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Abstract: As the number of electronic gadgets in our daily lives is increasing and most of them
require some kind of human interaction, this demands innovative, convenient input methods. There
are limitations to state-of-the-art (SotA) ultrasound-based hand gesture recognition (HGR) systems
in terms of robustness and accuracy. This research presents a novel machine learning (ML)-based
end-to-end solution for hand gesture recognition with low-cost micro-electromechanical (MEMS)
system ultrasonic transducers. In contrast to prior methods, our ML model processes the raw echo
samples directly instead of using pre-processed data. Consequently, the processing flow presented
in this work leaves it to the ML model to extract the important information from the echo data.
The success of this approach is demonstrated as follows. Four MEMS ultrasonic transducers are
placed in three different geometrical arrangements. For each arrangement, different types of ML
models are optimized and benchmarked on datasets acquired with the presented custom hardware
(HW): convolutional neural networks (CNNs), gated recurrent units (GRUs), long short-term memory
(LSTM), vision transformer (ViT), and cross-attention multi-scale vision transformer (CrossViT). The
three last-mentioned ML models reached more than 88% accuracy. The most important innovation
described in this research paper is that we were able to demonstrate that little pre-processing is
necessary to obtain high accuracy in ultrasonic HGR for several arrangements of cost-effective
and low-power MEMS ultrasonic transducer arrays. Even the computationally intensive Fourier
transform can be omitted. The presented approach is further compared to HGR systems using other
sensor types such as vision, WiFi, radar, and state-of-the-art ultrasound-based HGR systems. Direct
processing of the sensor signals by a compact model makes ultrasonic hand gesture recognition a
true low-cost and power-efficient input method.

Keywords: MEMS ultrasonic transducer; pre-processing; Fourier transform; machine learning; HMI

1. Introduction

Devices that automate our everyday lives, as in smart cities reported about in [1], and
advancements in augmented and virtual reality, as described in [2,3], create a need for
new, convenient input methods. HGR is a particularly intuitive form of human–computer
interaction (HCI) because people naturally use their hands to communicate with others,
as paper [4] states. Additionally, these technologies should be lean regarding cost and
power consumption. There are HGR systems based on other sensors such as vision [5–11],
radar [12–14], and WiFi [15–22]. Ultrasound-based HGR systems such as those surveyed
in [12] or presented in [23] require the user to wear a device to record the hand gestures.
Other systems use beamforming, like in [24,25]. The researchers in the latter one addi-
tionally use more and bigger ultrasonic transducers. The authors of [26,27] are unable to
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recognize movements horizontal to the ultrasound sensor array. Other previous ultrasound-
based HGR systems use the Fourier transform [28–33]. The presented system is hands-free,
works solely in the time domain, and can recognize swipe gestures. The visible parts of an
HGR system are the hand movement itself, the sensors that record the movement, and a
processor. Invisible to the user, processing usually consists of two steps: pre-processing
and classification. The aim of pre-processing is to prepare the raw input data for the actual
classification, which follows in a second step. Afterwards, the result is typically displayed
to the user. Figure 1 presents this HGR processing flow, which is independent of the type
of sensors used. Several sensor types have already been considered for HGR to improve
user experiences for HCI. In the following, vision-, radar-, WiFi-, and ultrasonic-based
systems are compared based on current research. This comparison can be done regarding
pre-processing, classification, accuracy, number of gestures, and type of gestures. Pre-
processing ranges from channel state information (CSI) and different types of Doppler
maps to raw image or radar data. All Doppler maps are based on the Fourier transform.
CNN classification is used on data from all sensor types. There are extremely accurate sys-
tems for data from every sensor type. But the level of detail in the classified gestures varies
substantially as the sets of customized hand gestures being detected differ significantly in
granularity, complexity, and number of gestures. Vision-based systems can recognize words
through lip reading, and radar-based ones can recognize letters from sign language, while
WiFi- and ultrasound-based systems require more coarse gestures. The versatile algorithms
for pre-processing and processing available for vision- and radar-based systems show that
these technologies are the most researched ones to date. Upon comparing sensor types, it
becomes clear that ultrasound cannot achieve the same accuracy or number of gestures
as vision- and radar-based systems but requires the least power and can be realized with
low-cost HW. Difficulties of ultrasound-based HGR are summarized in Table 1. Table 2
emphasizes the comparison of different sensor types, and Table 3 points out differences
among ultrasound-based systems. To the authors’ knowledge, this is the first implementa-
tion of ultrasound-based hand gesture recognition using raw echo data and, in fact, the first
implementation in the time domain only. Our solution incorporates swipes, in contrast to
most previous ultrasound-based HGR systems. All classification is done on the basis of the
data from only two or three MEMS ultrasonic transducers used as receivers. Furthermore,
even the sender is a MEMS ultrasonic transducer, which has very low output pressure. For
this reason, our received signals come with very low SNRs. Nevertheless, we classify our
data using gate-based, convolution-based, and transformer-based DL architectures. Each
of the architectures requires a specific input data shape, which we come up with on the
basis of our domain knowledge from our ultrasound data, along with iterations of tests to
discover which input shape produces the best results. Finally, we do manual model tuning
for all presented classification algorithms.

Figure 1. Sensor-agnostic HGR processing flow.

The remainder of the manuscript is structured as follows: Section 2 presents an
overview of the SotA in HGR through research work on the topic and covers several differ-
ent sensor types and explains the used pre-processing and classification methodologies.
Specific challenges of ultrasound-based HGR are described in Section 2.3. Furthermore,
this paper is placed in the SotA. Section 3 characterizes the used HW and explains the
datasets. After that, Section 4 explains the classification methodology. Then, a discussion of
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the findings is given in Section 6. In Section 7, conclusions are made based on the results.
Finally, this paper closes with possible future research directions.

Table 1. Challenges of ultrasound HGR systems.

Type Reason Challenge

Physics of airborne ultrasound Wind, humidity, temperature Different speeds of
ultrasound waves

Physics of airborne ultrasound
Ultrasound waves are
mechanical waves transmitted
and received by a membrane

Echo is not a single peak

Physics of airborne ultrasound High attenuation of
ultrasound in air Low SNR

Physics of airborne ultrasound Surrounding static objects Static echos

Physics of airborne ultrasound Repeated reflection Phantom echos

HW specific Low number of transducers Low resolution

HW specific Low echo delay differences
between receivers

Low distance between
receivers

HW specific Low emitting power of the
sender Low SNR

HW specific Transducer instead of separate
sender and receiver

Lower sending power, lower
receiver resolution, lower SNR

HW specific Transceiver noise Low SNR

General No public training data No pre-training of model on
public dataset

Table 2. SotA comparison of the considered sensor types for HGR.

Sensor Type Pre-Processing Classification Accuracy Number of
Gestures Type of Gestures Reference

Vision

CNN based, skin
color detection,
morphology,
background
subtraction, raw
image data, color
space, Gaussian
mixture model,
semantic-
segmentation-
based
deconvolution
NN, Canny
operator edge
detection, transfer
learning, color
cloud, neural gas,
directional active
model

CNN, GRU, LSTM,
symmetric-
positive-definite-
manifold-based
NN,
softmax-classifier,
SVM, transfer
learning, SNN

85.3–100% 7 to 14

Custom hand
gestures, hand
tracking, hand
edge detection

[5–11]
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Table 2. Cont.

Sensor Type Pre-Processing Classification Accuracy Number of
Gestures Type of Gestures Reference

Radar (pulsed,
Doppler, FMCW,
other actuation)

Time-Doppler,
range-Doppler
(most common),
time-velocity,
range-amplitude,
time-range,
time-amplitude,
time-RCS, point
cloud

CNN, energy
estimation, HMM,
RNN, random
forest, naive Bayes,
kernel estimators,
SVM, QEA, kNN,
conditional
statements,
k-means
clustering,
GoogLeNet,
observing
back-scattered
waves, SNN

82 to 99.5% 2 to 15

Letters from sign
language, finger
counting, digit
writing, static
hand postures,
midair signature
tracking, custom
hand gestures,

[12–14]

WiFi (RSSI, CSI,
FMCW)

Signal strength,
channel
conditions,
properties of
wireless links,
frequency shift,
angle of arrival

CNN, DTW, SVM,
self-attention-
based

51 to 99.69% 4 to 11

Finger, hand, arm
gestures, hand
tracking, fall
detection

[15,17–22]

Ultrasound Raw amplitude
values

CNN, GRU, LSTM,
ViT, CrossViT

85% to
95% (100%
for tap vs.
swipe)

4 to 6 Hand gestures This paper

Table 3. SotA comparison of approaches using ultrasound for HGR; simple gesture = movement
in one direction, macro = whole hand involved; complex = at least two directions in one gesture;
micro = finger gestures.

Type of
Actuation

Pre-
Processing Classification Accuracy Number of

Gestures
Type of
Gestures Reference

pulsed single
frequency TOF MLP, LSTM,

CNN 92.87% 7 simple, macro [26]

continuous,
single-
frequency
wave

spectrogram thresholds 94.7% (home), 94.3% (cafe) 8 simple, macro [28]

pre-defined
training
sequence

spectrogram
and CIR CNN 97.92% 12 complex, fine [29]

pulsed single
frequency spectrogram CNN 96.7%/97.8%/95.5% 8/4/4

all /macro,
simple/micro,
simple

[30]
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Table 3. Cont.

Type of
Actuation

Pre-
Processing Classification Accuracy Number of

Gestures
Type of
Gestures Reference

pulsed
single
frequency

spectrogram,
dynamic
speed
warping
pattern
matching

one-shot
learning,
kNN,

up to 99.36% (four users for training) 9
simple and
complicated,
macro

[31]

continuous
single
frequency

spectrogram,
delay-and-
sum
beamform-
ing

temporal
convolu-
tional
network
(TCN)

93% to 100% 6 simple,
macro [32]

pulsed
single
frequency

spectrogram,
TOF CNN 91% to 93% 4 complex,

macro [33]

pulsed
frequency
bursts

inter-node
distance
calculation

HMM 83.8% 7 complex,
macro [23]

pulsed
single
frequency

raw
amplitude
values

LSTM, GRU,
CNN,
CrossViT,
ViT

85% to 95% (100% for tap vs. swipe) 4 to 6 complex,
macro this paper

2. Related Work

This section introduces SotA research on HGR based on different sensors. The sys-
tems are divided into non-ultrasound- and ultrasound-sensor-based solutions. Presented
non-ultrasound sensors are camera, radar, and WiFi. Table 4 emphasizes the advan-
tages and drawbacks of each of the solutions to facilitate the selection of sensor types for
future research.

Table 4. Advantages and drawbacks of the considered sensor types.

Sensor Type Advantages Drawbacks Frequency Power
Consumption System Size

Vision
Many already
available image
processing tools

Privacy concerns,
sensitive to low
light and fog

400 THz to 700 THz

Microsoft Kinect V2:
15 W, Intel
RealSense SR300:
1.8 W

Microsoft Kinect V2:
66 × 249 × 67 mm,
Intel RealSense
SR300: 110 × 12.5 ×
3.75 mm

Radar

No privacy
concerns, better
accuracy than
ultrasound and WiFi

Higher power
consumption than
ultrasound, lower
resolution than
high-frequency
ultrasound
applications,
sensitive to
electromagnetic
interference, too
cost-intensive for
the target market,
design bigger than
ultrasound

5 MHz to 130 GHz

Novelda X4: 120 mV,
Infineon
BGT23MTR12:
660 mW

Novelda X4: 3.283 ×
2.627 mm, Infineon
BGT23MTR12: 5.5 ×
4.5 mm
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Table 4. Cont.

Sensor Type Advantages Drawbacks Frequency Power
Consumption System Size

WiFi
HW available in
most indoor
environments

Simultaneous use of
WiFi for
communication and
localization difficult,
changes in
environment cause a
need for retraining

2.4 GHz, 5 GHz, and
6 GHz Archer AX55: 4.8 W Archer AX55: 261 ×

135 × 41 mm

Ultrasound

Economical,
luminance-
invariant, no
electromagnetic
interference,
power-saving,
extremely compact
design, slower
propagation speed

Lower accuracy
than radar for low
frequencies (as used
in this paper) and
vision-based
systems, higher
attenuation in air,
simultaneous use
for audio and
ultrasound difficult,
less-investigated

20 kHz to 18 MHz

PCB sizes: linear:
120 × 40 mm, center,
corner: 70 × 70 mm,
sensor size: 2.5 ×
3.6 × 1.0 mm

9 mW (four
transducers)

2.1. HGR-Based on Non-Ultrasound Sensor Systems
2.1.1. Sensor-Fusion-Based Systems

The highest accuracy for most fine-grained HGR techniques is achieved through sensor
fusion. By combining several sensor types, the information captured with one sensor makes
up for the drawbacks of the others while providing the best resolution in various conditions.
Examples of such sensor fusion approaches are [34,35]. In the first one, camera and depth
information are fused in combination with a skeleton-based approach. In the latter, audio
and visual data are combined. While such sensor fusion approaches allow for high accuracy
for fine-grained gestures and even lip reading, in this paper, the focus lies on rudimentary
gestures that can be recognized with a simple, low-cost, low-power system that can run on
an edge device.

2.1.2. Vision-Based Systems

Many vision-based HGR systems are compared in survey paper [5]. Gesture recogni-
tion is based on color, appearance, motion, skeleton, depth, a 3D model of a hand, and deep
learning. The pre-processing and classification methods compared in Table 2 refer to deep-
learning-based classification. The table furthermore gives a comparison of the different
approaches and methodologies with respect to the HW used, input image resolution, type
of segmentation, feature extraction, classification, results, and possible application areas.
Most of the approaches mentioned in [5] are capable of real-time processing. Vision-based
systems can employ many already available image processing tools, but they raise privacy
concerns and are sensitive to low light and fog.

2.1.3. Radar-Based Systems

Radar-based solutions for HGR are analyzed in [12], which takes into account pulsed
and continuous wave radar. Processing algorithms range from rules-based to deep learn-
ing, as stated in Table 2. Radar is a promising technology since it preserves privacy and
is cost- and power-efficient. Data preparation before classification is similar to ultrasound
data pre-processing. The investigated pre-processing approaches include using the am-
plitude over time, evaluating the amplitude at specific distances, looking at changes in
distance, evaluating the change in the Doppler frequency or the change in frequency over
time directly, as well as simultaneous use of range and change of Doppler shift at a specific
range. Resolution is dependent on the carrier frequency and the propagation speed. Radar
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operates at higher frequencies than ultrasound but also has a higher propagation speed.
Therefore, the resolution depends on which radar and ultrasonic sensor systems are com-
pared. However, radar attenuation in air is significantly lower, especially for higher carrier
frequencies. Therefore, ultrasound is only recommended in close proximity when high
resolution is required. Radar uses more power than ultrasound and requires HW that is too
expensive for certain use cases. Furthermore, ultrasound can be used in harsh environment
and is robust to electromagnetic interference.

2.1.4. WiFi-Based Systems

Another technology used for HGR is WiFi. As discussed in paper [15] and stated
for comparison in Table 2, the main techniques use the received signal strength indicator
(RSSI), channel state information (CSI), frequency modulated carrier wave (FMCW), and
Doppler shift. Especially when using FMCW and Doppler shift evaluation algorithms,
radar, with its higher frequency bandwidth, is more suitable for HGR. Due to the lower
resolution of WiFi compared to radar, it is more appropriate for applications like counting
people or fall detection. An advantage of WiFi is that it is readily available in most indoor
environments, but it has too low spatial resolution for HGR. Another drawback is that
for accurate localization of objects like hands, constant transmission is required. Due to
changing usage of WiFi communication in normal use cases, the signal keeps changing and
simultaneous use of the WiFi signal for HGR and communication is difficult. Furthermore,
changes in the surroundings have a significant effect on WiFi localization and causes a
recurring need for retraining. Nevertheless, ref. [17] shows that gesture recognition with
high accuracy is possible with an attention-based algorithm on a public dataset.

2.2. Related Work on Ultrasound-Based Systems

Ultrasound-based HGR systems offer several potential advantages, including lu-
minance invariance, immunity to electromagnetic interference, high detectability, cost-
effectiveness, small form factor, and energy efficiency. The exploration of ultrasound-based
HGR traces its origins to the paper [28], which was written in 2012, where the classification
of five gestures, including one- and two-handed ones, was based on echo amplitude size
and frequency shift. The method proposed in [31] introduces a system that harnesses
channel impulse response, which means a pre-defined training sequence of different fre-
quencies is being sent. Sending such a sequence, which is easier to find in the received data,
permits more robust and accurate classification. This technology allows for 7 mm resolu-
tion and classification of 12 different finger gestures. Later, the research in papers [15,29]
showcases approaches to reduce the necessary training data and time. In reference [30], a
semi-supervised learning approach is implemented with a focus on incremental training
that involves expanding the training set. This makes the model adaptive to variances
in the execution of the same movement between different persons. By contrast, refer-
ence [31] relies on one-shot learning in combination with a time-dilation-inspired algorithm
to make up for those differences while keeping training time low and dataset size at a
minimum. Other recent research aims to lower energy and area requirements for HGR.
The work [32] presents how generic finite impulse response filter modules can be used
to simplify the needed processing structure. Paper [33] compares TOF and spectrogram
pre-processing. The survey in [4] describes systems that require the user to wear a device.
Such a requirement makes the gadget really unhandy and is not seen as an option in this
work. A very recent survey [16] focuses on wireless and acoustic sensing principles and
describes the latest ultrasonic hand and finger gesture tracking systems. Among them are
technologies based on a mix of extracted features and different transceiver configurations.
Two main trends can be distinguished. One relies on increasingly sophisticated classical
signal processing methods for pre-processing and another one pursues more robustness
and power and chip-area savings through less processing complexity and smaller datasets.
The work proposed in [16] already indicates that machine learning (ML) can help with
selecting the most relevant features but does not yet propose to skip any feature extraction
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and leaves extraction of the relevant information to the ML model. The methods proposed
in [13,14,36] show that purely ML-based classification of radar and accelerometer data is
possible for HGR or human motion recognition. Memory-based algorithms introduced
in [6] are provided for automated feature extraction for gesture recognition based on
camera and infrared sensor data. An amplitude-based model allows the ML model to
automatically learn which features in the raw echo data content are relevant for the given
classification task. Table 3 highlights differences between ultrasound-based HGR regarding
pre-processing, classification, accuracy, number of gestures, and type of gestures. Current
research in ultrasound-based HGR is aimed at increasing the robustness of the systems;
lowering the required energy, area, and processing; and lowering training time and the
size of the needed dataset. Recently, attempts have been made to replace manual feature
selection with automated, ML-based feature selection.

This paper presents a novel approach to HGR based on ultrasound, wherein raw or
nearly raw echo samples are employed as input. Almost raw means that minor data process-
ing like a weak low-pass filter may still be applied. However, computationally intensive pro-
cessing steps, such as the Fourier transform as employed in previous works [5,12,15,29,33],
are excluded. Cross-attention multi-scale vision transformer (CrossViT), vision transformer
(ViT), original transformer networks, LSTM, gated recurrent unit (GRU), and convolutional
neural network (CNN) models were tested on the task of classifying gestures with three
different ultrasound receiver arrangements. To the authors’ knowledge, this is the first
implementation of ultrasound-based HGR exclusively in the time domain. The proposal is, as
depicted in Figure 2, to train CNN, LSTM, GRU, ViT, and CrossViT on ultrasound amplitude
values instead of processed data to avoid the Fourier transform in during pre-processing. The
papers [13,14] present similar approaches for HGR on radar data.

Figure 2. Suggested change in HGR processing flow.

2.3. Challenges of Ultrasound-Based HGR

This section deals with general difficulties of ultrasound-based HGR, while Section 3.2
elaborates in greater detail on the challenges of the specific data gathered with the dedicated
HW presented in this work. Ultrasonic sensing for object detection, object localization,
distance measurement, imaging, and similar tasks is based on the reflection of ultrasonic
waves off of surfaces. An ultrasonic transducer transmits a short pulse towards a possibly
reflective object. The reflected wave is detected by the same or different transducer, which
converts the audio signal into an electrical one as sampled by means of an analog-to-digital
converter. The signal generated in this way is analyzed in different innovative ways
explained in this work.

Challenges of ultrasound-based HGR systems can be categorized as those caused by
the physical characteristics of ultrasound, those caused by the HW needed for emission
and detection of ultrasound waves, and general challenges. All of them are summarized in
Table 1.

Among the physical properties that pose challenges for HGR are wind, humidity, and
temperature, which all influence the speed of the wave significantly. Furthermore, pulses
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are not sharply defined, as ultrasound is a mechanical wave generated and received by a
membrane with a certain inertia. That means that at the beginning and end of the pulse,
there is a time of increasing amplitude after the first actuation of the membrane and a
time of ring-down after the last electrical actuation of the membrane. Therefore, the sent
and received pulses have a bell shape. Moreover, the surroundings of the system have
an influence. Objects in the field of view (FOV) cause unwanted echos and can deflect
the wanted signal. Since we are using a low-cost MEMS transducer array, we use only
two to three echo streams for gesture classification. Thus, only coarse hand gestures are
detectable. The resolution does not allow for finger gesture analysis or the detection of
sign language. As we are using transducers instead of dedicated sender and receiver
HW, there is more variability in choosing which transducer is used for sending. But this
comes with the drawback of lower output pressure and lower sensitivity, which leads to
a lower SNR. The lower frequency of ultrasound used in this approach with regard to
propagation speed compared to other technologies causes lower resolution. Moreover,
low-cost ultrasonic setups have only a few transducers, limiting the amount of available
data compared to vision-based systems or high-end medical ultrasonic systems. For
the development of an ML-based HGR, no public training data are available. There are
indeed lots of HGR datasets for vision-based systems but not for ultrasonic ones. Hence,
for this work, our own experimental echo datasets were acquired using a proprietary
setup. The processing speed needs to be high to allow for reactions that feel natural
for human gestures, which are as short as 0.5 s or even briefer. The maximum sound
pressure that can be emitted by the MEMS transducers at the frequency of 23 kHz used in
the scope of this work is 71 dBSPL, measured at a distance of 10 cm from the transducer.
This is comparable to conversational speech at a distance of 1 m. Cats can hear 20 Hz
frequencies at sound pressures as low as 0 dB, and dogs, depending on the race, can hear
these at about 20 dB. The attenuation coefficient of ultrasound in air at 20 °C is 750 times
higher than in water at 23 kHz. Furthermore the used MEMS transducers emit ultrasound
omnidirectionally. Therefore, the sound pressure declines at a rate of 1

distance . On the other
hand, the processing of the ultrasonic echo data for HGR is complex. Several distinct
processing steps, as depicted in Figure 1, are usually needed for ultrasound-based HGR. In
the first step, ultrasound data are captured by the dedicated HW module. In the second
step, the gathered information is transferred to another device used for processing. The
processing step is split into a pre-processing part, which is dedicated to performing data
transformation tasks and feature extraction. The selected data for which a movement, hand,
or gesture was detected is then further passed to the classification module. The module
for classification may contain another pre-processing shield to condense the information
in the data. Finally, the output of the classification needs to be shown in a final module
that displays the result. In our case, the classification entirely consists of an ML algorithm
that does end-to-end processing from the raw input to the output classes. This approach is
further explained in Section 4, and the specific processing flow is depicted in Figure 2 in
the same section. Previous work, by contrast, always involved some kind of pre-processing
before classification, such as those described in [5,15,33], which use the Fourier transform,
and in [29], which compares Doppler, frequency-modulated continuous wave, channel
impulse response, and differential channel impulse response. However in our case, the
goal is for the model to autonomously identify the relevant data content for HGR on its
own by means of a DL model. The fact that the sensor units regarded in the scope of this
work consist of four transducers, of which three act only as receivers, means that only three
data channels have to be considered. Consequently, the amount of data that need to be
processed in our case is significantly lower than in cases of image processing or ultrasound
applications for medical purposes.

Previous work on ultrasound-based HGR is usually based on features like distance
calculation or spectrograms. One possible way to do HGR is based on localization of
the hand by means of range. Distance calculation is done using a methodology called
time-of-flight (TOF). A pulse is emitted from the sending transducer, reflected by the hand
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in the FOV of the sensor device, and captured by the receiving transducers. TOF is the
time calculated between transmission and reception of the ultrasonic pulse. This TOF is
proportional to total distance traveled by the pulse. Combining the traveled distance to the
different receiver antennas allows estimation of the localization of the hand.

The following relationships can be used for gesture classification. To overcome the
challenge that the difference in delay of echos received by different receivers is low, the
receivers can be placed with higher distances between each other or in respect to the
sender. Furthermore, a smaller distance between the hand and receiver plane causes a
higher difference in echo delay with respect to the total delay between the sent pulse and
the echo. Movements horizontal to the receiver plane cause higher distance difference
shifts than movements perpendicular to the receiver plane. The horizontal location of a
hand with respect to the receivers along a line through them can be determined using
the sign of the difference of the distances measured by the two receivers. Reference [33]
uses TOF data. Up to now, however, distance calculation from ultrasound data from
micro-electromechanical system (MEMS) ultrasonic transducers has been imprecise, and
previously explained relationships do not reliably appear. Another method for ultrasound-
based HGR is spectrogram evaluation. In this case, spectrograms are computed using the
Fourier transform to allow for evaluation of changes in frequency over time. Frequency
changes caused by the Doppler effect are evaluated in this case. A shift towards a higher
frequency compared to the frequency of the sent pulse represents movement towards a
receiver, and a lower frequency indicates movement away from the transducer. Even two
transducers, one sending and one receiving, are enough to evaluate different gestures,
including swipes. The difference between swipes is caused by the fact that the location of
the sender and the receiver in relation to the hand are different depending on the direction
of the swipe; this therefore leads to a different spectrogram pattern. In spectrogram-based
approaches, different movement speeds and hand sizes have an especially high influence
on correct classification. Most previous ultrasound-based HGR systems, like [5,12,15,29],
use this type of pre-processing.

Using the same ultrasonic transducer for sending the pulse and receiving the echo
is difficult, as the membrane that is actuated to send out the pulse has a ring-down time,
during which it keeps moving despite not being actuated any more. The ring-down
amplitude is larger than the amplitude of the echo; therefore, during this time, the echo
cannot be detected. In other terms, if an object is very near to the transducer, no detection
is possible. The object and the echo will interfere with the ring-down in some way. The
work proposed in [37] deals with those effects and presents an approach on how to reduce
them. The pattern repeats itself at multiplications of the lambda distance, and the change
in size of the echo pattern is not big enough to determine the distance, at least not in our
case. Additionally, lambda is very small, 17.15 mm, so the pattern repeats itself after a
very short time. Wind, humidity, and temperature affect the speed of ultrasound. Wind
can have an especially detrimental effect on applications using the TOF or spectrogram, as
wind comes from one direction and might shift the signal speed in one direction only—but
not constantly nor changing directions. Those effects can be reduced when the system is
used indoors.

3. Hardware and Dataset

This section outlines the HW employed for data acquisition and introduces both the
acquired data and the dataset. Figure 3 shows one of the transducer shields in relation to a
user’s hand during a gesture.
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Figure 3. Data acquisition setup.

3.1. Acquisition Hardware

This section introduces the three transducer arrangements and the processing HW
used for data acquisition and explains the parameters used in the acquisition process.

To account for the difficulties explained in Section 2.3 in our work, time windows of
250 pulse trains of raw echo data corresponding to 4 s are evaluated. That is a time window
that is a bit longer than a hand gesture takes on average.

Findings based on the classification of the data of the linear shield with either distance
or spectrogram pre-processing and a comparison thereof are described in paper [33].

The data acquisition HW consists of a sensing shield with four transducers, and it is
connected to a processing shield. For this work Infineon digital transducers [38] were used
that directly output the received amplitudes via pulse-density modulation (PDM). The
processing shield controls transmission and reception of the transducers and has a USB
interface through which the received echo signals are sent to, for example, a laptop as a
data stream. It leverages a FT900Q microcontroller by Bridgetek, Glasgow, Scotland [39].
Configuration details, like the pulse repetition time, can be stored in an EEPROM on the
transducer shield. Further information about the HW setup can be found at [40]. There are
three sensing shields with different transducer configurations. In all cases, the transducers
are placed at 3 cm distance from each other. Each of them was used to acquire one dataset.
Figure 4 shows the linear shield connected to the processing shield. Figure 5 shows a
schematic of the corner shield on the left and a figure of the center shield on the right. The
active transducer is circled in yellow in Figures 4 and 5. A more detailed description of the
HW can be found in paper [27].

Figure 4. Processing shield with linear array; transducer locations are marked with yellow and white
circles; yellow circle—sending transducer and white circle—receiving transducer.
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Figure 5. Corner (left) and center (right) transducer array without processing shield; transducer
locations marked with yellow and white circles; yellow circle—sending transducer and white
circle—receiving transducer.

3.2. Datasets

The acquired datasets are called “linear”, “center”, and “corner”, respectively. Each of
them is separately assessed in the scope of this paper. Figure 6 shows which gestures are
classified. The four gestures swipe right (sr), swipe left (sl), push pull (pp), and double tap
(dt) are available for all datasets. Due to the structure of the transducer arrays, swipe up
(su) and swipe down (sd) are not part of the linear dataset. Table 5 shows the settings for
all cases of data acquisition for this research.

Table 5. System parameters.

Parameter Value

Sent frequency 24 kHz

Pulse repetition time 16 ms

Pulse length 5 wavelength

Number of pulse trains per gesture frame 250

Sampling frequency 192 kHz

Number of transducers in transmit mode 1

Number of transducers in receive mode 3

Figure 6. Gestures used in the dataset.

The transmitted signal consists of pulse trains, with each including a sent pulse at
the beginning. On the other hand, every frame consists of 250 pulse trains. The sent
pulse consists of five wavelengths with a frequency 24 kHz and is emitted every 16 ms
from one of the transducers, while all four transducers act as receivers. The sampling
frequency is 192 kHz, which is more than sufficient to resolve the 24 kHz of the sent pulse.
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With each of the three transducer arrangements presented in Section 3.1 and illustrated
in Figures 4 and 5, a separate dataset was acquired. First, experiments were carried out
with the linear array. Its dataset consists of 899 gesture frames of four different gestures
executed by nine test persons. The received data size is 768,000 × 4 with 250 pulse trains of
3072 samples each per transducer. The linear arrangement has three received amplitude
values of which only two are used for processing; the center and corner arrangement
use three receiving transducers as input for classification. The linear array allows for 2D
gestures only, while the center and corner shields permit 3D gestures. Therefore, center and
corner datasets have two additional gestures compared to the linear one: su and sd. For the
linear case, the classification outputs one of four classes, while the center and corner case
outputs one of six classes. Each of the datasets consists of 898 to 900 gesture frames in total
executed by six persons. To make the data more diverse, data acquisition was carried out
on different days. Figure 7 shows the relevant part of the data of one channel of a gesture
frame, and Figures 8–10 show the relevant parts of the pulse trains of channels one to three,
respectively. The amplitude of T0 is too big to show in the plot as it from the sending
transducer. Since the transducers are close to each other, there is a direct path of the sent
signal between the sender and all of the receivers. The time differences between the arrivals
along the direct paths might be used to determine the distance of the transducers in relation
to each other, but in this work, the locations between the transducers are given. Thus, the
differences in the direct paths might be used to synchronize timing of the recording. But
here, the difficulty is that the echo is not a single peak but a repetition of the sent pulse with a
Gaussian bell-shaped envelope. This is caused by the fact that sound waves are mechanical
waves that are generated and received by a membrane. In both cases, when the wave is
generated as well as when the echo is received, the membrane takes some time to increase
its amplitude and, after the end of the excitation time, it takes time to stop oscillating, which
spreads the beginning and end of the echo. Consequently, determining the delay between
the transmitted pulse and the echo becomes challenging. Figures 8–10 show the amplitude
values of the receiving transducers at the beginning of a pulse train, after the direct path
has subsided. The x-axis corresponds to the number of samples inside one pulse train,
starting after the actuation, and the y-axis corresponds to the amplitude value. Up to about
sample 175, both signals have about the same amplitude, which corresponds to the end
of the actuation by the direct path. At this point, the pulse train without echo, plotted in
yellow, and the pulse train with echo, depicted in blue, diverge. The blue signal rises again
until about sample 210. This increased amplitude corresponds to an echo reflection at a
distance of 0.19m. Those echo signals have different characteristics. Each signal captured
by the transducers displays echoes, with each echo characterized by length, amplitude, and
temporal position in relation to the transmitted pulse.

Figure 7. Part of a gesture frame of one channel of a pp gesture. Find an illustration of the pp gesture
in Figure 6.
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Depending on the array configuration, 2D or 3D localization becomes feasible by
analyzing the temporal position of the echo in the signals from the different transducers.
Unfortunately, the length of the echo varies, and the highest peak of the echo is not always
in the same location inside the echo. Since the transducers are very close to each other, the
differences between the echo positions are very small, and it is difficult to determine the
exact location of the object that is the cause of the reflection. Furthermore, noise may not be
homogeneous across different sensors, especially in the time domain. The amplitude of the
echo gives further information about the distance of the object to the sender, as ultrasound
is attenuated in air. Therefore, a higher distance means a smaller amplitude. Differences in
amplitude are too small to be used to determine the differences of the distances. This is
caused by the low amplitude emitted. The amplitude is this low as it is difficult to emit
high amplitudes with the capacitive (MEMS) ultrasonic transducers used in this work [38].
Stationary objects show a constant echo in the data, while moving objects, like a hand
doing a gesture, create a changing echo. As for dynamic HGR, the relevant object is a
moving hand; it makes sense to remove static echos in the data. Those static echos are
caused by the environment. But since in our case the goal was to use ML on raw data,
no removal of static objects was carried out. We relied on the ML system to understand
automatically that those static echos, if present, do not have meaning and therefore should
not be considered for feature selection and classification. In contrast to a static object, a
moving hand causes a change in frequency over time, which is caused by the Doppler effect.
That means the echo length is reduced if the hand’s movement is towards the sensor, and it
is increased for movements away from the sensor. In the spectrogram, this additionally
manifests as a decreased or increased frequency. As described in Section 2.3, an approach
for spectrogram-based gesture classification has been described in other papers. The special
characteristic of the system presented in this work is that it uses raw amplitude values
as input for the ML system instead of features derived using the Fourier transform or
distance features generated by correlation. It allows the ML system to learn autonomously
which features are relevant for the classification task while avoiding processing intensive
pre-processing. This approach is further elaborated in Section 4.

Figure 8. Plot of a pulse train with echo (in blue) compared to a pulse train without echo (in yellow)
of transducer 1.
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Figure 9. Plot of a pulse train with echo (in blue) compared to a pulse train without echo (in yellow)
of transducer 2.

Figure 10. Plot of a pulse train with echo (in blue) compared to a pulse train without echo (in yellow)
of transducer 3.

4. Classification Methodology

Following the trend of feeding the full given data to an ML system to let the system
learn by itself which data content is important and simultaneously avoiding the Fourier
transform, no pre-processing was applied to the acquired data in any of the algorithms
laid out in this paper. This change in processing flow is depicted in Figure 2 and is the
main novelty of the presented work. The ML model types CNN, GRU, LSTM, original
transformer, ViT, and CrossViT are trained with our data for the end-to-end HGR task. All
of the models are implemented as part of the new processing flow and compared with
regard to their usefulness in this context. That means self-attention, gating mechanisms,
like in LSTM and GRU, and convolution are used and compared in this work for their
usability for classification that includes feature detection for HGR with ultrasound data.
Table 6 summarizes parameters of the datasets and classifications carried out in the scope
of this work.
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Table 6. Overview of datasets and models used for classification.

Property of Data Set Value of Property of Each Data Set

Number of gestures Linear: 4
Center, corner: 6

Gestures

Linear: push pull, double tap, swipe up, swipe
down, as depicted in Figure 6
Center, corner: same as linear, additional
gestures: swipe right, swipe left, also as
depicted in Figure 6

Number of gesture frames per dataset
Linear: 899
Center: 898
Corner: 900

Number of participants Linear: 9
per dataset Center, corner: 6

Number of pulse trains per gesture All datasets: 250

Training and validation split Manually for more reliable validation; see
reasoning in Section 5

Tested model types CNN, LSTM, GRU, ViT, and CrossViT

Our data can either be regarded as time-series or image data. The CNN structure was
used as this is the most widespread and researched model type for image data. GRU and
LSTM are specialized RNN models developed for time-series data. The biggest drawback
of RNN is the vanishing and exploding gradient problem. LSTM and GRU were developed
to counteract this issue. That is because they come with a memory component that allows
connections to be found inside the data even if the related information is far apart in terms
of time. This is made possible by gating mechanisms. Transformer is a model type that uses
attention instead of a gating mechanism for processing sequences. In the scope of this paper,
models based on gating mechanisms, self-attention, and convolution were compared with
regard to their applicability for the given task. For the attention-based models, warmup
and cosine warmup were used to lower the learning rate during the first few steps to
help the attention mechanisms slowly adapt to the data. All models were trained with the
input of all three channels for 3D classification using the center and corner array and with
two-channel input for 2D classification with data from the linear array.

4.1. Transformer

In 2014, the attention mechanism was introduced to the world of ML [41], and trans-
formers were introduced in 2017 [42]. Transformers have not only been successfully applied
to the task they were originally planned for, natural language processing, but have proven
useful for many other tasks as well. The goal of the original transformer, as described in [42],
is to reduce sequential computations. All the convolutions and sequential computations
in [42] are replaced by an attention mechanism. Multi-head attention especially allows
for higher parallelizing and reduced training time. Transformers became known for their
high accuracy. ViT, introduced in [43], and CrossViT, described in [44], are very successful
adaptations of the original transformer for image data. Our work extends the use of these
structures to ultrasound data.

The encoder part of the structure was implemented to verify if transformers improve
the accuracy of ultrasound-based HGR. The decoder side is not needed, as ultrasound-
based HGR is a classification problem.

In the original version, input images are split into tokens. As our data have sequences
of 16 ms corresponding to the pulse repetition time (PRT), this length of time and integer
multiplies of it are input tokens in our case. Linear embeddings of these token vectors
are input in the transformer model for supervised learning. While the basic transformer
is position agnostic, ViT and CrossViT have position embedding. This is crucial in our
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application because the position of a specific pulse train with respect to previous and
later pulse trains determines the direction of, for example, a swipe. Furthermore, the
embedding contains an additional classification token that represents the meaning of the
whole input sequence.

CrossViT is an adaptation of ViT with the goal of combining good accuracy with low
computational complexity. To this end, instead of splitting the input into patches with the
same length, in this case, the data are split into two branches: one with short sequences,
called "s-branch", and the other with long sequences, called "l-branch". Both branches
are processed in parallel. The information from both the long and the short sequences is
merged through interaction of each one’s classification token with the token of the other
sequence from the other branch. For a visualization of the ViT or CrossViT model, see
the respective papers [43,44]. To create the long and short patches for CrossViT, small
integer multiplies, up to 18, of the pulse train were used. The length of both patches was
determined through trial and error. In our case, the dimension of the embedding vector for
ViT was set to 768. The number of stacks for the l-branch for CrossViT was set to three. The
s-branch uses one stack with one encoder. Many of the ViT and CrossViT hyperparameters
were tested. The combinations that led to the best accuracies on the respective datasets are
described in the results in Section 5. In summary, we adapted our models to work on 1D
vectors instead of 2D vectors as in the original task for ViT and CrossViT, which are both
fairly new architectures that were introduced in 2020 and 2021, respectively.

4.2. CNN

Given the extensive research in image processing utilizing CNNs, a CNN was selected
as one of the model structures for training. The CNN structure implemented in this paper is
based on [45]. When CNNs are used for image processing tasks, its convolution layers are
2D and the kernel has a square shape to extract low-level features from the images. Data
from two transducers for the linear dataset and three transducers for the center or corner
dataset are used for classification. The data recorded by the sending transducer cannot be
used, as the ring-down time interferes with the echo, as explained in Section 2.3. In contrast
to image processing, in our case the data, are stored in gesture frames of 250 pulse trains
with 3072 values from four transducers. Therefore, we adapt the model to 1D convolutions
and find the best kernel size for our data to be 80. The implemented CNNs consist of two to
four groups of combined sub-layers, consisting of a 1D convolutional layer, a normalization
layer, a ReLU function, and either a max pooling layer or an average pooling layer, then a
global average pooling layer, a linear layer, and a softmax layer. Figure 11 shows a schema
of the CNN model.

Figure 11. Schema of the CNN model with the best results. When the input is two channels (linear
dataset), the output is 1 of 4 possible gestures. When the input is three channels (center and corner
dataset), 1 out of 6 gestures is the output.

4.3. GRU and LSTM

LSTM consists of an input, output, and forget gate. The forget gate is meant to assure
that valuable information can be retained from much earlier in the sequence while the effect
of recent, unnecessary information is diminished. In this way, information far earlier in a
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sequence that is needed to make sense of a current input can be retained. In our case, this
allows us to determine the direction of a swipe gesture.

GRU, like LSTM, uses gates, but it consists of only two gates: a reset gate and an
update gate. Thus, it consists of fewer parameters and weights. That means it comes with
lower training times and processing requirements and requires less storage space.

Usually in HGR, the spectrograms are used in a feature selection process for feeding
the LSTM or GRU with features. In our case, by contrast, we input the raw values of
two or three channels with 768,000 data points each that were acquired at a frequency of
192 kHz from the transducers of the linear, center, or corner board and correspond to a
gesture frame of 250 pulse trains with 3072 values. Since we omit the spectrogram, we
implement two alternative approaches to extract features from the raw amplitude values.
Both architectures are learnable during the training of GRU or LSTM to optimize the feature
selection process.

This means that for both LSTM and GRU a novel embedding inspired by the one used
for ViT is implemented. Its difference is that it comes without the position embedding
and the class token embedding. This shape is then transformed using either convolution
or a linear transformation. In the first case, the convolution embedding, the input goes
through a 1D convolution along the sequence length and has output channels equal to
768, and the kernel size and stride are equal to the patch size. In this way, one dimension
of the output tensor is always set to 768, and the other dimension varies depending on
patch size. These dimensions correspond to the input size and input length, respectively,
of the LSTM/GRU. A transpose function is then applied to ensure that the output tensor
conforms to the required shape for LSTM/GRU. In this way, the 1D convolution decides
which features are derived from the raw amplitude values. As it is learnable during training,
the patch embedding is trained in conjunction with the LSTM or GRU to produce optimal
results, which means the final learned embedding’s parameters are varied depending on
the specific configurations of the models.

In the second case, for linear embedding, the data first have to be brought into a
different shape. The reshaping process ensures that the pulse train repetitions from different
receiving transducers stay together. The output of the transformation is a tensor of the
shape batch size, the number of pulse train repetitions, the number of channels, and
the lengths of pulse train repetitions. The next step consists of a linear transformation
framed by layer normalization. Following this process, the input is reorganized so that the
information from a small time frame, a small integer number of pulse trains across two
to three sensors, is grouped together. These groups, i.e., patches, are flattened. Utilizing
layer normalization and a linear layer, this 2D tensor is mapped to the shape expected by
the following classification network: LSTM or GRU. In this way, the timing information
is retained. One dimension of the output of the transformation is defined to be 768. The
other one depends on the patch size, as the data are transformed in chunks of patch size.
Depending on the integer value the pulse train is multiplied by, there is a final part of the
gesture smaller than a patch. These data are omitted, as it is unlikely that the end of a
gesture contains significant information needed for gesture classification. LSTM and GRU
are both fed with a 2D data array with a first dimension of 768. The second dimension
depends on the patch size. The patch size is an integer multiple of one pulse train of
3072 values, which corresponds to 16 ms.

The implementations of GRU and LSTM used in our experiments have a feature size
of 768 features in the input and 2304 features in the hidden state. Different optimization
methods and patch sizes and the effect of label smoothing are tested.

5. Results

This section first describes general findings on the dataset and the classification per-
formance, followed by a more detailed description of the findings concerning each of the
ML models.
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The gestures evaluated are illustrated in Figure 6. In each of the datasets, the first
few gesture frames per gesture and person contain additional variations compared to the
gesture frames in the middle of each of the acquisitions. That is why we manually ensure
that the validation datasets contain gesture frames from all phases of the acquisition.

Table 7 shows the best accuracies achieved independent of the dataset per ML model.
It demonstrates that accurate gesture classification is possible using only amplitude values
and completely omitting the Fourier transform. This is the first time that deep learning
alone was used on ultrasound gesture data. The confusion matrices shown in Tables 8–12
and the summary of accuracies achieved using the different models on the three datasets in
Figure 12 give more detailed information about the models’ performance.

Table 7. Comparison of highest accuracy per model

Model Name Accuracy in %

CNN 83

GRU 86

LSTM 95

ViT 89
CrossViT 93

CNN LSTM GRU CrossViT ViT
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Figure 12. Accuracies per model per dataset.

In the matrices, columns correspond to model predictions, and rows correspond to the
actual classes. The predicted gestures belong to the categories tap or swipe. Tap gestures,
dt and pp, consist mainly of a movement perpendicular to the transducer, while for swipe
gestures, sd and su, the movement is horizontal to the transducer array. As these groups are
considerably different, in tap vs. swipe, we evaluate the classification accuracy of the correct
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group membership. Accurate classification is calculated as described in Equations (1)–(3).

accuracy of taps =
1
2 ∑(dt, dt), (dt, pp), (pp, dt), (pp, pp) (1)

accuracy of swipes linear dataset =
1
2 ∑(su, su), (su, sd), (sd, su), (sd, sd) (2)

accuracy of swipes corner and center dataset

=
1
4
(∑(su, su), (su, sd), (su, sr), (su, sl) +

∑(sd, su), (sd, sd), (sd, sr), (sd, sl) +

∑(sr, su), (sr, sd), (sr, sr), (sr, sl) +

∑(sl, su), (sl, sd), (sl, sr), (sl, sl))

(3)

The average accuracy of only the four gestures pp, dt, su, and sd on the center and
corner dataset is not improved compared to the accuracy of all six gestures. By contrast, a
comparison of tap versus swipe gestures shows a significantly higher accuracy exceeding
95% in all cases. Furthermore, the accuracy for detecting the angle of the swipe, (sr, sl) vs.
(su, sd), calculated according to Equations (2) and (3), exhibits a similarly high accuracy.
That means classifying tap gestures versus swipe gestures and classifying perpendicular
swipes, like (sd, su) vs. (sl, sr), is easier than determining the direction of swipes and
counting the number of taps per gesture frame.

Figure 13 shows the number of parameters with respect to the model and dataset. The
number of parameters required for the best CNN model is noticeably smaller than that
required for the other models, except for the linear shield. But even for the linear shield,
the CNN model required the fewest parameters.
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Figure 13. Sizes of best models.
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Table 8. Confusion matrix of the best accuracy of GRU on the linear shield data. All values are
expressed in %.

dt pp sd su

dt 96 4 0 0

pp 0 98 2 0

sd 0 0 86 0

su 0 0 21 79

Average accuracy 90

Tap vs. swipe 100

Table 9. Confusion matrix of the best accuracy of LSTM on the linear shield data. All values are
expressed in %.

dt pp sd su

dt 96 4 0 0

pp 7 93 0 0

sd 0 0 94 5

su 0 0 4 96

Average accuracy 95

Tap vs. swipe 100

Table 10. Confusion matrix of the best accuracy of CNN on the linear shield data. All values are
expressed in %.

dt pp sd su

dt 92 6 2 0

pp 16 83 0 0

sd 0 2 86 12

su 1 0 20 77

Average accuracy 85

Tap vs. swipe 98

Table 11. Confusion matrix of the best accuracy of ViT on the corner shield data. All values are
expressed in %.

dt pp sd su sl sr

dt 89 11 0 0 0 0

pp 14 83 3 0 0 0

sd 3 6 81 11 0 0

su 3 3 3 89 0 3

sl 0 0 0 0 97 3

sr 0 0 0 0 6 94

Average accuracy 89

Tap vs. swipe 98

sd, su vs. sl, sr 96
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Table 12. Confusion matrix of the best accuracy of CrossViT on the corner shield data. All values are
expressed in %.

dt pp sd su sl sr

dt 92 3 6 0 0 0

pp 9 78 14 0 0 0

su 0 3 97 0 0 0

sd 0 3 3 94 0 0

sl 0 0 0 0 100 0

sr 0 0 0 6 0 94

Average accuracy 93
Tap vs. swipe 95
sd, su vs. sl, sr 97

For GRU, CrossViT, and ViT, the highest number of parameters is required by the best
models for the center shield. For CNN, center and corner shield both have a similarly small
number of required parameters: 283 K. The LSTM model exhibits the lowest parameter
requirement, 103 M, for center shield, coupled with a fairly good accuracy rate of 88%. For
a comparison of the parameter values of all models, see Figure 13. Despite classifying only
four gestures, the model for linear data is the smallest for GRU and ViT. The best models
for the corner data showed the least variance.

The best overall models and dataset are, as displayed in the bar plot of Figure 12,
LSTM on linear data, with 95% accuracy, followed by CrossViT on corner data, with 93%
accuracy, and CrossViT on center data, with 91% accuracy.

The best accuracy average throughout the models was achieved on the linear data,
followed by the corner data, as shown in Figure 14.

Results for the evaluation of the averages throughout all datasets are displayed in
Figure 15. LSTM showed the highest accuracies. But CrossViT presented comparable
accuracies of only 1% less. GRU and ViT performed similarly on average but were 7% less
accurate than LSTM. The average performance of CNN was 13% lower than of LSTM.

Time-related information is preserved in the embeddings we utilize for LSTM and
GRU by keeping the order of the input. As the input consists of time sequences, the order
represents the temporal placement. The embeddings we use are inspired by the embeddings
of ViT and CrossViT, which are developed for sequence processing and, therefore, contain
the classification token to represent the previous calculations and a position embedding.
CNN does not contain a specific token for classification but is being fed the entire gesture
at once. It therefore obtains all the data regarding the locations of every pulse train and the
echos inside the pulse trains. That means our input is a 1D vector with a size of 768,000 per
receiving transducer data per example considered. The best kernel size for this input was
found to be 80. Furthermore, we found that average pooling outperforms max pooling.
CNN was implemented with a kernel size of four and a stride of two after each convolution
layer. The LSTM model yielded the best overall accuracy of 95%, but CrossViT proved
almost as good, with an accuracy difference of only 2%. Even though ViT’s model structure
is much simpler than CrossViT’s, it nonetheless performed just 4% less accurately than
CrossViT. It needs to be mentioned that training LSTM and GRU takes about twice the time
compared to training the transformer structures. The number of parameters needed for
amplitude-based models can be even lower than the number required for models that use
spectrogram images as input, as depicted in Figure 13.
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Figure 14. Best accuracy of the best models on all classes compared to the accuracy of the best models
on four classes and the average accuracy of all models on each of the three datasets.

The parameters evaluated for ViT and CrossViT were the number of parallel attention
heads, the number of encoder sequence repetitions, the patch size, the dimension of the
embedding vector, and the inner-layer dimensionality. The final ViT and CrossViT models
for linear and corner data have twelve parallel attention heads, and the one for center data
has sixteen. The encoder sequence is repeated 8 times for the linear data and 10 times for
the center and corner data. The dimension of the embedding vector of ViT for all datasets
is 768. The patch size is chosen to be an integer multiple of the length of one pulse train.
In all cases, AdamW optimization, as first introduced by [46], and label smoothing are
beneficial. It must be mentioned that the center data have the lowest overall accuracy. The
parameters s- and l-branch size only apply to CrossViT due to the more complicated model
structure. CrossViT uses three stacks for the s-branch and three stacks for the l-branch in
our models throughout its parallel training processes. The number of encoders for the
l-branch is decided by conducting multiple trials, but the number of encoders in each
stack for the s-branch is fixed at one. The best dimension of the embedding vector in
the l-branch is 768 for all datasets. Layer normalization proved to be the most effective
technique to improve generalization and to avoid overfitting. AdamW optimization yields
better results than Adam optimization. For every dataset, different patch sizes, dimensions
of the embedding vector in the s-branch, number of repetitions of the encoding sequence,
and number of parallel attention heads show the best results. The number of parameters
in CrossViT and ViT are quite similar for the linear and corner dataset. The number for
the former is only significantly larger for the linear dataset. But the result of the best
CrossViT is much better than the result of the best ViT in the case of the center dataset.
For the same number of encoders, CrossViT has better performance than ViT. The average
accuracy of CrossViT is very close to that of LSTM, but the number of parameters needed
is more than double compared to CNN and ViT. A comparison of the number of needed
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parameters for classification on the all datasets can be found in the diagram in Figure 13.
The dimension of the embeddings for GRU and LSTM was 768. Other parameters under
evaluation for the two models were the number of features in the hidden state, the patch
size, and the two different embeddings, linear and convolutional, which are described in
Section 4. Furthermore, the effect of running the models bidirectionally, label smoothing,
and different optimization techniques were evaluated. Independent of the dataset, the best
models have 2304 features in the hidden state. For LSTM, AdamW optimization improved
the results compared to Adam, and label smoothing was beneficial for all datasets. In
combination with the linear dataset, the LSTM model shows the overall best results. With a
very modest advantage over CrossViT, this model has the best average accuracy across all
datasets. GRU is not as heavy but showed 9% less average accuracy. The best models for
GRU, as for LSTM, have different patch sizes for each of the datasets, with no correlation
between patch sizes for LSTM and GRU. Convolutional embedding yields the best results
for GRU throughout the datasets. When the Adam optimizer is employed without label
smoothing, GRU models yield a better result for the center and corner datasets. Compared
to LSTM, the GRU model shows noticeably lower accuracy. The effort spent training all
of the models for all of the datasets was roughly the same. A comparison of the three
evaluated arrangements, depicted in Figures 4 and 5, and classification results, shown in
Figure 12, shows that classification of the linear data yields the best results. For all models
except CNN, the corner arrangement provides noticeably better classification results in
comparison to the center data according to an analysis of the accuracy obtained on both
datasets. The diagram in Figure 12 reveals that the center shield never shows the best
results. Moreover, Tables 8–12 show that classification of tap versus swipe gestures permits
significantly better results than differentiation of swipes.
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Figure 15. Accuracies per model averaged over datasets.
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6. Discussion

Our suggested reason why the first few gesture frames of each gesture per person are
more difficult to classify is that the user may take some time to become familiar with the
gestures at first. Therefore, we assume that those gesture frames have more variability.

Clearly increased accuracy was reached for classifications of swipes versus taps. That
means the characteristics of the echo data of swipes contains meaningful differences com-
pared to the echo data of taps. Tap gestures have higher changes in frequency per time and
come with higher echo amplitudes as the hand is at about the center of the device, and the
changes of the echo size throughout pulse trains are more noticeable compared to swipes.
The other classification that led to a similarly high accuracy was found for the classification
of the swipe angle: (sl, sr) versus (su, sd). Therefore, we conclude that the differences in the
characteristics of the echo data between angles of a straight movement are more obvious
than the disparities amid straight movements at the same angle in the opposite direction.
As the accuracy of the four gestures, pp, dt, su, and sd, depicted in Figure 6, compared
to the accuracy of the six gestures, pp, dt, su, sd, sr, and sl, for the center and corner data
shows, there is no improvement if only four gestures are evaluated. That goes in line with
our findings that it is more difficult to distinguish the direction of a swipe or to count the
number of taps compared to determining the angle of the movement axis. If (pp, dt) vs.
(sd, su) vs. (sr, sl) are chosen as three classes, an accuracy of more than 90% can easily be
achieved. Comparing different models on average over all datasets, LSTM and CrossViT
reached the best accuracies. But those are, at the same time, the models that require the
highest number of parameters. Training times for LSTM and GRU are significantly higher
than for CrossViT and ViT. As the best accuracy of CrossViT versus LSTM models only
varies by 1%, CrossViT seems preferable in most cases: not to mention that the accuracy
reached on the center and corner data are better than on linear data. With GRU and ViT,
9% lower accuracy was obtained. Among those two models, GRU requires substantially
more training time. Furthermore, the ViT models demand a lower number of parameters.
For this reason, ViT is preferable in most cases. As GRU and ViT require fewer parameters,
whenever the size of the model has to be taken into consideration, i.e., for embedded and
edge applications, ViT seems the best choice, but LSTM is preferable if the size of the model
is not crucial. Assuming that the model size is very critical, CNN models, with the lowest
parameter requirements amidst all trained models, can be taken into account. Specifically,
for the linear dataset, CNN shows a decent accuracy of 83%. The best results for CrossViT
and ViT were acquired with 12 parallel attention heads for linear and corner data and 15 for
center data, which might imply that for noisier training data, a higher number of attention
heads is beneficial. As only the best model for linear data relies on bidirectional training,
we cannot conclude that it has a significant positive effect. The classification of corner data
compared to center data was more successful. We infer that a straight line between the
sender and receiver in the orientation of the swipe is beneficial, and that higher distances
between the sender and receiver give the echo data better differentiable characteristics.
Therefore, a corner arrangement is preferable to a center arrangement for classification of
the hand gestures regarded in our setup. The most significant differences between the CNN
models are the types of normalization sub-layer and pooling sub-layer and, generally, the
number of layers. The reason why the CNN model showed the worst accuracy compared
to all others might be because this type of structure does not come with an internal memory.
Therefore, the time-dependent information of the gestures is not well learned for CNN
structures, and feeding the entire gesture at once is not sufficient to allow the model to
perform as well as models with a memory, which are designed for sequential data. While
LSTM and GRU cope with the vanishing and exploding gradient problem, these models
need a lot of training time, which increases significantly with each added layer. ViT and
CrossViT take significantly less time, have half of the number of trainable parameters, and
achieve almost the same accuracy. Therefore, these structures are probably preferable in
most cases. The comparison of models with spectrogram images as input and the models
without the Fourier transform with respect to model size indicates that, at least for now,
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doing the Fourier transform as pre-processing results in a much smaller model. Therefore, it
might be advisable in most cases to do this transformation before classification. The Fourier
transform accentuates frequency changes, making it possible to assess the Doppler effect.
Since some information is inevitably lost when calculating the spectrogram, it might be pos-
sible that, for some other gestures, the information given by a spectrogram is not sufficient.
The superior classification results obtained on the linear dataset might be due to the fact
that only four gestures are being classified in this case. Furthermore, the distance between
the sending transducer and the farthest receiving transducer is highest in this arrangement.
That might allow for more accurate classification of the swipe gestures. Additionally, the
data that are evaluated contain more redundancy, as the two evaluated transducers should
show roughly the same changes to echo length, height, and position since they are linearly
placed. On the other shields, only one of the transducers is in linear alignment with respect
to the swipe gestures. Thus, despite using more information for classification for the center
and the corner data, classification of the linear data yields the best results. The corner data
allow for significantly better classification accuracies for all but the CNN model compared
to the center data. This might mean that linear placement of the transducers with respect
to the classified gestures is beneficial and supports the suggestion that a higher distance
between the sending transducer with respect to the receiving transducers is favorable.

7. Conclusions

Five different ML model types were trained on three different datasets for four or six
gestures depending on the shield arrangement. All datasets were acquired with dedicated
HW comprising four ultrasonic transducers in different arrangements. The main novelty
presented is that the data exclusively contain raw ultrasound echo data. That means
the processing is purely ML-based, and the processing-intensive Fourier transform is
left out. Features are learned by the algorithms autonomously. The ML models tested
include convolution-, sequential-, and attention-based models. For all models, dedicated
adjustments were successfully implemented to feed them raw ultrasound amplitudes. For
LSTM and GRU, ViT- and CrossViT-inspired embeddings were implemented to allow
autonomous feature extraction. For the same goal using CNN, a suitable kernel size was
found. The experiments outlined in Section 4 and carried out with the HW described in
Section 3.1 allow a comparison of the different arrangements of the transducers on the
one hand and a comparison of the distinct ML models on the other hand with respect
to the various gestures. It was shown that adjustment of the models to the specific new
task of evaluating raw ultrasound data was successful. The gestures consisted of taps
perpendicular to the transducers and two types of swipes horizontal to the transducers.
Depending on the arrangement, either two or four types of swipes were classified. It
was found that sequential and attention-based models are superior to convolution-based
models for ultrasonic HGR. This confirms that temporal changes are very important for
HGR. Regarding the transducer arrangement, corner and linear were superior to center,
which leads to the inference that a higher distance between the sending and the receiving
transducer is beneficial for ultrasound HGR. This goes in line with the expectation that
the data received by a transducer that is closer to the transmitter are distinct from the
data received by a transducer that has a higher distance from the transmitter. These
differences are increased with larger differences in distance from the transmitter. Due to its
symmetry, the center arrangement is therefore less suitable for an HGR system. That LSTM
outperforms GRU and CrossViT surpasses Vit signifies that ultrasound HGR on raw input
data is a complex task that, up to now, has demanded a complex ML model. The maximum
accuracy achieved in this work is 95% for four gestures, 93% for six gestures, and up to
100% accuracy on differentiating tap vs. swipe gestures. This accuracy is similar to the
results reported by current research. However, it must be noted that the complexity of
ultrasound-based HGR depends highly on the type, amount, and arrangement of sensors of
the HW used as well as the type of gestures that are being evaluated. As Table 2 highlights,
HGR systems based on sensor fusion, vision, and radar are able to differentiate higher
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numbers of more fine-grained gestures with similar accuracy. Similar to the proposed
research, [13,14] use time-efficient processing with DL on raw data in the time domain
for HGR. Classification by [26,28] relies on the Doppler effect and is therefore constrained
to tap movement recognition. Papers [29,30,33] require the Fourier transform and more
complicated signal processing. Paper [24] requires eight transducers, processing intensive
beamforming, and oscilloscopes for actuation and read-out. The authors of [25] develop
a system that reaches higher resolution and distance but is based on a 64-element array
of bigger transducers. Finally, [23] requires the user to wear a device. The authors of [32]
achieve 95% to 100% accuracy, but their method requires an array of seven transducers
placed in a circular arrangement. Therefore, the evaluation of Doppler shifts is sufficient for
the evaluation of the direction of arrival of a hand. Up to now, ultrasound-based HGR is in
the range of 86% to 100%, as [28] with 86%-100%, [29] with 97%, and [30] with 97% show.
Our approach shows that similarly high accuracy can be achieved without using the Fourier
transform, as Table 3 underlines. Raw ultrasound data are significantly different from
video, radar, WiFi, or other available hand gesture data. As a consequence, our research
relies on significantly different processing. The dataset used for training contains low
office noise and noise from common machines like a laptop, screens, and similar devices.
Different hand shapes, gesture speeds, direction of the palm up and down are considered,
as different persons took part in the data acquisition. Nevertheless, it is required that the
palm be in a parallel position to the array to generate a significantly high echo. Further, the
gesture must be carried out in a range of about 15 to 40 cm distance. In our case, no object
obstructed the FOV. But as the FOV is comparatively small, this is not expected to pose
a significant problem in real-world use. Possible applications of the gesture recognition
algorithms are smart speakers or automotive interiors. While radar applications face the
problem of many phantom objects, the range and FOV of our ultrasound application are
small enough to avoid these problems. Already installed speakers and microphones could
potentially be enhanced by the proposed application. It has to be considered that we only
evaluated data captured by two or three ultrasound transducers, which do not contain
sufficient information to distinguish fingers let alone differentiate finger positions. For such
tasks, more transducers and a stronger emitter, as in [25], are required. Yet the scope of
this work was to show that HGR based on ultrasound data is possible in the time domain
only and with very small HW requirements. The presented results demonstrate that it is
possible to do classification of ultrasound-based gestures without Fourier transform by
utilizing a wide variety of deep learning models when the models and incoming data are
adjusted adequately, as described in Section 4.

As a next step, we want to explore new models like spiking neural networks. It
needs to be confirmed if a combination of spiking neural networks with Fourier-transform-
free classification is possible. Such a concept would be particularly advantageous for
implementations on devices with low processing power. Considering that the output
size is quadratically dependent on the input size, shortening the input sequences would
likely result in a large reduction in the size of the transformer network. Retaining more
information related to time seems to be a field that needs more research, as it might benefit
the determination of the direction of swipes.

Additionally, it might be possible to apply the presented approach to do classification
after every pulse train, which would permit earlier gesture prediction.
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