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Abstract: Understanding and classifying brain states as a function of sleep quality and age has
important implications for developing lifestyle-based interventions involving sleep hygiene. Current
studies use an algorithm that captures non-linear features of brain complexity to differentiate awake
electroencephalography (EEG) states, as a function of age and sleep quality. Fifty-eight participants
were assessed using the Pittsburgh Sleep Quality Inventory (PSQI) and awake resting state EEG.
Groups were formed based on age and sleep quality (younger adults n = 24, mean age = 24.7 years,
SD = 3.43, good sleepers n = 11; older adults n = 34, mean age = 72.87; SD = 4.18, good sleepers
n = 9). Ten non-linear features were extracted from multiband EEG analysis to feed several classifiers
followed by a leave-one-out cross-validation. Brain state complexity accurately predicted (i) age
in good sleepers, with 75% mean accuracy (across all channels) for lower frequencies (alpha, theta,
and delta) and 95% accuracy at specific channels (temporal, parietal); and (ii) sleep quality in older
groups with moderate accuracy (70 and 72%) across sub-bands with some regions showing greater
differences. It also differentiated younger good sleepers from older poor sleepers with 85% mean
accuracy across all sub-bands, and 92% at specific channels. Lower accuracy levels (<50%) were
achieved in predicting sleep quality in younger adults. The algorithm discriminated older vs. younger
groups excellently and could be used to explore intragroup differences in older adults to predict sleep
intervention efficiency depending on their brain complexity.

Keywords: sleep quality; PSQI; EEG; non-linear multiband analysis; brain complexity; classification;
machine learning; healthy aging

1. Introduction

Good sleep quality is essential for maintaining one’s cognitive and mental health
over their lifespan [1–3], with critical repercussions at a personal, societal, and economic
level. Understanding poor sleep quality in older adults is particularly important, as
it is associated with the risk of several non-communicable diseases (such as diabetes,
cardiovascular diseases, and obesity) and may contribute to cognitive decline and memory
impairments [4–7] through mechanisms such as increases in blood pressure, evening
cortisol levels, proinflammatory cytokines, and sympathetic tone [6–8].
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Changes in sleep patterns are part of a healthy aging process [9], but these changes do
not imply a decrease in sleep quality. Research shows that there are many older individuals
who report having optimal sleep quality or even better sleep quality than they had in
middle age and that they remain free of sleep disorders such as obstructive sleep apnea
or insomnia [3,10]. Age-related changes such as reduced brain electrical activity and
synchronization [11], minor decreases in white matter volume, and cortical atrophy may
contribute to cognitive decline and consequently to poor sleep quality [11,12]. Also, a poor
sleep quality might exacerbate neurocognitive changes that occur as a function of age.

This bidirectional relationship between cognition and sleep quality in the context of
aging might explain the reason why sleep quality interventions have a stronger effect in
younger adults in comparison to older adults, especially in cognitive outcomes [3]. Older
adults included in these studies might present higher rates of atrophy in the hippocampus
and frontal regions, areas involved in the acquisition and consolidation of new memories.
These participants, despite presenting an improvement in physiological sleep such as an
increase in deep sleep waves and sleep spindles, could not strengthen memories due to
reduced thalamic–cortical network support [3]. The increased physiological sleep quality
might be beneficial for slowing down the cognitive decline both in aging and neurodegen-
erative diseases long-term. In other words, brain atrophy and cognitive decline present
at the baseline, (i.e., start of the interventions) cannot be reversed. However, the pace of
further atrophy and cognitive impairment might be slowed down if patients incorporate
these interventions into their daily routine as quality physiological sleep facilitates the
removal of pathological proteins, notably beta-amyloid and tau, from the brain, making
the individuals more resistant to them [3,13,14].

A concept intimately linked with brain resistance is brain complexity, defined as the
ability of the neuronal circuits to interact at different spatial and temporal scales, enabling
the individual to flexibly adapt to the environment [15]. Brain complexity has been associ-
ated with increased health and a greater probability of survival, and is impacted by sleep
quality and decreased in the presence of cognitive impairment and neurodegenerative
diseases [15,16]. Healthy aging has been associated with a shift in the local/global com-
plexity balance, with more information being encoded at a local level and less at a global
one [17]. Absence of this shift in older individuals predicts worse cognitive outcomes. One
of the functions of sleep is regulating the complex organization of the dynamic brain by
balancing the cortical excitatory–inhibitory activity [18]. Classification of individuals by
brain complexity may aid personalized interventions for sleep issues, integrating awake
resting state brain function, sleep questionnaires, non-linear signal processing, and machine
learning for efficiency [1].

Electroencephalography (EEG) is a widely used tool in sleep medicine that measures
a gross signal from extracellular, post-synaptic potentials from thousands of neurons, pri-
marily pyramidal cells [19]. It has an excellent temporal resolution and is inexpensive and
easy to transport [20]. Most studies exploring sleep quality and/or aging with waking EEG
data have used linear methods of analysis, treating the whole time series as deterministic
(e.g., computing the mean of the whole timeseries). However, under deterministic chaos,
the brain is neither stochastic nor completely predictable [21]. Considering this, the theory
of non-linear dynamics and chaos has been proposed as a better way for biophysiological
data analysis [22–24]. Under this paradigm, non-linear features extracted from EEG time
series are utilized to explore various aspects of the human brain, including the interplay
between brain complexity, age, and sleep [25,26].

Recently, descriptors of complexity have been extracted from EEG signals to under-
stand aging processes and sleep quality [25]. The most used are the Correlation Dimension
(D2), Long-Range Temporal Correlations (LRTCs), energy, and entropy. The following
paragraphs are dedicated to defining these measures and presenting studies that used them
in the context of aging or sleep quality.

D2 is a measure of connectedness of the system, and is reduced following sleep
deprivation, reflecting a decrease in topological complexity [27].



Sensors 2024, 24, 2811 3 of 18

LRTC measures the memory of a system (i.e., how slowly the autocorrelation of a
timeseries decays). One of the most common ways to extract the LRTC is by computing the
Hurst Exponent (H), which is a measure of statistical self-dependence of the brain activity
over multiple scales of time and space. H provides information about the self-similarity
of the time series. Colombo et al. (2016) [18] used this exponent (H) and showed that
participants with worse sleep quality presented a higher LRTC, suggesting a decrease
in brain-balanced excitability which is translated into a decreased ability of the cells to
regulate its activity.

Energy measures signal power over time, i.e., strength or intensity of EEG signals
across different frequency bands [26]. A comparison of several machine learning methods—
support vector machine (SVM), k-nearest neighbor (KNN), and discriminative graph
regularized extreme learning machine (GELM)—supported GELM as the optimal classifier
in discriminating young adults with varying amounts of sleep quantity, based on gamma
frequency (62.16% accuracy, 83.57% when selecting optimal channels) [26].

Entropy is a measure of complexity that indicates the level of disorder in a dynamic
system. High levels of entropy signify less order and increased irregularity, which trans-
lates into a dysfunctional brain organization (which may require compensation by other
networks). Increased entropy is seen in healthy aging [28]. Entropy studies also suggest
reduced complexity with age and less connectedness across hemispheres and modules [29].
These brain features typically detected in the aging brain possibly reflect a reduced reper-
toire of behaviors or a reduced flexibility to adjust to different situations [29]. Recently,
healthy older adults and older adults with mild cognitive impairment (MCI) were more ac-
curately classified by combining measures of complexity into a single algorithm, supporting
non-linear measures of complexity in understanding healthy and unhealthy aging [30].

Until now, previous studies that investigate the effect of both age and sleep quality
have used (1) one non-linear feature and classical statistics to explore differences in sleep
between groups of young adults [18,27,31]; (2) one or more non-linear features (i.e., when
using more than one these were explored separately) and classical statistics to explore
differences in brain configuration between young and older adults [23]; (3) one or more
non-linear features and ML techniques to classify sleep [27]; and (4) one non-linear feature
and ML to classify younger adults vs. older adults [29].

The overall aim of the present study was to determine whether age and self-reported
sleep quality impact the complexity and stability of the brain detected in wake EEG. More
specifically, it aimed to classify individuals by their range of age (i.e., younger vs. older
adults) and their sleep quality (i.e., good vs. bad). To do so, a combination of novel al-
gorithms that combine 10 EEG non-linear features of complexity, namely energy, activity,
self-similarity, and connectedness, were used. This study diverges from previous research
that predominantly utilized linear EEG analyses by adopting a non-linear dynamic ap-
proach to EEG data. By incorporating multiband decomposition and extracting distinct
non-linear features, the methodology of this study intends to provide a better understand-
ing of brain complexity. This advanced analysis enhances our insight into how brain
activity varies with sleep quality and age changes, offering a more comprehensive view
than traditional linear methods. Additionally, by integrating these features into a robust
classification system, we provide a methodological advancement that can more accurately
reflect the real-world complexity of brain behavior interactions.

Our questions and expected outcomes are articulated as follows:

• Can the proposed algorithm effectively categorize individuals’ brain complexity based
on age? (e.g., distinguishing between younger individuals with good sleep quality and
older individuals with good sleep quality). Previous studies have noted an increase
in slower frequencies among older adults [32]. Additionally, some researchers have
suggested a reduction in complexity at a global network level and an increase at a
local level [17]. Therefore, we hypothesized that the algorithm would successfully
classify participants by age, yielding higher accuracy rates, particularly in the theta
and delta sub-bands.
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• Is the proposed algorithm capable of better distinguishing between older and younger
individuals when one group experiences compromised sleep quality? The extent
to which participants can be classified based on both sleep quality and age remains
uncertain. However, considering the observed alterations in complexity associated
with sleep and aging, higher accuracies in distinguishing between young and older
individuals were anticipated, particularly when comparing young adults with good
sleep quality to older adults experiencing sleep disturbances. Essentially, we expected
these two groups to exhibit the greatest dissimilarities, as we incorporate variations in
sleep quality alongside the aging process.

• Does sleep quality affect the awake resting state brain complexity and stability in
young adults and in older adults? Which sub-bands and regions enable a better
classification level? (YG vs. YB and OG vs. OB). As mentioned previously, sleep
quality is associated with a decrease in complexity [33], hence discrimination between
these pairs of groups is expected although with lower accuracy levels than when
contrasting groups of different ages.

2. Materials and Methods
2.1. Participants

The cohort used in this study overlaps with that used in a previous publication [34]. The
study was approved by the Health Research Authority, UK (REC reference: 17/EM/1010),
and participants provided informed consent.

A total of 58 right-handed volunteers were included in the current study. Participants
were divided into four groups (see below) depending on their age (i.e., younger adults
aged 20–34, older adults aged ≥ 65) and their sleep quality (good vs. bad), as assessed
using the PSQI [35]. For a PSQI description, see section “data-description”.

Group 1: n = 11 young adults with good sleep quality (YG) (scores < 5 in PSQI);
n = 5 females and n = 6 males (mean age = 23.36; SD = 2.70).

Group 2: n = 13 young adults with bad sleep quality (YB) (scores > 5); n = 5 females
and n = 8 males; (mean age = 25.53; SD = 3.54).

Group 3: n = 9 older adults with good sleep quality (OG) (scores < 5 in PSQI [35]);
n = 4 females and n = 5 males; (mean age = 73.77; SD = 5.45).

Group 4: n = 25 older adults with bad sleep quality (OB) (scores > 5 in the PSQI);
n = 17 females and n = 8 males; (mean age = 72.56; SD = 3.40).

Young participants were recruited from the Nottinghamshire area. Older participants
were recruited through the Trent aging panel, an internal Nottingham Trent University
database of older adult study volunteers.

Participants presented normal or corrected-to-normal vision; no history of psychiatric,
cognitive, or neurological disorder; and no medication that could interfere with the EEG
recordings. Participants were asked to not consume alcohol 24 h before the recordings
and caffeine and nicotine 3 h prior. To guarantee that none of the participants presented
MCI, they were assessed with the Hopkins Verbal Learning Test-Revised (HVLT-R) [36].
The HVLT-R in comparison to other scales such as the Mini-Mental State Examination
(MMSE) [37] has very high sensitivity and specificity enabling it to capture subtle differences
in cognitive decline.

2.2. Data Description
2.2.1. Sleep Quality Assessment (PSQI)

Sleep quality was assessed using the standardized self-rated questionnaire PSQI [12,35].
It is composed of 19 items that measure 7 domains: sleep quality, sleep latency, sleep dura-
tion, sleep efficiency, sleep disturbances, use of sleep medication, and daytime dysfunction.
All domains are summarized in a global score. Given poor sleep quality in normal aging
has been associated with the elements measured by the PSQI [35], the global PSQI score was
used to differentiate bad vs. good sleep in the current study. This tool has been reported to
be optimal for assessing sleep quality. It has a diagnostic sensitivity of 89.6 and a specificity
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of 86.5 (kappa 0.75 p < 0.001). Scores range from 0 to 21. Scores > 5 are indicative of poor
sleep or significant sleep disturbance [35].

2.2.2. EEG Data Collection

Eyes closed resting state EEG data was recorded using a 128-channel Active Two
Acquisition system (BioSemi, Amsterdam, Netherlands) at a sampling rate of 2048 Hz and
processed at 24-bits. Seven additional channels were applied around the face to help with
artifact detection. To reduce the computational load of data, 32 channels were used for the
data analysis: ‘A1’, ‘A7’, ’A15’, ‘A17’, ‘A19’ ‘A23’, ‘A28’, ‘A30’, ‘B2’, ‘B4’, ‘B11’, ‘B16’, ‘B22’,
‘B26’, ‘B29’, ‘C4’, ‘C7’, ‘C11’, ‘C15’, ‘C16’, ‘C21’, ‘C24’, ‘C28’, ‘C29’, ‘C30’, ‘D4’, ‘D10’, ‘D16’,
‘D19’, ‘D23’, ‘D26’, ‘D31’. The location of channels captures the electrical activity through
all the regions of the scalp. The use of this scalp widespread 32 channels has been reported
to be optimal by several researchers [19].

2.3. EEG Data Preprocessing

MATLAB ver. R2018a and EEGLAB [38] were used to preprocess the EEG data. Raw
EEG data was converted into 32 real value data vectors representing data extracted from
each of the EEG channels. Data was imported and referenced to linked mastoids, high
and low pass filtered between 0.1 Hz and 45 Hz, downsampled to 256 Hz and the DC
component has been removed. Bad channels were visually inspected, manually removed,
and interpolated. An independent component analysis (ICA—runica) was used to discard
those components that showed ocular and muscular artifacts (i.e., runica: visual inspection
of scalp topographies; and activity spectra: rejection of noisy data “eye blinking/muscle”).
To reduce computational demands, from the five minutes of EEG recorded data, only one
minute was used for the data analysis (i.e., a total of 15,361 time points and 32 channels).
The first minute of the signal was selected to capture the most attentive moment and avoid
sleepiness in older adults with bad sleep quality. Revising other studies shows that one
minute of data is sufficient to conduct this type of analysis [39].

2.4. EEG Signal Processing and Feature Extraction

The subsections below describe the steps followed by the data pre-processing. These
include multi-band decomposition, feature extraction, data normalization, and classification
(Figure 1).

2.4.1. Multiband EEG Decomposition

For each participant and channel, the EEG time series were split into 5 s windows
(i.e., a total of 12 windows). After, from each 5 s widowing analysis per channel an EEG
signal decomposition into frequency, sub-bands were performed for each participant, per
channel. EEG sub-bands delta (δ, 0.1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–16 Hz), beta (β,
16–32 Hz), and gamma (γ, 32–45) were extracted from the broadband signal using discrete
wavelet transform (DWT).

DWT is one of the most used tools to perform time-frequency analysis for non-
stationary data [40]. In contrast to the classic Fourier Transform, where the frequency
is extracted but time frequency is lost, using DWT, wavelets are localized both in frequency
and time, ensuring optimal time and frequency resolutions.

DWT was used in this study, with a biorthogonal 3.5 wavelet. This type of wavelet is
often preferred as it adjusts to the EEG’s original signals with very little deformation [41].
DWT was performed through an octave band critically decimated filter bank [42,43]. The
signal was transformed into approximation and details, using a scalar function and a
wavelet function. The values obtained for each participant, channel, and sub-band were
used as input values for the feature extraction.
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conventional sub-bands per window, electrode and subject. Features extracted for each sub-band, 
window, and each subject, and then per channel an average of each feature time series vector has 
been computed. Non-linear features organized per binary groups and sub-band and z-score nor-
malization performed per study group pairs. Non-linear features normalized were input of classifi-
ers trained/tested within a leave-one-out-cross-validation procedure. SVM = Support Vector Ma-
chine; KNN = K-Nearest Neighbor; Log.reg = Logistic Regression; trees = decision trees. 

2.4.1. Multiband EEG Decomposition 
For each participant and channel, the EEG time series were split into 5 s windows 

(i.e., a total of 12 windows). After, from each 5 s widowing analysis per channel an EEG 
signal decomposition into frequency, sub-bands were performed for each participant, per 
channel. EEG sub-bands delta (δ, 0.1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–16 Hz), beta (β, 
16–32 Hz), and gamma (γ, 32–45) were extracted from the broadband signal using discrete 
wavelet transform (DWT).  

DWT is one of the most used tools to perform time-frequency analysis for non-sta-
tionary data [40]. In contrast to the classic Fourier Transform, where the frequency is 

Figure 1. Methodology overview. Left to right, 32 channels included in analysis, time series of
32 channels selected and split into 5 s windows, Discrete Wavelet Transform (DWT) applied to
achieve conventional sub-bands per window, electrode and subject. Features extracted for each
sub-band, window, and each subject, and then per channel an average of each feature time series
vector has been computed. Non-linear features organized per binary groups and sub-band and
z-score normalization performed per study group pairs. Non-linear features normalized were input
of classifiers trained/tested within a leave-one-out-cross-validation procedure. SVM = Support Vector
Machine; KNN = K-Nearest Neighbor; Log.reg = Logistic Regression; trees = decision trees.

2.4.2. EEG Non-Linear Analysis

The non-linear nature of the EEG data was assessed with the tool provided by [44].
Then, two main steps were conducted: (1) reconstruction of the attractor from the state
space from observations and (2) extraction of features of EEG complexity and variability;
(2.1) from attractor (from the state space): correlation dimension, Lyapunov exponent and
approximate entropy (descriptors of the attractor); and (2.2) from time series: long-term
memory measures, fractal measures, energy, and entropy.
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Attractor reconstruction from the state space with time delay embedding:
Detecting an order or structure behind the EEG time series is a challenging task as

the data is complex and chaotic [45]. In consequence, the extraction of certain descrip-
tors or features directly from the time series is not an easy procedure. However, when
reconstructing this type of data from “time series” to “state space” a hidden order can be
observed. The state space represents every single state of the dynamic system, the brain,
in an m-dimensional plot forming a geometric structure called an attractor. Note that the
state of a dynamic system can be defined as the configuration of the system at a specific
time. In the present study, each state is represented by EEG channel values at a specific
time point of the time series. The most implemented approach to reconstructing the phase
space of EEG signals is the “time delay embedding”. The minimal dimension of the state
space (acquired by “embedding”) enables the extraction of non-linear features to explore
the whole dynamic system and the interactions within it in a non-ambiguous way. Some of
these non-linear features are the topology (connectedness), general structure, prediction of
states, correlation dimension, and causality between variables [30,46].

In the present study, a reconstruction of the state space using time delay embedding is
given by:

xi = [x(i), x (i +τ), . . ., x(i + (m − 1) τ)], (1)

where τ is the incorporation delay and m is the dimensionality. The values τ and m were
obtained following the methods in Faust and Bairy (2012) [47]. The vector sequence xi,
i = 1, 2, . . ., M, where, M = N − (m − 1)τ, form the reconstructed attractor [30,47].

2.5. Feature Extraction

The 10 features presented below were extracted per channel (32 channels), per each
participant, and per each sub-band.

2.5.1. Features Extracted from Reconstructed Attractor

Once the phase space was determined, the correlation dimension, Lyapunov exponent,
and approximate entropy were extracted. These measures enable us to determine the
complexity and balance of the brain:

Correlation dimension (D2) is a measure that describes the complexity of the system
based on the topology or connectedness of the attractor. In other words, it estimates the
space and distribution occupied by different points of the fractal attractor. For instance,
two points in the attractor might be very close in time but far in space. It is estimated based
on the correlation integral, a function of variable distances:

C(r, M) =
2

M(M − 1)

M

∑
i=1

M

∑
J=1; J ̸= i

θ
(
r − ||xi − xj||

)
(2)

where M is the number of data points or length or the attractor and Θ is the Heaviside
function meaning that this function attributes a value of 0 for negative inputs and 1 for
positive ones. C(r) determines the probability that two pairs of points of the attractor {xi, xj}
present a distance between them equal to or less than r [30,46,47]. From this, the correlation
dimension can be estimated as:

D2 = lim
r→0

logC(r, M)

log(r)
(3)

Lyapunov exponent (LLE) measures the stability of the attractor and quantifies chaos.
Chaotic or strange attractors perform two processes: (1) a process of expansion that consists
of trajectories starting from the same or similar point diverging and (2) a process of folding
as time evolves, in other words, trajectories go back to the initial state converging (close to
each other). LLE determines the rate of expansion and folding. The larger the rate (LLE),
the more chaotic the attractor. The LLE rate of an attractor should be a positive value to be
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chaotic. For each state of the state, the largest exponent LLE can be extracted by finding the
state xj that satisfies minj ||xi − xj||. The estimates are given by [30,48].

λ(i) =
1

M + 2∑M
K=1

1
kTs

In
||xi+k − xj+k||
||xi − xj||

(4)

where Ts is the sampling period. The LLE is defined by the slope of the best linear
approximation of λ(i) [48].

Approximate entropy (ApET) computes the rate at which information of the dynamic
system is lost over time [30]. It is defined as:

ApET(m, r, N) =
1

N − m + 1 ∑N−m+1
i=1 log[Cm

i (r)]− 1
N − m ∑N−m

i=1 log[Cm+1
i (r)], (5)

where

Cm
i (r) =

1
N − m + 1

N−m+1

∑
j=1

θ
(
r −

∣∣∣∣xi − xj
∣∣∣∣) (6)

is the probability of the point xi on the attractor to be segregated from the other points by a
distance inferior or equal to r.

2.5.2. Features Extracted Directly from the Time Series

In this subsection, the features extracted directly from the time series are described.
These are long-term memory measures (Hurst Exponent, Detrended Fluctuation Analysis),
fractal dimension measures (Higuchi and Katz Algorithm), energy, and entropy.

Long Term Memory Measures

The Hurst Exponent (H) is used to assess long-range statistical self-dependence of
a time series (i.e., self-correlation, smoothness, and self-similarity of a single time se-
ries) [30,47]. It can be estimated as:

H =
log(R/SD)

log(N)
, (7)

where R is the range (maximum–minimum inside the series) and SD the standard deviation.
H is estimated by the slope of the best linear approximation of log[R(n)/SD n)] as a function
of log(N), see [26] for computation details of R(n)/SD (n). The more irregular the EEG
signal is, the closer to 0 H will be [46].

Detrended Fluctuation Analysis (∆) is similar to the Hurst Exponent in that it mea-
sures the statistical dependency on non-linear signals. However, this latter one explores
exclusively self-similarity, in other words, long-range correlations of a time series [30,49,50].
From x(n), the cumulative deviation series is calculated as follows:

y(k) =
k

∑
i=1

[
x(i)− X

]
. (8)

A linear approximation denoted by ym(k) is estimated for each m-long segment of y(k).
The following formula defines the signal’s average fluctuation as a function of m [47]:

F(m) =

√
1
N

N

∑
k=1

[y(k)− ym(k)]
2. (9)

The scale exponent ∆ signifies the correlation properties of the signal x(n), represented
by the slope of the best linear approximation of log F(m) as a function of log m [50].
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Fractal Dimension Measures

Fractal Dimension with Higuchi algorithm (FDh): a fractal is a geometric figure that is
divided by smaller identical subfigures, and presents self-similarity at different scales. This
type of figure is used to model and assess real-world problems as its shape is more natural
than conventional geometric figures. The brain presents attractors with the structure of a
fractal. In EEG processing, the fractal dimension measures the complexity of the brain by
detecting transient events in the waveforms [47]. This feature can be calculated directly
from the signals, meaning that reconstruction of the attractor is not needed. There are
several algorithms to compute the FD. In the present study, the Higuchi Algorithm was
used due to its excellent capacity for accuracy achieved in seminal research [47].

For m = 1, . . ., n and k = 1, . . ., kmax, where kmax is obtained experimentally despite
kmax = 8 being initially proposed, a distance measure is computed as [30,46,47].

Lm(K) =
N − 1
[a]k ∑[a]

i=1|x(m + ik)− x(m + (i − 1)k|, (10)

where a = (N − m)/k and ⌊a⌋ represents the largest integer equal to or less than a. The
average distance is computed as L(k) = ∑k

m = Lm(k)/k for k = 1, . . ., kmax. The FD estimate,
denoted by FDH, is then given by the slope of the best linear approximation of ln[L(k)] as a
function of ln(1/k).

Fractal dimension with Katz Algorithm (FDK): additionally, the Katz [51] algorithm
(FDK) was used to determine FD:

FDK =
log(L/a)
log(d/a)

, (11)

where L is the sum of the distances between the successive points of x(n), a is the average
distance between the successive points, and d is the greatest distance between x(1) and the
remaining points of x(n).

Energy and Entropy

Energy (EN): energy is one of the most used measures for explore aging processes. It
detects the slowing down of brain frequencies or the shifts from high frequencies to low
frequencies in aging [30].

EN =
N

∑
n=1

|x(n)|2. (12)

Entropy (ETs and ETL): similarly to LLE, entropy measures the loss of information
of its dynamics. A positive entropy denotes chaos, meaning that it takes more time to
expand than to fold back and produces more information than it destructs. Entropy
detects the amount of randomness or uncertainty in the EEG signal. In other words, it
assesses how ordered or disordered the peaks of the signal are. A low entropy reflects
predictability or repetition in the EEG signal patterns. The Shannon (ETs) and Logarithmic
(ETL) entropies [30,52,53] can be estimated as:

ETS = −
N

∑
n=1

|x(n)|2log[|x(n)|2] (13)

and

ETL = −
N

∑
n=1

log[|x(n)|2] (14)

After extracting the non-linear features DE, LLE, H, ∆, FDh, FDk, EN, ETs, ETL,
and Apet per each sub-band and window over channels, the time series vectors were
compressed by mean stat over channel and sub-band and then normalized using z-score per
each pair of groups, channels, and sub-bands (i.e., YG and OB, YB and OB, YG and OG, OB
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and OG, YG and YB). The normalized values obtained were utilized as input for a variety
of machine learning techniques, including Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Logistic Regression (Log.reg), and decision trees. These techniques
were applied based on pairs of groups, channels, and sub-band organization, facilitating
comprehensive analysis along channels and comparison across different configurations
and deeper analyses per sub-bands along different channels. This approach allowed for a
thorough exploration of data patterns and relationships, leveraging the strengths of each
machine learning algorithm to uncover insights.

To ensure the results are generalizable, a leave-one-out cross-validation procedure
was used. Due to the limited amount of data, all were used in the cross-validation. Table 1
indicated the used classifiers and the optimized hyper-parameters using by default the
Matlab Classification Learner APP pre-designed models.

Table 1. Classifiers and optimized hyperparameters.

Classification Models Classifier Optimized Hyper-Parameters

Decision Trees
Fine Tree Maximum number of splits = 4

Medium Tree Maximum number of splits = 20
Coarse Tree Maximum number of splits = 100

Logistic Regression Covariance structure: complete

Support Vector Machines
(SVM)

Linear SVM Box constraint level = 3
Quadratic SVM Box constraint level = 3

Cubic SVM Box constraint level = 4
Fine Gaussian Box constraint level = 3

Medium Gaussian Box constraint level = 3
Coarse Gaussian Box constraint level = 1

K-Nearest-Neighbors (KNN)

Fine KNN Number of neighbors = 1
Medium KNN Number of neighbors = 10
Coarse KNN Number of neighbors = 100
Cosine KNN Number of neighbors = 10
Cubic KNN Number of neighbors = 10

Weighted KNN Number of neighbors = 10

3. Results
3.1. Tomographic Maps for Discrimination over Scalp

The topographic maps in Figure 2 display the results of the best classifier for each pair
of groups. Mean accuracies were assessed to select the best classifier. See Supplementary
Materials where the accuracies reached in each classifier are displayed.

3.2. Discriminatory Capability of Used Classifiers

Generally, as displayed in Figure 3, the results showed an excellent mean accuracy
capacity of the algorithms to discriminate the following groups [1] YG vs. OB (different age,
only bad sleep in older adults) [2] YB vs. OB (different age, bad sleep in both), [3] YG vs.
OG (different age, same good sleep), and [4] YB vs. OG (different age, bad sleep in young
adults) (see points 1–4 in Figure 3 showing accuracy levels); a good accuracy [5] OG vs. OB
(same age, different sleep quality) and a low accuracy [6] YG vs. YB (same age, different
sleep quality). Considering these results, when comparing groups of different ages (i.e., YG-
OB, YB-OB, YG-OG, YB-OG) “bad sleep” in combination with “older age” constitute the
variables that allow better to differentiate the groups, followed by “aging” (independently
of sleep) and last, “bad sleep” in young adults. Additionally, when comparing groups of
the same age (i.e., OG vs. OB and YG vs. YB), the older groups are easier to discriminate
against than the younger ones. This could be explained by the fact that brain complexity
and energy are not that affected in young participants who do not sleep well or because the
algorithms used are better at capturing differences between young and old.
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bad sleep.

Regarding mean accuracies in the different sub-bands, results showed an excellent
classification accuracy in the alpha, theta, and delta sub-bands when comparing young
vs. older adults, especially when comparing the YG vs. OB, with an accuracy of 80% in
alpha, 82% in theta, and 85% in delta (Table 2). The older groups’ (i.e., OG vs. OB) mean
discriminatory capacity in all sub-bands was lower than when comparing Y vs. O but
preserved (over 70%). Lower mean accuracy levels were found when comparing the YG vs.
YB (Table 2). Nonetheless, the classification accuracies of specific EEG channels show an
optimal discrimination between the young groups in all the sub-bands except in gamma
(see Table 2 YG vs. YB, highlighted in blue).
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Figure 3. Mean accuracy in each pair of groups that displays how accurately algorithm predicted
sleep quality and aging considering brain complexity of each participant. Y axis accuracy percentages
are depicted and in X axis six pairs of groups: YG = Young adults’ good sleep; YB = Young adults’
bad sleep; OG = older adults’ good sleep; OB = Older adults’ bad sleep.

Table 2. Accuracy level reached per pair of groups per sub-band.

Group Classifier Mean/Max
Sub-Bands

Gamma Beta Alpha Theta Delta

YG vs. OB Cosine KNN
Mean 70% 73% 80% 82% 85%
Max 75% 89% 89% 89% 92%

YB vs. OB Cosine KNN
Mean 68% 72% 77% 78% 83%
Max 76% 87% 87% 89% 92%

YB vs. OG Coarse KNN
Mean 60% 62% 75% 79% 80%
Max 82% 82% 91% 91% 91%

YG vs. OG Linear SVM
Mean 59% 56% 67% 70% 77%
Max 90% 70% 90% 90% 95%

OG vs. OB Linear SVM
Mean 72% 72% 72% 71% 71%
Max 85% 82% 74% 76% 79%

YG vs. YB
Logistic

regression
Mean 43% 50% 49% 47% 50%
Max 63% 75% 88% 71% 75%

Note. YG = Young adults’ good sleep; YB = Young adults’ bad sleep; OG = older adults’ good sleep; OB = Older
adults’ bad sleep; Classifier = Machine learning method that classified with higher accuracy level for each pair of
groups; Mean = mean global accuracy level of all channels; Max = maximum accuracy achieved in at least one
channel. Light orange mean accuracies ≥ 70; dark orange mean accuracies ≥ 80; light blue maximum accuracy in
at least one channel ≥ 70; dark blue maximum accuracy in at least one channel ≥ 80.

3.3. Differences in Specific Regions across Groups

In this subsection, the most relevant results of accuracy levels in specific channels will
be presented.

(i) Young versus older adults

As displayed in the topography maps in Figure 2, YG vs. OB are the study groups that
present a higher discriminatory capacity. Generally, the areas that show higher differences
between age groups are the frontotemporal regions (affected in gamma, alpha, and theta).
Additionally, some occipital and parietal regions are markedly affected, especially in the
theta and delta sub-bands.
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Regarding specific channels, the regions that enable a higher discriminatory capacity
between the Y vs. O in the slow rhythms (i.e., delta and theta) are within the temporal-
parietal and occipital (especially channel B16). This might indicate age-related changes
independently of sleep quality, as it is present when comparing all pairs of groups Y vs. O,
but is not present when comparing OG vs. OB nor YG vs. YB. Conversely, the occipital
(EEG channel A30) seems to be related to bad sleep quality in O (see Table 2). This area
cannot discriminate between young with good sleep vs. old with good sleep. Additionally,
channel A23 in the occipital seems to be related to bad sleep both in young and older adults.

Regarding the alpha sub-band, the frontotemporal region C11 is the most different
when comparing the YG vs. OB and is associated with a bad sleep quality only in older
adults, as this result is also present when comparing the YB vs. OB and the OG vs. OB.

Results in the gamma and beta sub-bands in Y vs. O suggest that some occipital
regions, especially the A23, are associated with bad sleep quality in older participants
(this is evident as in all pairs of groups where OB is present, this region shows a great
accuracy performance). Conversely, the left frontotemporal region D23 is associated with
older adults with good sleep, as we can see only this region is different between YG-OG,
and YB-OG (see Supplementary Materials).

(ii) Old good sleep versus old bad sleep

When comparing the OG vs. OB, an overall ≥71% accuracy in all sub-bands was
achieved. As mentioned in the last section, results show that regions C11 (frontotemporal
in alpha) and A23 (occipital in gamma and beta) are associated with bad sleep in the
older group.

(iii) Young good sleep versus young bad sleep

The highest mean accuracy achieved by the YG vs. YB was 50% in the alpha sub-band.
However, specific channels in beta, alpha, theta, and delta reached accuracy levels > 70%.

The parietal central line (channel A19) in the alpha sub-band seems to be associated
with bad sleep in young adults (note that the algorithms can discriminate this region
between the groups YG vs. YB as well as between YB vs. OG). Other channels that allow
differentiating between YG and YB but no other pairs of groups are channel D19 (parietal)
in the beta, B29 (fronto-central) in theta, and D31 (inferior parietal) in the delta sub-band.
This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4. Discussion

The aim of this study was to classify young and older adults with good and bad sleep
quality as a function of brain complexity. Whilst similar algorithms have been used to
discriminate healthy older adults from those with neurodegenerative diseases using resting
state EEG data [30], the current study is the first to demonstrate the utility of classifying
groups based on healthy aging and sleep quality.

The algorithm achieved excellent mean accuracies when comparing young vs. older
adults. Moderate–high accuracies exist when comparing the older adult groups (e.g., older
with good sleep quality with older adults with bad sleep quality) and low accuracies when
classifying the younger groups (e.g., younger adults with bad sleep vs. younger adults
with good sleep quality). Additionally, the algorithm enabled excellent discrimination
between all pairs of groups in specific sub-bands and regions. Our data showed that poor
sleep quality, as indicated by higher PSQI scores, correlates with distinct alterations in EEG
signals, particularly in frequency distribution and non-linear dynamics. This association
suggests that sleep quality directly influences the complexity and stability of brain activity,
which could affect cognitive and neurological health. For instance, our findings that
bad sleep quality in older adults manifested differently in EEG patterns than younger
adults with similar sleep scores highlight the interplay between aging and sleep quality on
brain function.
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Brain configuration in the lower frequencies such as alpha, theta, and delta sub-bands
seems to play an important role in the aging process, especially in temporal and parietal
regions. This can be seen when comparing the older vs. younger groups, independently of
their sleep quality. This is aligned with several studies that indicate changes in older adults
in the slower rhythms in several regions, achieving accuracy levels of 75.5% [54,55]. These
changes have been hypothesized by several authors to be caused by a generalized slowing
of the nervous tissue, a decrease in cerebral perfusion and metabolism and inhibition
mechanisms [56].

Additionally, results showed that, although age allowed discrimination between
groups (e.g., YG vs. OG), even a higher accuracy is achieved when both age and sleep
quality are considered (i.e., young adults with good sleep quality vs. older adults with
bad sleep quality). This may reflect an interaction between aging and sleep quality on
brain function.

Evidence suggests that changes in theta and delta frequencies are associated with sleep
deprivation and bad sleep quality [57]. According to a systematic review, the hypothesis
underlying this finding is that delta is a marker of homeostatic sleep drive, and the longer
we are awake or sleep deprived, the higher the delta [58]. Changes in the delta sub-band
apart from denoting typical brain aging seem to be associated with sleep deprivation and
bad sleep quality independent of age. Münch et al. [57] found that young cohorts show
a more pronounced delta activity in frontal regions, while the older present a decrease
during wakefulness. This, according to the authors, might indicate a “pre-frontal tiredness”
due to bad sleep quality and aggregated “frontal tiredness” due to aging. Although our
findings cannot determine directionality, they support alteration in frontal and temporal
delta and theta sub-bands in older adults with bad sleep quality in comparison to younger
adults with good sleep. Furthermore, our findings suggest that the occipital region is
generally affected both in young and older adults with bad sleep quality. However, while
the former group only presents alterations in the delta and theta sub-bands, the latter
presents differences in the occipital across all sub-bands (especially in the gamma, beta,
and alpha). This discovery is intriguing, especially considering that previous research on
sleep deprivation has indicated a slower dominant occipital frequency rhythm in wake
EEG within the occipital region, a characteristic more prevalent in older adults compared
to younger adults [59]. One plausible explanation could be attributed to the nature of
our algorithm, which not only extracts sub-bands but also accounts for the intricacies of
brain complexity. However, further investigation is warranted to validate and replicate
our findings.

When comparing young cohorts, the algorithm achieved good discrimination accura-
cies only in specific regions and sub-bands. More precisely, occipital and parietal regions
seem to be affected in young adults with bad sleep quality in the alpha, beta, and delta
frequencies. Additionally, left frontotemporal gamma and beta are associated with younger
adults with good sleep.

The low mean classification accuracy of the young groups such as YG versus YB might
reflect the fact that sleep does not significantly alter the brain configuration in younger
adults and that bad sleep quality in older adults affects the brain configuration in a more
widespread manner. Alternatively, the features and algorithms currently used may not be
suited to discriminate between good and bad sleepers in younger groups.

This study presents some limitations. First, only the first minute of data was used
to decrease processing computational time. Although it has been demonstrated that one
minute of EEG data is sufficient for this type of analysis, the restriction to such a brief snap-
shot may overlook nuances that a more extended time series could reveal. Consequently, it
is recommended that future studies extend the duration of EEG data analysed to determine
whether the accuracy levels vary over different time windows. Additionally, assessing more
extended time series could provide deeper understanding into the stability and variability
of EEG features, potentially leading to more robust and generalizable findings. Second, a
search for the best combination of non-linear features was not performed. A recent study
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conducted by some of the co-authors indicated that this combination of features is optimal
for classifying healthy older adults and older adults with neurodegenerative diseases [30].
Accuracy levels in the younger groups might be improved by using another combination
of features. This takes several days of computational work. We propose future studies to
investigate whether another combination of features allows better discrimination of young
samples. Third, the effects of age and the ones on sleep quality are not easy to disentangle
and, although we can determine the classification accuracies with high confidence and
which sub-bands are more affected in each pair of groups, answering the questions “which
of these changes are more associated with a bad sleep quality and which ones with age?”
or “is there a decrease or increase in delta or theta sub-bands”? is not possible. Only
inferences can be made by comparing all the results of all pairs of groups. Fourth, this
study has a small sample size. To reduce the possible overfitting as much as possible a
leave-one-out cross-validation was used. However, future work should be conducted to
validate this method with bigger samples. Fifth, cognitive impairment was assessed using
the HVLT, and it is assumed that the older adults were healthy. However, they could have
some preclinical early pathologic aging that was not controlled such as tauopathy and
beta-amyloid accumulation and/or higher atrophy in the hippocampus and frontal regions
than the expected for healthy aging. Sixth, within-group differences were not explored, for
instance “is it possible to discriminate the individuals with a very bad sleep quality from
those with a moderately bad sleep quality?” or “can brain complexity be used to classify
individuals with specific sleep disturbances such as latency or number of awakenings per
night?” These gaps and questions should be investigated, as they could be the base for
creating individualized interventions.

5. Conclusions

In conclusion, this study demonstrates that: (i) the algorithm is efficient in classifying
older vs. younger participants with good and bad sleep quality; (ii) aging is associated with
changes in α θ δ; (iii) bad sleep in older adults is associated with δ changes in the fronto-
temporal region while bad sleep both in young and older adults is associated with changes
in the occipital region. The algorithm could be used to explore intragroup differences and
predict sleep intervention efficiency depending on brain complexity. Future studies using
EEG and non-linear features along with ML techniques might enable to predict which
intervention is better depending on age, lifestyle, and brain configuration to improve sleep
quality [60].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s24092811/s1.

Author Contributions: Conceptualization, L.P.-S., A.S., P.O.-S. and I.C.; data curation, L.P.-S. and
M.C.-R.; formal analysis, L.P.-S., G.S. and P.M.R.; investigation, L.P.-S.; methodology, G.S. and P.M.R.;
resources, M.C.-R.; supervision, A.S., P.O.-S. and I.C.; writing—original draft, L.P.-S.; writing—review
and editing, G.S., M.C.-R., A.S., P.M.R., P.O.-S. and I.C. All authors have read and agreed to the
published version of the manuscript.

Funding: The author(s) declare financial support was received for the research, authorship, and/or
publication of this article. The first author was co-financed by the European Regional Development
Fund (FEDER) through the Northern Regional Operational program “NORTE 2020” (Grant ref.:
NORTE-45-2020-75).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Nottingham
Trent University (Ref. 17/EM/0101, Date. 17 May 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available upon
request from the corresponding author.

Acknowledgments: The authors would like to thank all the participants of the present study.

https://www.mdpi.com/article/10.3390/s24092811/s1
https://www.mdpi.com/article/10.3390/s24092811/s1


Sensors 2024, 24, 2811 16 of 18

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Scullin, M.K.; Bliwise, D.L. Sleep, Cognition, and Normal Aging: Integrating a Half-Century of Multidisciplinary Research.

Perspect. Psychol. Sci. 2015, 10, 97–137. [CrossRef] [PubMed]
2. Hoch, C.C.; Dew, M.A.; Reynolds, C.F.; Buysse, D.J.; Nowell, P.D.; Monk, T.H.; Mazumdar, S.; Borland, M.D.; Miewald, J.; Kupfer,

D.J. Aging and Sleep. 1 Longitudinal Changes in Diary-and Laboratory-Based Sleep Measures in Healthy “Old Old” and “Young
Old” Subjects: A Three-Year Follow-Up. Sleep 1997, 20, 192–202. [CrossRef] [PubMed]

3. Scullin, M.K. Do Older Adults Need Sleep? A Review of Neuroimaging, Sleep, and Aging Studies. Curr. Sleep. Med. Rep. 2017, 3,
204–214. [CrossRef] [PubMed]

4. Abichou, K.; la Corte, V.; Hubert, N.; Orriols, E.; Gaston-Bellegarde, A.; Nicolas, S.; Piolino, P. Young and Older Adults Benefit
From Sleep, but Not From Active Wakefulness for Memory Consolidation of What-Where-When Naturalistic Events. Front. Aging
Neurosci. 2019, 11, 58. [CrossRef]

5. Stickgold, R.; Walker, M.P. Memory consolidation and reconsolidation: What is the role of sleep? Trends Neurosci. 2005, 28,
408–415. [CrossRef] [PubMed]

6. Mcewen, B.S.; Sapolsky, R.M. Stress and cognitive function. Curr. Opin. Neurobiol. 1995, 5, 205–216. [CrossRef] [PubMed]
7. Vgontzas, A.N.; Zoumakis, E.; Bixler, E.O.; Lin, H.M.; Follett, H.; Kales, A.; Chrousos, G.P. Adverse Effects of Modest Sleep

Restriction on Sleepiness, Performance, and Inflammatory Cytokines. J. Clin. Endocrinol. Metab. 2004, 89, 2119–2126. [CrossRef]
8. McEwen, B.S. Sleep deprivation as a neurobiologic and physiologic stressor: Allostasis and allostatic load. Metabolism 2006, 55,

S20–S23. [CrossRef] [PubMed]
9. Gulia, K.K.; Kumar, V.M. Sleep disorders in the elderly: A growing challenge. Psychogeriatrics 2018, 18, 155–165. [CrossRef]
10. Dregan, A.; Armstrong, D. Age, cohort and period effects in the prevalence of sleep disturbances among older people: The impact

of economic downturn. Soc. Sci. Med. 2009, 69, 1432–1438. [CrossRef]
11. Double, K.; Halliday, M.; Kril, J.; Harasty, J.A.; Cullen, K.; Brooks, W.S.; Creasey, H.; Broe, G.A.; Halliday, G.M.; Kril, J.J.

Topography of Brain Atrophy During Normal Aging and Alzheimer’s Disease. Neurobiol. Aging 1996, 17, 513–521. [CrossRef]
[PubMed]

12. Nebes, R.D.; Buysse, D.J.; Halligan, E.M.; Houck, P.R.; Monk, T.H. Self-reported sleep quality predicts poor cognitive performance
in healthy older adults. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2009, 64, 180–187. [CrossRef]

13. Arenaza-Urquijo, E.M.; Vemuri, P. Resistance vs. resilience to Alzheimer disease. Neurology 2018, 90, 695–703. [CrossRef]
14. Schreiber, S.; Vogel, J.; Schwimmer, H.D.; Marks, S.M.; Schreiber, F.; Jagust, W. Impact of lifestyle dimensions on brain pathology

and cognition. Neurobiol. Aging 2016, 40, 164–172. [CrossRef] [PubMed]
15. Hou, F.; Wu, C.; C-k, P.; Yu, Z.; Peng, C.-K.; Yang, A.; Ma, Y. Complexity of Wake Electroencephalography Correlates With Slow

Wave Activity After Sleep Onset. Front. Neurosci. 2018, 12, 809. [CrossRef]
16. Yang, A.C.; Jann, K.; Michel, C.M.; Wang, D.J.J. Editorial: Advances in Multi-Scale Analysis of Brain Complexity. Front. Neurosci.

2020, 14, 510091. [CrossRef]
17. McIntosh, R.; Antoni, M.; Seay, J.; Fletcher, M.A.; Ironson, G.; Klimas, N.; Kumar, M.; Schneiderman, N. Associations Among

Trajectories of Sleep Disturbance, Depressive Symptomology and 24-Hour Urinary Cortisol in HIV+ Women Following a Stress
Management Intervention. Behav. Sleep Med. 2019, 17, 605–620. [CrossRef] [PubMed]

18. Colombo, M.A.; Wei, Y.; Ramautar, J.R.; Linkenkaer-Hansen, K.; Tagliazucchi, E.; van Someren, E.J.W. More severe insomnia
complaints in people with stronger long-range temporal correlations in wake resting-state EEG. Front. Physiol. 2016, 7, 229402.
[CrossRef]

19. Cassani, R.; Estarellas, M.; San-Martin, R.; Fraga, F.J.; Falk, T.H. Systematic review on resting-state EEG for Alzheimer’s disease
diagnosis and progression assessment. Dis. Markers 2018, 2018, 5174815. [CrossRef]

20. Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2007.
21. Babloyantz, A.; Salazar, J.M.; Nicolis, C. Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. A 1985,

11, 152–156. [CrossRef]
22. Chialvo, D.R. Life at the edge: Complexity and criticality in biological function. arXiv 2018, arXiv:1810.11737. [CrossRef]
23. Cifre, I.; Miller Flores, M.T.; Penalba, L.; Ochab, J.K.; Chialvo, D.R. Revisiting Nonlinear Functional Brain Co-activations: Directed,

Dynamic, and Delayed. Front. Neurosci. 2021, 15, 700171. [CrossRef]
24. Miller, P. Dynamical systems, attractors, and neural circuits [version 1; referees: 3 approved]. F1000Research 2016, 5, 992. [CrossRef]

[PubMed]
25. Faust, O.; Bairy, M.G. Nonlinear analysis of physiological signals: A review. J. Mech. Med. Biol. 2012, 12, 1240015. [CrossRef]
26. Qian, B.; Rasheed, K. Hurst exponent and financial market predictability. In Proceedings of the IASTED Conference on Financial

Engineering and Applications, Berkeley, CA, USA, 24–26 September 2007.
27. Jeong, J.; Kim, D.-J.; Kim, S.Y.; Chae, J.-H.; Go, H.J.; Kim, K.-S. Effect of Total Sleep Deprivation on the Dimensional Complexity of

the Waking EEG sleep deprivation and waking EEG. Sleep 2001, 24, 197–202.
28. Wang, Z. Brain Entropy Mapping in Healthy Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 596122. [CrossRef]
29. Keshmiri, S. Entropy and the Brain: An Overview. Entropy 2020, 22, 917. [CrossRef]

https://doi.org/10.1177/1745691614556680
https://www.ncbi.nlm.nih.gov/pubmed/25620997
https://doi.org/10.1093/sleep/20.3.192
https://www.ncbi.nlm.nih.gov/pubmed/9178915
https://doi.org/10.1007/s40675-017-0086-z
https://www.ncbi.nlm.nih.gov/pubmed/29226069
https://doi.org/10.3389/fnagi.2019.00058
https://doi.org/10.1016/j.tins.2005.06.004
https://www.ncbi.nlm.nih.gov/pubmed/15979164
https://doi.org/10.1016/0959-4388(95)80028-X
https://www.ncbi.nlm.nih.gov/pubmed/7620309
https://doi.org/10.1210/jc.2003-031562
https://doi.org/10.1016/j.metabol.2006.07.008
https://www.ncbi.nlm.nih.gov/pubmed/16979422
https://doi.org/10.1111/psyg.12319
https://doi.org/10.1016/j.socscimed.2009.08.041
https://doi.org/10.1016/0197-4580(96)00005-X
https://www.ncbi.nlm.nih.gov/pubmed/8832624
https://doi.org/10.1093/geronb/gbn037
https://doi.org/10.1212/WNL.0000000000005303
https://doi.org/10.1016/j.neurobiolaging.2016.01.012
https://www.ncbi.nlm.nih.gov/pubmed/26973116
https://doi.org/10.3389/fnins.2018.00809
https://doi.org/10.3389/fnins.2020.00337
https://doi.org/10.1080/15402002.2018.1435545
https://www.ncbi.nlm.nih.gov/pubmed/29461096
https://doi.org/10.3389/fphys.2016.00576
https://doi.org/10.1155/2018/5174815
https://doi.org/10.1016/0375-9601(85)90444-X
https://doi.org/10.5506/APhysPolB.49.1955
https://doi.org/10.3389/fnins.2021.700171
https://doi.org/10.12688/f1000research.7698.1
https://www.ncbi.nlm.nih.gov/pubmed/27408709
https://doi.org/10.1142/S0219519412400155
https://doi.org/10.3389/fnagi.2020.596122
https://doi.org/10.3390/e22090917


Sensors 2024, 24, 2811 17 of 18

30. Silva, G.; Alves, M.; Cunha, R.; Bispo, B.C.; Oliveira-Silva, P.; Rodrigues, P.M. Early Detection of Alzheimer’s and Parkinson’s
Diseases Using Multiband Nonlinear EEG Analysis. Psychol. Neurosci. 2022, 15, 360. [CrossRef]

31. Shahbakhti, M.; Beiramvand, M.; Eigirdas, T.; Solé-Casals, J.; Wierzchon, M.; Broniec-Wojcik, A.; Augustyniak, P.; Marozas, V.
Discrimination of Wakefulness From Sleep Stage I Using Nonlinear Features of a Single Frontal EEG Channel. IEEE Sens. J. 2022,
22, 6975–6984. [CrossRef]

32. Scally, B.; Burke, M.R.; Bunce, D.; Delvenne, J.F. Resting-state EEG power and connectivity are associated with alpha peak
frequency slowing in healthy aging. Neurobiol. Aging 2018, 71, 149–155. [CrossRef]

33. Amorim, L.; Magalhães, R.; Coelho, A.; Moreira, P.S.; Portugal-Nunes, C.; Castanho, T.C.; Marques, P.; Sousa, N.; Santos, N.C. Poor
Sleep Quality Associates with Decreased Functional and Structural Brain Connectivity in Normative Aging: A MRI Multimodal
Approach. Front. Aging Neurosci. 2018, 10, 375. [CrossRef] [PubMed]

34. Crook-Rumsey, M. Neurophysiology of Prospective Memory in Typical and Atypical Ageing; Nottingham Trent University: Nottingham,
UK, 2020.

35. Buysse, D.J.; Reynolds, C.F., III. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research.
Psychiatry Res. 1989, 28, 193–213. [CrossRef]

36. Benedict, R.H.B.; Schretlen, D.; Groninger, L.; Brandt, J. Hopkins verbal learning test—Revised: Normative data and analysis of
inter-form and test-retest reliability. Clin. Neuropsychol. 1998, 12, 43–55. [CrossRef]

37. De Jager, C.A.; Budge, M.M.; Clarke, R. Utility of TICS-M for the assessment of cognitive function in older adults. Int. J. Geriatr.
Psychiatry 2003, 18, 318–324. [CrossRef]

38. Delorme, A.; Makeig, S. EEGLAB: An open-source toolbox for analysis of single-trial EEG dynamics. J. Neurosci. Methods 2004,
134, 9–21. [CrossRef]

39. Doborjeh, M.G.; Wang, G.Y.; Kasabov, N.K.; Kydd, R.; Russell, B. A Spiking Neural Network Methodology and System for
Learning and Comparative Analysis of EEG Data from Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects.
IEEE Trans. Biomed. Eng. 2016, 63, 1830–1841. [CrossRef]

40. Vetterli, M.; Kovacevic, J. Wavelets and Subband Coding; Prentice Hall: Englewood Cliffs, NJ, USA, 1995.
41. Rodrigues, P.M.; Bispo, B.C.; Garrett, C.; Alves, D.; Teixeira, J.P.; Freitas, D. Lacsogram: A New EEG Tool to Diagnose Alzheimer’s

Disease. IEEE J. Biomed. Health Inform. 2021, 25, 3384–3395. [CrossRef]
42. Malvar, H.S. Signal Processing with Lapped Transforms; Artech House, Inc.: London, UK, 1992.
43. Vetterli, M. Wavelets, approximation, and compression. IEEE Signal Process. Mag. 2001, 18, 59–73. [CrossRef]
44. BenSaïda, A. A practical test for noisy chaotic dynamics. SoftwareX 2015, 3–4, 1–5. [CrossRef]
45. Stam, C.J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin. Neurophysiol. 2005, 116, 2266–2301.

[CrossRef]
46. Rodríguez-Bermúdez, G.; García-Laencina, P.J. Analysis of EEG signals using nonlinear dynamics and chaos: A review. Appl.

Math. Inf. Sci. 2015, 9, 2309–2321.
47. Lau, Z.J.; Pham, T.N.; Chen, S.H.A.; Makowski, D. Brain Entropy, Fractal Dimensions and Predictability: A Review of Complexity

Measures for EEG in Healthy and Neuropsychiatric Populations. Eur. J. Neurosci. 2021, 56, 5047–5069. [CrossRef] [PubMed]
48. Rosenstein’, M.T.; Collins, J.J.; de Luca, C.J.; Rapp, P.E. A practical method for calculating largest Lyapunov exponents from small

data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [CrossRef]
49. Gifani, P.; Rabiee, H.R.; Hashemi, M.H.; Taslimi, P.; Ghanbari, M. Optimal fractal-scaling analysis of human EEG dynamic for

depth of anesthesia quantification. J. Franklin Inst. 2007, 344, 212–229. [CrossRef]
50. Lee, J.-M.; Kim, D.-J.; Kim, I.-Y.; Park, K.-S.; Kim, S.I. Detrended ductuation analysis of EEG in sleep apnea using MIT/BIH

polysomnography data. Comput. Biol. Med. 2002, 32, 37–47. [CrossRef] [PubMed]
51. Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [CrossRef] [PubMed]
52. Das, A.B.; Bhuiyan, M.I.H. Discrimination and classification of focal and non-focal EEG signals using entropy-based features in

the EMD-DWT domain. Biomed. Signal Process Control 2016, 29, 11–21. [CrossRef]
53. Rodríguez-Sotelo, J.L.; Osorio-Forero, A.; Jiménez-Rodríguez, A.; Cuesta-Frau, D.; Cirugeda-Roldán, E.; Peluffo, D. Automatic

sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy 2014, 16, 6573–6589.
[CrossRef]

54. Babiloni, C.; Triggiani, A.I.; Lizio, R.; Cordone, S.; Tattoli, G.; Bevilacqua, V.; Soricelli, A.; Ferri, R.; Nobili, F.; Gesualdo, L.; et al.
Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms. Front.
Neurosci. 2016, 10, 47. [CrossRef]

55. Ishii, R.; Canuet, L.; Aoki, Y.; Hata, M.; Iwase, M.; Ikeda, S.; Nishida, K.; Ikeda, M. Healthy and Pathological Brain Aging: From
the Perspective of Oscillations, Functional Connectivity, and Signal Complexity. Neuropsychobiology 2018, 75, 151–161. [CrossRef]

56. Davidson, P.N.; Davidson, K.A. Electroencephalography in the elderly. Neurodiagnostic J. 2012, 52, 3–19.
57. Münch, M.; Knoblauch, V.; Blatter, K.; Schröder, C.; Schnitzler, C.; Kräuchi, K.; Wirz-Justice, A.; Cajochen, C. The frontal

predominance in human EEG delta activity after sleep loss decreases with age. Eur. J. Neurosci. 2004, 20, 1402–1410. [CrossRef]
[PubMed]

58. Long, S.; Ding, R.; Wang, J.; Yu, Y.; Lu, J.; Yao, D. Sleep Quality and Electroencephalogram Delta Power. Front. Neurosci. 2021,
15, 803507. [CrossRef]

https://doi.org/10.1037/pne0000287
https://doi.org/10.1109/JSEN.2022.3155345
https://doi.org/10.1016/j.neurobiolaging.2018.07.004
https://doi.org/10.3389/fnagi.2018.00375
https://www.ncbi.nlm.nih.gov/pubmed/30524267
https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.1076/clin.12.1.43.1726
https://doi.org/10.1002/gps.830
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1109/TBME.2015.2503400
https://doi.org/10.1109/JBHI.2021.3069789
https://doi.org/10.1109/79.952805
https://doi.org/10.1016/j.softx.2015.08.002
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1111/ejn.15800
https://www.ncbi.nlm.nih.gov/pubmed/35985344
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1016/j.jfranklin.2006.08.004
https://doi.org/10.1016/S0010-4825(01)00031-2
https://www.ncbi.nlm.nih.gov/pubmed/11738639
https://doi.org/10.1016/0010-4825(88)90041-8
https://www.ncbi.nlm.nih.gov/pubmed/3396335
https://doi.org/10.1016/j.bspc.2016.05.004
https://doi.org/10.3390/e16126573
https://doi.org/10.3389/fnins.2016.00047
https://doi.org/10.1159/000486870
https://doi.org/10.1111/j.1460-9568.2004.03580.x
https://www.ncbi.nlm.nih.gov/pubmed/15341612
https://doi.org/10.3389/fnins.2021.803507


Sensors 2024, 24, 2811 18 of 18

59. Hong, J.K.; Lee, H.J.; Chung, S.; Yoon, I.Y. Differences in sleep measures and waking electroencephalography of patients with
insomnia according to age and sex. J. Clin. Sleep Med. 2021, 17, 1175–1182. [CrossRef] [PubMed]

60. Barracca, N. The Brain-Sleep Connection: GCBH Recommendations on Sleep and Brain Health. 2017. Available online:
https://www.ageuk.org.uk/globalassets/age-ni/documents/reports-and-publications/reports-and-briefings/health-
-wellbeing/gcbh/gcbh_sleep-brain-connection.pdf (accessed on 10 May 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5664/jcsm.9156
https://www.ncbi.nlm.nih.gov/pubmed/33590824
https://www.ageuk.org.uk/globalassets/age-ni/documents/reports-and-publications/reports-and-briefings/health--wellbeing/gcbh/gcbh_sleep-brain-connection.pdf
https://www.ageuk.org.uk/globalassets/age-ni/documents/reports-and-publications/reports-and-briefings/health--wellbeing/gcbh/gcbh_sleep-brain-connection.pdf

	Introduction 
	Materials and Methods 
	Participants 
	Data Description 
	Sleep Quality Assessment (PSQI) 
	EEG Data Collection 

	EEG Data Preprocessing 
	EEG Signal Processing and Feature Extraction 
	Multiband EEG Decomposition 
	EEG Non-Linear Analysis 

	Feature Extraction 
	Features Extracted from Reconstructed Attractor 
	Features Extracted Directly from the Time Series 


	Results 
	Tomographic Maps for Discrimination over Scalp 
	Discriminatory Capability of Used Classifiers 
	Differences in Specific Regions across Groups 

	Discussion 
	Conclusions 
	References

