession effect of the standing wave.

Ideally, the relationship between the precession angle ¢ of the standing wave and
the angular velocity (2 is ¢ = KQ. K is called the precession coefficient, also known as the
Bryan factor [5,12].

2.2. Dynamical Models of Hemispherical Resonators

The hemispherical resonator is the core component of a hemispherical resonator
gyroscope, and its vibration characteristics are critical to the performance of the gyroscope.
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In order to describe the deformation and motion of the hemispherical resonator, dynamic
models of an ideal and non-ideal hemispherical resonator are established based on the thin
shell theory of elasticity and the Lagrange’s second kind equation.

2.2.1. Strain Energy of Hemispherical Resonator

The thickness of a hemispherical resonator is much smaller than its surface radius,
based on the thin shell theory of elasticity [23]. The geometric equation of the hemispherical
resonator can be expressed as

_ 1(du —_ 1w _ w

e1 = g(5 tw), X1= —R2o2 — R
_ 1 v : _ 1 2w cotw dJw w

£2= Rsina(ﬁ —G—MCOSD(—l-ZUSll‘IIX), X2 = " RZsinZa o2~ RZ oa  R%’ @
= 1 CITNNIC Y — 1 %w ow

€12 = Rsing (§; T g SiN& —vcosa), X2 = — oo (s — cotady),

where €1 and ¢&; are the normal strains of point M on the middle surface in the directions
« and 7 respectively. £1; is the shear strain. x; and ), are the changes in the principal
curvature. 1 is the change in the twist rate in the directions @ and 7, as shown in Figure 2.
R is the radius of the middle surface. The displacement of point M is expressed by u, v and
w, respectively, after the hemispherical resonator is deformed.

@ | (b)

7 Outer surface

Inner surface  Middle surface

Figure 2. (a) Related coordinate systems; (b) Micro-element body of a hemispherical resonator.
The strain relationships between point M’ and corresponding point M are
e = €1+ X17, 2 = &2+ X27, 12 = €12+ 2X127, 2

where the normal strains of point M’ in the directions « and 7 are expressed by ¢; and e
and the shear strain is expressed by ej,, as shown in Figure 2. Based on the thin shell theory
of elasticity [23], the physical equation of the hemispherical resonator can be expressed as

o = 1,Eyz [(e1 + pe2) + (X1 + ux2)7],

o2 = 5 l(e2 + per) + (x2 + pxa) 7, ©)

Tip = 2(17%(512 +2x127),

where the normal stresses at point M’ in the directions « and 4 are expressed by ¢ and 07,

respectively. Shear stress is expressed by T1,. p is Poisson’s ratio and E is Young’s modulus.
Then, the strain energy of the hemispherical resonator is

h 2 T
Ep = %R2/Zh / /2 (o1e1 + 02e2 + Tipe12) sinw dadndy. (4)
~Jo Jo
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Substituting Equations (1)—(3) into Equation (4), the strain energy is simplified as
Ep = bo(p* + %), 5)

where the coefficient by is a constant value after integration, which can be found in
Appendix A, Equation (A1). Here, the mass defect does not affect the potential energy.
Next, the kinetic energy will be calculated separately for the ideal and non-ideal resonators.

2.2.2. Kinetic Energy of the Hemispherical Resonator

In order to reflect the mass defects of the non-ideal hemispherical resonator, we assume
that its thickness is uniform, and we expand its density into a Fourier series with respect to
the circular angle. When the hemispherical resonator operates in the second order vibration
mode, the displacement of point M on the middle surface is [18,24]

t

u(a,n,t) a)[p(t) cos2n + q(t) sin2y],

- U(w)
v(a,n,t) = V(a)[p
w(a,n,t) = W(a)[p(t) cos 2y + q(t) sin27],

(t)
(t)

t) sin2y — q(t) cos 2y, (6)

where p(t) and g(t) are the generalized coordinates, reflecting the changes in two modes
of the hemispherical resonator over time. U(a), V(x) and W(«) are the Rayleigh func-
tions [24,25], as follows.

U(x) = sinatan®(§),
V(a) = —sinatan?(§), )
W(a) = —(2+ cosa) tan?(%).

When the hemispherical resonator rotates around its axis of rotational symmetry in

inertial space at any angular velocity (2, the absolute speed V; of point M’ in the shell is

J : By
—Q[U(l-i- ) - ﬁ%} cosa+u(l+ %) — 5=
v

Vo= Q(R+’y+w)sina+ﬂucosa+z}(1+%)—Rsim% , 8)

_Q[U(l + %) - Rs’iyna %‘;] sina + w

Then, the kinetic energy of the hemispherical resonator is

1 2 '71 27 % 2 .
Er = §R / h/ / (vq) " psina dadnydy. )
~iJo Jo

The thickness /1 and density p of the ideal hemispherical resonator are uniform and
constant. Substituting Equations (6)—(8) into Equation (9), the kinetic energy of the ideal
hemispherical resonator is

Er = a0 +a(p° +§°) + a2 (qp — pq) Q + az(p* + 2) 2, (10)

where coefficients ag, a1, a; and a3 are all constant values after integration. The expressions
for them are complicated and cumbersome, but they do not affect the following theoretical
analysis, so the specific integral formulas of these coefficients are not listed here. The
integral formulas can be found in Appendix A, Equation (A2).

In order to reflect a mass defect in a non-ideal hemispherical resonator, the density
p is expanded into a Fourier series with respect to the circular angle #. Since the frequency
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splitting of the hemispherical resonator is mainly caused by the 4th harmonic term [18],
only the constant term and the 4th harmonic term are retained here.

p(1) = po[l + egcos(4(y7 — 04))], (11)

where pg is the average density (equal to the density p of the ideal hemispherical resonator)
and g4 and 6, are the relative amplitude and phase angle of the 4th harmonic of density
anisotropy, respectively.

Substituting Equations (6)—(8) and (11) into Equation (9), the kinetic energy of the
non-ideal hemispherical resonator is

_ _ .2 _ .2 _ . _ . _ _ _ .
Er = a0 +mp +a2q" + (@3qp — aapq) Q + (asp® + aeq” + a7pq) Q> + agpq,  (12)

where ay - - - ag are all constant values after integration. Similarly, the expressions for them
are not listed here, but can be found in Appendix A, Equation (A3).

2.2.3. Dynamic Equations of the Hemispherical Resonators

The dynamic equations of an ideal and non-ideal resonator are established by the La-
grange’s second kind equation using the kinetic energy and strain energy of the resonators.

$&)-% =0

ap’/  9p
! (13)
Q(ZLL)_ZLL =0

where the expression of the Lagrange function L is L = Eg — E. Substituting Equations (5)
and (10) into Equation (13), the dynamic equation of the ideal hemispherical resonator is

b+ 10§+ (c3 — ca?)p+ $Qq =0,

. (14)
j—c1Qp+(c3—c?)g—3FQp =0,
where ¢ = %/CZ = %,Q — %0
The natural frequency of the ideal hemispherical resonator is
_ v _ Ve
f=m=m (15)

Substituting Equations (5) and (12) into Equation (13), the dynamic equation of the
non-ideal hemispherical resonator is

f)—l— 7CHJZFC]2 Qq + (C16 — C13QZ)p + (%Q - %Qz>q + C175q =0,

(16)
5 Ca1ten 2 2 _ 242 €55
§— DFROp+ (e — )+ (~ RO - FQ2)p+ Fp =0,
where
a a. a a a; b
Cn=g, 2=z, C3=7,C4=7,C5=72,Cl6= 7, a7
a a. a a; a b
Co1 = 75, €2 = zt, €3 = 35, Coa = g5, €25 = 3, C26 = oo

The natural frequencies of the two modes are no longer equal due to the mass defect.

w1 = +/C16, W2 = /C26. (18)
Therefore, the frequency splitting equation is

Aw w1 —w

Af = 2n 2m (19)
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In this paper, frequency splitting is only used to reflect the dimensions of mass defects
which, when calculated with no angular velocity (2, can effectively reflect the dimen-
sions of mass defects. In addition, we mainly focus on the precession of the standing
wave in this paper, but centrifugal force does not cause the precession of the standing
wave [26]. To simplify the analysis, we do not consider the effects of centrifugal force in
Equations (15), (18) and (19). Equation (16) is the starting point for analyzing the influence
of nonlinear high-intensity dynamic processes on standing wave precession in a non-ideal
hemispherical resonator.

2.3. Method of Averaging

Since the generalized coordinates p and g change very rapidly with time (they are
called the fast variables), it is difficult to establish a clear correlation with the angular
velocity. However, the parameters of the ellipse determined by the trajectory of a point
(p, q) change very slowly. These parameters are called the slow variables and can be
well correlated to the angular velocity. The dynamic models of the ideal and non-ideal
hemispherical resonators are solved using the method of averaging, separating the slow
variables from the fast variables.

2.3.1. Solution to the Ideal Hemispherical Resonator

To facilitate the following analysis, the dynamic equation of the ideal hemispherical
resonator is simplified into the following form.

D+ wip = —k10Qq — sz + k3.()2 ,
p p q | q p (20)
i+ w*q = k1OQp + kQp + ks (?q,

where p and g are the generalized coordinates, that is, the fast variables we mentioned at
the beginning. In addition, w?=c3, k1 =c1, kp = %cl, ks = c;.

When there is no angular velocity acting on the resonator, the solution to Equation (20)
has the following form [27]

= acosfcos @ — bsinfsin @,
{ p ¢ ¢ 2

g =acosfsin¢ + bsin b cos ¢,

where 6 = wt + B. Then, Equation (21) is equivalent to the linear vibration equation of a
point mass in the two-dimensional space, as shown in Figure 3a. The point (p, ) represents
the generalized displacement of the point mass [27], and its motion trajectory is an ellipse.

(@)

(b) A,

Point mass  _| _
-

Point - [N p
>\ 0.9)"\

| \ ,
\ R4 |
\
/

. \ /p .
Stationary™ __ _~ Precession

~ 1 —

ellipse +— ellipse

Elliptic
trajectory

Figure 3. (a) Vibration model of a point mass in a two-dimensional space; (b) Elliptic trajectory of the
point (p, q).

If the angular velocity is not zero, then parameters 4, b, ¢ and  (these four parameters
are called the slow variables) will change over time. Parameter a represents the major
semi-axis of the ellipse, b represents the minor semi-axis of the ellipse, ¢ represents the
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azimuth angle of the ellipse (i.e., the standing wave precession angle), and  represents
the initial phase angle. Here, we mainly focus on the standing wave precession angle ¢.
Assuming that (2 < w, the trajectory of the point (p, q) is no longer a stationary ellipse. It
is a precession ellipse, as shown in Figure 3b. However, the vibration period can still be
approximated as T = 27t/ w.

The differential equations describing the standing wave precession angle ¢ are ob-
tained using the method of averaging [27].

k1

Q= —EQ, (22)

2.3.2. Solution to the Non-Ideal Hemispherical Resonator

In order to facilitate the following analysis, the dynamic equation of the non-ideal
hemispherical resonator is simplified into the following form.

f’ + wzp = —knﬁq — k12.Qf9 + (k13QZ — k14Q — k15QZ + wp)p + (—kmﬁ + k1702 + k1g — k1902)q,

(23)

é + wzq = anf) + kzqu + (kngz + k24Q — k25.02 + Wq)q + (k26O + k27.Q2 + kzg — kngz)p,

where the coefficients or variables w1, wy, k11 - - k19 and kp7- - - kpg are all constant values
and the expressions for them are given as

ki1 = 3(ci1 +c12), k1o = teis(car +c2), kiz = c13, kia = foisca, kis = jeiscas,
kig = c11, kiz = 3c1s, ki = ciscos, kg = Seises, w?=rcip, wp = w? — W, 24)
ko1 = 3(c1 +¢22), koo = feos(c11 +c12), ko =23, koa = joasc11, ks = cascus,
kae = 320, ko = §coa, kos = %cosc16, koo = Feosc13, Wi = a6, wy = w? — w3
The differential equations describing the standing wave precession angle ¢ are ob-
tained using the method of averaging [27]
¢ = —m [sin @ sin @(a?x5 — abxy + abxs — b?x7) + cos ¢ cos ¢(a*x7 — abxz + abxy — b%xs)

(25)

+ cos ¢ sin @(a%xg + a®xg + b>xg + bPxg + 2abxy + 2abx1 )],

where the coefficients x;- - - xg are all constant values and the expressions for them are
given as

X1 = —kigQ + ki7Q% + kig — k19Q?, xp = k1302 — k11Q — ks Q2 + wp,
X3 = ko3 + ka2 — ks + wy, x4 = ko Q + ko7 Q2 + kg — kpo(2?, (26)

X5 = kan, X = klsz, X7 = k21a)(2, xXg = k22wQ .

3. Results and Discussion

According to the above dynamic equations and the slow variable (standing wave pre-
cession angle ¢) differential equations that describe the ideal and non-ideal hemispherical
resonators, simulation experiments were carried out from two perspectives. One used the
changing law of fast variables, the other used the changing law of slow variables.

3.1. Frequency Splitting and Angular Velocity

According to the geometric and physical parameters given in Table 1, the natural fre-
quency of the ideal hemispherical resonator is f = 4956.1165 Hz, as shown in Equation (15),
and the frequency splitting of the non-ideal hemispherical resonator is Af = 0.0397 Hz, as
shown in Equation (19).
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Table 1. Geometric and physical parameters of the hemispherical resonator.

Symbol Variable Value [unit]
R Radius of the middle surface 15 mm
H Thickness 0.85 mm
E Young’s modulus 76.7 GPa
0 Density 2200 kg/m?3
U Poisson’s ratio 0.17
00 Average density 2200 kg/m?3
€4 Relative amplitude 1.0 x 10~*
04 Relative phase mt/7 rad

The angular velocity of the hemispherical resonator is set to 2 = C(1 — e~ ¢/) [19],
where the parameter C represents the magnitude of angular velocity. The larger C is, the
larger the angular velocity is. The parameter ¢ represents the severity of the change in
angular velocity. The larger the parameter ¢ is, the more drastic the changes in angular
velocity are. Four angular velocities are set as shown in Table 2.

Table 2. Angular velocity.

Symbol Parameter C (rad/s) Parameter ¢ (1/s)
Angular velocity (2; 2.0 0.1
Angular velocity (2, 2.0 1.0
Angular velocity (23 8.0 0.1
Angular velocity (24 8.0 1.0

3.2. Comparison of the Change Law of Fast Variables

The 4th order Runge-Kutta method is used to numerically solve the nonlinear
Equations (14) and (16). The vibration of the hemispherical resonator is described by the
fast variables p(t) and q(t), which indirectly reflect the precession of the standing wave.
In response to the four angular velocities, the p(t) variables of the ideal and non-ideal
hemispherical resonators are shown in Figure 4.

Comparing Figure 4a with Figure 4b, it was observed that as ¢ increases (in the
case of C = 2), the p(t) of the non-ideal hemispherical resonator approaches the change
law of the ideal hemispherical resonator. Similarly, comparing Figure 4c with Figure 4d,
as ¢ increases (in the case of C = 8), the p(t) of the non-ideal hemispherical resonator
approaches the change law of the ideal hemispherical resonator. Comparing Figure 4a
with Figure 4c, it was observed that as C increases (in the case of ¢ = 0.1), the p(t) of the
non-ideal hemispherical resonator approaches the change law of the ideal hemispherical
resonator. Similarly, comparing Figure 4b with Figure 4d, as C increases (in the case of
¢ = 1), the p(f) of the non-ideal hemispherical resonator approaches the change law of the
ideal hemispherical resonator.

In response to the four angular velocities, the g(t) values of the ideal and non-ideal
hemispherical resonators are shown in Figure 5. Comparing Figure 5a with Figure 5b, it was
observed that as ¢ increases (in the case of C = 2), the g(t) of the non-ideal hemispherical
resonator approaches the change law of the ideal hemispherical resonator. Similarly,
comparing Figure 5c with Figure 5d, it was observed that as ¢ increases (in the case of
C =38), the g(t) of the non-ideal hemispherical resonator approaches the change law of the
ideal hemispherical resonator. Comparing Figure 5a with Figure 5¢, it was observed that
as C increases (in the case of ¢ = 0.1), the g(t) of the non-ideal hemispherical resonator
approaches the change law of the ideal hemispherical resonator. Similarly, comparing
Figure 5b with Figure 5d, it was observed that as C increases (in the case of ¢ = 1), the
q(t) of the non-ideal hemispherical resonator approaches the change law of the ideal
hemispherical resonator.
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Figure 4. Fast variable p(f) changes over time. (a) Angular velocity (2; (b) Angular velocity (2;;
(c) Angular velocity (23; (d) Angular velocity (24.

—ideal hemispherical resonator
= = non-ideal hemispherical resonator

——ideal hemispherical resonator
— = non-ideal hemispherical resonator

3 6 9 10 o 3 6 9 10

Time 7 (s) Time 7 (s)
(© 6 (d) 6
15 x 10 i 15 x 10 i i
ideal hemispherical resonator ——ideal hemispherical resonator
1 = = non-ideal hemispherical resonator 1 = = non-ideal hemispherical resonator
E E
S S
2 =2
° °
] 8
g O 50
> >
7] 7]
< <
= =
-1r —-1F
-12 ' ' ‘ 12 . - .
0 3 6 9 10 0 3 6 9 10
Time 7 (s) Time 7 (s)

Figure 5. Fast variable g(t) changes with time. (a) Angular velocity (2;; (b) Angular velocity (2;;
(c) Angular velocity 23; (d) Angular velocity (24.
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Compared with the results of references [19,20], which studied the dynamics of an
elastic ring resonator under high-intensity dynamic processes in the presence of mass
defects, the influence of high-intensity dynamic processes on the fast variables (general-
ized displacement) of the hemispherical resonator is similar to that observed on the ring
resonator. Due to the fact that the standing waves are formed by the superposition of
two modes, the results indirectly prove that taking into account the nonlinear terms about
the square of the angular velocity and the angular acceleration in the dynamic equation
can weaken the influence of the 4th harmonic component of the mass defect on standing
wave drift.

3.3. Comparison of the Change Law of Slow Variable

In order to highlight the influence of high dynamics on the standing wave of a hemispher-
ical resonator with a mass defect, simulation experiments were conducted under conditions
of no angular velocity, a small uniform angular velocity and high dynamic, respectively.

3.3.1. No Angular Velocity and Small Uniform Angular Velocity

In order to observe the influence of a mass defect on the vibration performance of
the non-ideal hemispherical resonator, the change of the slow variable ¢ (standing wave
precession angle) between the ideal resonator and non-ideal resonator were compared
according to Equations (22) and (25). The word “ignored” indicates that we disregarded
the nonlinear terms about the square of angular velocity and the angular acceleration in
Equations (22) and (25).

The standing wave precession angle serves as a bridge used by the hemispherical
resonator gyroscope to reflect the angular velocity, which directly affects the sensitivity
of the gyroscope. From Figure 6a, it can be seen that in the case of no angular velocity, in
contrast to the performance of an ideal resonator, a mass defect causes periodic fluctuations
in the standing wave precession angle ¢. From Figure 6b, it can be seen that the mass defect
causes nonlinear changes in the standing wave precession angle ¢, exhibiting periodic
fluctuations (the ideal resonator changes linearly). From Figure 6¢, it can be seen that the
difference of slow variable A, under two different angular velocities, exhibits a monotoni-
cally decreasing trend over time in the ideal resonator. However, this difference shows a
periodic fluctuating trend over time in the non-ideal resonator. This indicates that a mass
defect of a resonator can cause the standing wave to oscillate periodically over time. Hence,
when subjected to a small uniform angular velocity rotation, the influence of a mass defect
on the standing wave precession angle is significant. This is why researchers compensate
for standing wave drift in a hemispherical resonator gyroscope control system.

(b) ©)
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Figure 6. Change law of slow variable ¢. (a) No angular velocity; (b) Small uniform angular velocity.
(c) Difference of slow variable Ag under two different angular velocities.
3.3.2. High-Intensity Dynamic

To highlight the impact of high dynamics on the standing wave precession angle, for
these four angular velocities, the changes in the slow variable ¢ of the ideal hemispher-
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ical resonator, the non-ideal hemispherical resonator, the ideal resonator hemispherical
resonator (ignored) and the non-ideal hemispherical resonator (ignored) are shown in the
figures below. The word “ignored” indicates that we disregarded the nonlinear terms about
the square of angular velocity and the angular acceleration in Equations (22) and (25).

On the whole, ignoring the nonlinear terms about the square of the angular velocity
and the angular acceleration causes less error in modeling both the ideal and the non-ideal
resonators. Comparing Figure 7a with Figure 7b, it was observed that as ¢ increases (in the
case of C = 2), the change law of the non-ideal hemispherical resonator (ignored) approaches
that of the ideal hemispherical resonator (ignored). Similarly, comparing Figure 7c to
Figure 7d, it was observed that as ¢ increases (in the case of C = 8), the change law of the
non-ideal hemispherical resonator (ignored) approaches that of the ideal hemispherical
resonator (ignored). Comparing Figure 7a with Figure 7c, it was observed that as C increases
(in the case of ¢ = 0.1), the change law of the non-ideal hemispherical resonator (ignored)
approaches that of the ideal hemispherical resonator (ignored). Similarly, comparing
Figure 7b with Figure 7d, it was observed that as C increases (in the case of ¢ = 1), the
change law of the non-ideal hemispherical resonator (ignored) approaches that of the ideal
hemispherical resonator (ignored).
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Figure 7. Change law of the standing wave precession angle ¢. (a) Angular velocity (21; (b) Angular
velocity (2;; (¢) Angular velocity (23; (d) Angular velocity (24.
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In order to observe more clearly the influence of ignoring these nonlinear terms on the
standing waves of ideal and non-ideal hemispherical resonators, respectively, we adopted
Ag (the difference in standing wave precession angle) as an evaluation indicator.

Ap = Pnon-ignore — Pignore (27)

where subscript “ignore and non-ignore” represent ignoring and not ignoring these nonlin-
ear terms in the dynamic equations, respectively. For each group (Ideal resonator group
or Non-ideal resonator group), the evaluation indicator A is simulated under these four
angular velocities, as shown in the following figures.

As can be seen from Figure 8a, ignoring the nonlinear terms affecting the square of the
angular velocity and the angular acceleration results in zero error for the ideal resonator,
which is also consistent with the results of Equation (22). From Figure 8b, it can be seen
that for a non-ideal resonator, the difference in the standing wave precession angle caused
by ignoring the nonlinear terms becomes more and more significant as the angular velocity
changes more and more sharply. It is important to note that the standing wave precession
angle is sensitive to these nonlinear terms.

—~
(>3
-’

%107

—— Angular velocity .Q] Angular velocity (22

W W

—— Angular velocity QI

Angular velocity !23 — — Angular velocity !24

Angular velocity 2,

—— Angular velocity 93 ]
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Difference of precession angle A@(rad)
|
wn

Time 7 (s) Time ¢ (s)
Figure 8. Ag in each group. (a) Ideal resonator group. (b) Non-ideal resonator group.

In addition to comparing the standing wave precession of ideal and non-ideal hemi-
spherical resonators under high-intensity dynamics, the next step is to study the influence
of different mass defects on the standing wave precession of non-ideal hemispherical res-
onators under the same high-intensity dynamics. The mass defects cause the standing wave
precession angle of the hemispherical resonator to drift. Meanwhile, in order to observe
more clearly the weakening effect of high-intensity dynamic processes on this phenomenon,
we adopted A (the ratio of the standing wave precession angle of the hemispherical res-
onators) as an evaluation indicator.

A = Pnon-ideal (28)
Pideal

where the subscript “ideal and non-ideal” represent ideal hemispherical resonator without
mass defects and non-ideal hemispherical resonator with mass defects, respectively. For
different mass defects (small or large), A was simulated under these four angular velocities,
as shown in the following figures.

Hemispherical resonators are usually made of fused quartz shaped by precise mechan-
ical processing, and their mass defects are relatively small, often resulting in frequency
splitting of less than 0.1 Hz. According to Equation (11), the dimension of mass defects is
reflected by parameter ¢4, the relative amplitude of the 4th harmonic of density anisotropy,
which is set to two cases, as shown in Table 3. The other parameters” settings remain
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Ratio of precession angle A

unchanged, as shown in Table 1, and the frequency splitting is shown in Table 3, calculated
by Equation (19).

Table 3. Dimension of mass defects.

Case Number Parameter &4 Frequency Splitting Af (Hz)
Case 1 (small) 1.0 x 107° Af1 = 0.00397
Case 2 (large) 1.0 x 1074 Af, =0.03970

According to Figure 9 and Table 2, it can be seen that for the same angular velocity, the
larger the mass defect, the larger the ratio of precession angle A. For the same mass defect,
comparing angular velocity (2; with angular velocity (23 or comparing angular velocity
2, with angular velocity (24, it can be seen that as C increases, the value of A decreases,
which reflects the fact that the larger the angular velocity amplitude, the smaller the value
of A. Furthermore, for the same mass defect, comparing angular velocity (2; with angular
velocity (2, or comparing angular velocity (23 with angular velocity (24, it can be seen that
as ¢ increases, the value of A decreases, which reflects that the more drastic the change in
angular velocity, the smaller the value of A. The closer the value of A is to 1, the closer the
standing wave precession angle of non-ideal resonator is to that of the ideal resonator. In
other words, the value of A reflects the extent of drift of the standing wave precession angle.
The smaller the value of A, the weaker the extent of drift, that is to say, the weaker the
influence of mass defects. From the above we can determine that a high-intensity dynamic
process can weaken the influence of a mass defect on the standing wave drift of a non-ideal
hemispherical resonator. The extent of this weakening effect varies with the dimensions of
the mass defect.
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Figure 9. Ratio of standing wave precession angle of the hemispherical resonators. (a) In the case of a
small mass defect; (b) In the case of a large mass defect.

4. Conclusions

In this paper, based on the thin shell theory of elasticity, the nonlinear terms about the
square of the angular velocity and the angular acceleration, as well as the mass defects of
the hemispherical resonator are taken into account. A dynamic model of the hemispherical
resonator is established precisely by the Lagrange’s second kind equation. The dynamic
model can be equivalently transformed into a point mass harmonic vibration model in
a two-dimensional space, and it can also be analyzed using a method of averaging that
separates the slow variables from the fast variables in the established model. The simulation
experiments were carried out from two perspectives, one using the change law of the fast
variables, the other using the change law of the slow variable. The results show that mass
defects will cause the standing wave of a resonator to drift, even if the hemispherical
resonator is in a non-rotating state. In addition, the larger the mass defects, the greater their
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influence on the standing wave drift of a non-ideal hemispherical resonator/* under the
same high-intensity dynamics.

Whether from the view of the fast variables or the slow variables, the larger the angular
velocity amplitude is, or the more drastically the angular velocity changes, the more closely
the changing law of the non-ideal hemispherical resonator approaches that of the ideal
hemispherical resonator, which reveals that the high-intensity dynamic process can weaken
the influence of the 4th harmonic component of the mass defects on the standing wave drift
of a non-ideal hemispherical resonator. The extent of this weakening effect varies with the
dimensions of the mass defects. The research in this paper provides important guidance
for improving gyroscope accuracy in the future by dynamically compensating for the drift
of an unbalanced hemispherical resonator in an environment of large angular rate and
angular acceleration, particularly in the case of high frequency vibrations.

To further improve the accuracy of hemispherical resonator gyroscopes, a balancing
process (such as mechanical balancing, chemical balancing, laser balancing or ion beam
balancing) must be applied during resonator manufacturing to reduce frequency splitting
caused by mass defects. In addition, in order to avoid damaging hemispherical resonators,
non-contact testing should be used to identify mass defects in them, such as detecting vi-
bration signals from the lips of resonators using a Doppler laser vibrometer and measuring
electrical signals using electrostatic excitation and detection, etc.
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Appendix A. Coefficients of Strain Energy and Kinetic Energy

The expression for coefficient by of Equation (5) can be given as

2 2
2 [(1= ) W(w) + B8 cota] + S (20 — W(a) cota

o

=

da (A1)

da? sin? & o2

+%[W(lx)+azww)r{(l_L)W(W)‘f‘%COtw}%[W(@ﬁ-azw(“}r

The expressions for coefficients ay, a1, a, and a3 of Equation (10) can be given as

zh fo% 20R* sin® ada

fog p[U%(a) + V2(a) + W?(a)] sinada

(A2)

nthfO% pV(a)[U(«) cosa + W(a) sina] sin ada

%szo% p[U?(a) cos? a +2U () V(a) sina cos a + V() + W2 (a) sin® a] sin ada

The expressions for coefficients ay - - - ag of Equation (12) can be given as
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