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Abstract: Understanding the mechanism of mode-locking in a laser with high-order transverse mode
is important for achieving an ultrashort pulses train under more complicated conditions. So far, mode-
locking with high-order transverse mode has not been reported in other lasers except the multimode
fiber laser. This paper demonstrates robust mode-locking with high-order transverse mode in a
Kerr-lens mode-locked vertical-external-cavity surface-emitting laser for the first time, to the best of
our knowledge. While the longitudinal modes are locked, continuous mode-locking accompanied by
high-order transverse mode up to TEM40 is observed. The threshold of the mode-locking is only a
little bigger than that of the lasing. After the laser oscillation is built up, the mode-locked pulse train
can be obtained almost immediately and maintained until the thermal rollover of the laser. Output
powers of 717 mW under fundamental mode and 666 mW under high-order transverse mode are
achieved with a 4.3 ps pulse duration and 1.1 GHz pulses repetition rate, and some phenomenological
explanations to the related characteristics of the mode-locked operation of high-order transverse
mode in the vertical-external-cavity surface-emitting laser are proposed.

Keywords: mode-locking; vertical-external-cavity surface-emitting laser; high-order transverse mode

1. Introduction

Ultra-short pulses with a picosecond to femtosecond duration generated by a mode-
locked laser have been widely used in ultrafast time-resolved dynamics, an optical fre-
quency comb, intense field physics, laser medicine, laser micro-processing, and other
fields [1,2]. In addition to the well-known dye lasers and solid-state lasers (especially
Ti: sapphire lasers) [3,4], mode-locking has also achieved many remarkable results in
semiconductor lasers [5,6].

The optically pumped vertical-external-cavity surface-emitting laser (VECSEL), alter-
natively named as a semiconductor disk laser, follows the geometries of solid-state disk
lasers and possesses the advantages of semiconductor lasers. It can produce good beam
quality and high output power simultaneously. Meanwhile, the oscillating wavelength of a
VECSEL can be tailored using energy gap engineering according to the practical demands,
and wavelength tuning, single-frequency operating, and mode-locking can also be accessed
conveniently [7–9].

In view of the time characteristics of semiconductor carriers, it is generally recog-
nized that a relatively easy method to implement mode-locking in a VECSEL is to use a
semiconductor saturable absorption mirror (SESAM) made of the same material system,
so to achieve passive mode-locking. Performances of mode-locked VECSEL have been
greatly improved since the first passively mode-locked VECSEL was reported [10–13]. The
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maximum average output power has been increased to 6.4 W [14], the minimum pulse
width has reached 60 fs [15], and the repetition frequency directly arisen from the oscillator
has also been pushed to 101.2 GHz [16]. At the same time, various research groups have
conducted excellent research on the mechanism of passive mode-locking in a VECSEL,
including the effects of dispersion [17], nonequilibrium carrier dynamics, and so on [18].

Interestingly, researchers found another mode-locking method in VECSELs, namely
Kerr-lens mode-locking (KLML) or self-mode-locking [19,20]. Some results of KLML need
to insert a slit or another Kerr medium in the laser resonator [21,22], while other reports
of KLML do not need to place any additional elements in the cavity [23]. This so-called
KLML method was controversial at the beginning of its discovery [24]. After the discovery,
the explanation of the mechanism of KLML was not consistent. Some people thought
that quantum wells at the end position of the semiconductor gain chip are not pumped,
which provides saturable absorption to the laser wavelength and acts as an SESAM [25].
At the same time, another viewpoint is that the Kerr effect in the semiconductor gain
medium initiates the mode-locking [26]. Currently, it is accepted more widely that the
KLML phenomenon in a VECSEL originates from the Kerr effect of the semiconductor gain
medium [27].

KLML in solid-state lasers requires strict oscillation conditions, including that the
transverse mode of the laser must be a single transverse mode, that is, the fundamental
mode. In this case, mode-locking does not involve high-order transverse mode. In fact, the
understanding of the mode-locking mechanism has been limited to the time domain [28,29].
Until recently, the spatiotemporal mode-locking (STML) in multimode fibers has been
revealed and deeply explored, which extends people’s comprehension of mode-locking to
a higher spatial dimension [30,31].

In the KLML of VECSELs, it has been found that mode-locking was assisted by
higher-order transverse mode [32]. Based on the beat frequency in the RF spectrum of
mode-locking, and further supplemented by the same threshold value of mode-locking
and higher-order transverse modes, the authors stated that the emergence of higher-order
mode promoted the establishment of mode-locking. However, there was no direct evidence
of mode-locking with high-order transverse mode in the above paper.

This work reports a stable Kerr-lens mode-locked VECSEL with high-order transverse
mode for the first time, to the best of our knowledge. The evolution of the laser from
continuous-wave (CW) operation to the establishment of irregular pulses, and then to
CW mode-locking, is observed. Stable CW mode-locked pulses output is realized under
different spatial dimensions (i.e., different high-order transverse mode), and the transverse
mode order of stable mode-locking can be as high as TEM40. The pulse width, pulse
repetition rate, and other characteristics of a mode-locked laser are discovered, and the
output powers of mode-locked pulses with TEM00 and TEM20 modes are measured. A
preliminary view of the mechanism of the Kerr-lens mode-locked VECSEL with high-order
transverse mode is also put forward.

The laser described in this work needs no additional element to start the mode-locking
and can be mode-locked in more complicated conditions (i.e., with high-order transverse
mode). In other words, it is simpler, more compact, and more robust than other types of
mode-locked lasers. Especially, its emitting wavelength is at a 980 nm waveband, which can
produce bule ultrashort pulses that train conveniently through second harmonic generation
by inserting a nonlinear crystal in the laser cavity, and has unique underwater applications
such as optical sensing, high-resolution imaging, high-speed real-time communication, and
so on.

2. Experimental Results and Discussions

The gain chip used in the experiment is epitaxially grown in reverse sequences, as
shown in Figure 1 (right). Firstly, a GaAs buffer layer and an etch stop layer of AlGaAs
with high Al composition are deposited on a GaAs substrate, and then a cap layer of GaAs
is grown. An AlGaAs window layer with a high barrier to prevent the carriers from surface
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recombination comes next, and the following is the active region consisting of twelve
InGaAs/GaAsP multiple quantum wells (MQWs), which is designed to meet the target
laser wavelength of 980 nm. Above the active region is the distributed Bragg reflector
(DBR), composed of 30 pairs of alternate AlGaAs layers with high and low Al composition,
and the designed center wavelength and high-reflectivity bandwidth of the DBR are 980 nm
and 100 nm, respectively. The entire epitaxial wafer is ended by an antioxidant protect
GaAs layer.
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spot on the gain chip is about 400 μm, and the size of the beam waist of the fundamental 
mode of the cavity on the chip is approximately 200 μm. No other intra-cavity elements 
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After the laser oscillation is established, it can be changed from continuous wave to 
pulse operation by properly adjusting the resonator, e.g., finely adjusting OC to change 
the mode of the laser on the gain chip, or slightly changing the position of the pump spot 
on the gain chip. However, the generated initial pulses are usually very disordered. The 
pulse sequence observed on the oscilloscope can be seen in Figure 2a, and the pulse train 
on a larger scale is shown in Figure 2b, which further illustrates the disorganization of the 
laser pulses. As shown in Figure 2a, there is a basic period (Tc) in the pulse sequence, 
which is exactly equal to the round-trip time of the resonant cavity (formed by OC and 
the DBR at bottom of the gain chip) used in the experiment. 

At the same time, it can also be approximately considered that there is still a modu-
lation period (T1) of the pulse amplitude marked by red color block in the pulse sequence. 
The main reason for drawing the color block in Figure 2a is that there are some pulses 
whose amplitude changes periodically. Specifically, Figure 2a shows 20 pulses (blue 
curves), of which the 5th, 7th, 8th, and 10th pulses can be regarded as one group, and the 
12th, 14th, 15th, and 17th can be regarded as the other group. The amplitude changes in 
the two sets of pulses were almost the same. On a longer time scale, the above period does 
exist, so we draw color blocks to represent its periodicity. The upper edge of the color 
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Figure 1. Schematics of the Kerr-lens mode-locked VECSEL (left) and the epitaxy structure of the
employed gain chip (right).

When the grown wafer is split into small chips with a 4 mm × 4 mm dimension,
the epitaxial end face of the chip is metalized with titanium–platinum–aurum sequen-
tially. Then, the chip is bonded to a copper heatsink, and the substrate is removed using
chemical etch. An 808 nm fiber-coupled semiconductor laser with a 400 µm core diameter,
0.22 numerical aperture, and 30 W CW output power is used as the pump source, and the
pump beam is collimated and then focused onto the gain chip at an angle of about 30◦.
We use a RoC = −150 mm high-reflectivity coated (for 980 nm wavelength) plane-concave
end mirror as the output coupler (OC) to form a straight-line resonator for laser oscillation
(see Figure 1 (left)). The total cavity length is about 145 mm, the diameter of the pump
spot on the gain chip is about 400 µm, and the size of the beam waist of the fundamental
mode of the cavity on the chip is approximately 200 µm. No other intra-cavity elements
are employed.

After the laser oscillation is established, it can be changed from continuous wave to
pulse operation by properly adjusting the resonator, e.g., finely adjusting OC to change the
mode of the laser on the gain chip, or slightly changing the position of the pump spot on
the gain chip. However, the generated initial pulses are usually very disordered. The pulse
sequence observed on the oscilloscope can be seen in Figure 2a, and the pulse train on a
larger scale is shown in Figure 2b, which further illustrates the disorganization of the laser
pulses. As shown in Figure 2a, there is a basic period (Tc) in the pulse sequence, which is
exactly equal to the round-trip time of the resonant cavity (formed by OC and the DBR at
bottom of the gain chip) used in the experiment.

At the same time, it can also be approximately considered that there is still a modula-
tion period (T1) of the pulse amplitude marked by red color block in the pulse sequence.
The main reason for drawing the color block in Figure 2a is that there are some pulses
whose amplitude changes periodically. Specifically, Figure 2a shows 20 pulses (blue curves),
of which the 5th, 7th, 8th, and 10th pulses can be regarded as one group, and the 12th, 14th,
15th, and 17th can be regarded as the other group. The amplitude changes in the two sets
of pulses were almost the same. On a longer time scale, the above period does exist, so we
draw color blocks to represent its periodicity. The upper edge of the color blocks roughly
represents the envelope of the pulse amplitude, and the T1 is equal to the distance between
the maximum of these color blocks. Although the above envelope modulation in Figure 2a
is similar to Q-switched mode-locking, this modulation does not dominate in the pulse
train, which is generally chaotic and disorderly.
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Figure 2. The disordered pulse sequence observed on the oscilloscope (a), and the same pulse train on
a larger time scale (b) when the laser is in pulse operation, but it has not reached a stable mode-locked
state yet.

The above two periods all would be further verified in the later RF measurement. In
Figure 2b, the output pulses of the laser are totally disordered, so it cannot be said that
the laser is in a mode-locked state but rather in a transition state from CW operation to
mode-locking.

At this time, the signal appearing on the RF spectrometer is plotted in Figure 3. It
can be found that although the spectrum is chaotic in general, some spectral lines still
have a clear significance. For example, in Figure 3, the line f c = 1.03 GHz corresponds to
the pulse fundamental frequency determined by the length of the resonant cavity, that
is, to the pulse period Tc in Figure 2a. Naturally, the line 2f c = 2.06 GHz is the second
harmonic of the fundamental frequency of the pulse. As for the first line f 1 = 0.135 GHz in
Figure 3, we speculate that it may be caused by a relatively regular modulation embedded
into the chaotic pulses, for example, by the pulse amplitude modulation marked by the
red color block in Figure 2a, that is, by the period T1 in Figure 2a. The lines on the left
and right sides of 1.03 GHz in Figure 3 are obviously the difference- and sum-frequency of
f c and f 1, respectively. Similarly, the lines on the left and right sides of 2.06 GHz are the
difference- and sum-frequency signals of 2f c and f 1. The meanings of the other spectral
lines in Figure 3 are still unclear.
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Figure 3. Corresponding RF signals of the disordered laser pulse train produced by a VECSEL that
is in pulse operation but not in mode-locking yet. Line f c is definitely originated from the cavity
round-trip, and line 2f c is obviously the second harmonic of f c. The marked frequency separation is
perfectly equal to f 1, and the second, third, seventh, and eighth spectral lines are not so clear.
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Further fine tuning of the laser resonator can transform the above disordered pulses
into a regular and orderly pulse sequence, i.e., enforce the laser operating at a stable CW
mode-locked status, which can be verified from Figure 4. Figure 4a indicates the mode-
locked pulse train within 10 ns, where the amplitude of each single pulse is basically the
same, and the time interval between pulses is slightly less than 1 ns. Figure 4b shows the
pulse train on a larger time scale. Since the amplitude of the pulses shows good equality
and uniformity in more than 100 basic cycles shown in the figure, it can be regarded that
the laser is in a stable CW mode-locking state.
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Figure 4. Pulse train of the CW mode-locked VECSEL within 10 ns (a), and its extension on a
larger time scale of about 100 ns (b), which further verifies the good equality and uniformity of the
amplitude of pulses.

In order to meet the mode-matching between the laser and the pump spot on the gain
chip, so as to reduce the thermal effect and improve the electro-optic efficiency of the laser
as much as possible, the length of the laser resonator is chosen to be about 136 mm in
this experiment. Figure 5a presents the RF spectrum of the CW mode-locked pulse train,
indicating a fundamental pulse repetition rate of 1.1 GHz, strictly corresponding to the
length of the resonant cavity used in our experiment. Some higher-order harmonics of the
fundamental frequency signal are given in Figure 5b, and its clarity is in distinct contrast to
Figure 3.
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Figure 5. Fundamental RF signal of the CW mode-locked pulses (a) showing a 1.1 GHz pulse
repetition rate that corresponds to the length of the laser resonant cavity, and some higher-order
harmonics of the fundamental signal (b).

Figure 6a shows the autocorrelation trace of the output pulses, and it can be concluded
that the duration of the mode-locked pulse is about 4.3 ps by using Gaussian fitting (a
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Gaussian fit is chosen here because even if imperfect, it still yields a better performance
than a sech fit). Along with the spectral width of 1.3 nm shown in Figure 6b, it can be
estimated that the time-bandwidth product of the CW mode-locked pulse is approximately
1.72, almost four times 0.441 (the value of Fourier-transform-limited Gaussian pulse), and
this means that a serious frequency chirp is included in the mode-locked laser pulses.
Because there are no other dispersion elements in the cavity, we have reason to believe
that the nonlinear refractive index caused by the change in the carrier concentration in the
active region of the gain chip should be partly or entirely responsible for the chirp included
in the mode-locked pulses.
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The above CW mode-locking is obtained under the condition of fundamental trans-
verse mode. In view of the absence of any saturable absorption element in the resonator,
the mode-locking process is obviously started by the Kerr-lens which resulted from the
nonlinear refractive index in the gain chip along with the soft aperture formed by the pump
light on the chip (see Figure 1 (left)).

Generally speaking, CW mode-locked solid-state lasers need to work with a single
transverse mode, i.e., the fundamental transverse mode or namely the TEM00 mode. In
contrast, we found in our experiments that a VECSEL can produce stable CW KLML even
under high-order transverse mode; that is to say, the transverse modes can be locked
simultaneously with the locked longitudinal modes, or spatiotemporal mode-locking can
be achieved in a KLML VECSEL.

In the experiment, when the laser is steadily CW mode-locked under a fundamental
transverse mode, fine cavity adjustment can make the existing transverse mode deviate
from the ideal fundamental mode and maintain the CW mode-locking very well at the
same time. It is also possible to carefully tune the resonator under the condition that the
CW laser works in multi-transverse mode status, so that the laser can transit from CW
operation to stable KLML while the high-order transverse mode is retained.

Figure 7 lists different transverse modes that we can obtain stable CW KLML with in
the experiments and their corresponding output pulse sequences. We also found that with
multi-transverse mode, the CW KLML is even easier to achieve. It has been reported that a
higher-order transverse mode may assist the KLML in a VECSEL; however, there is no direct
demonstration of CW KLML under higher-order transverse mode in the literature yet.

It can be seen from Figure 7 that even under higher-order transverse mode, the status of
KLML is still steady enough, and the continuity of the pulses is still satisfactory. It requires
further in-depth dynamic analysis to answer why it is difficult to observe CW KLML under
high-order transverse mode in a solid-state laser, while stable CW KLML can be established
with high-order transverse mode in a VECSEL. We preliminarily suppose that the existence
of high-order transverse mode in a solid-state laser means some destructive factors such
as polarization degradation and phase detuning, which are unfavorable for the mode-
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locking of longitudinal modes. By comparison, in a VECSEL, especially a KLML VECSEL
supported by the nonlinear refractive index resulting from the change in the carrier density,
the presence of high-order transverse mode may represent, to a certain extent, that there
may be multiple Kerr-lenses in the laser cavity, as shown in Figure 8.
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Figure 8. Schematics of the different Kerr-lens of KLML VECSEL with TEM00 and TEM11 mode.
Please note that in the case of TEM11 mode, four separated Kerr-lenses working together may make
the cavity loss ratio of CW to mode-locked operation greater than that of single Kerr-lens under
TEM00 mode.

Without a Kerr-lens, it is obvious that the diffraction loss of the laser cavity under
multimode operation is greater than that under single transverse mode. However, if the
Kerr-lens works and we consider the cavity loss ratio of the CW operation to mode-locking
(lCW/lML), the combined action of the multiple Kerr-lens which arose from the higher-
order transverse mode would make the above ratio smaller than that under single-mode.
As a result, the KLML process with a higher-order transverse mode can be effectively
initiated, even easier than that with the fundamental mode, just as we have observed in the
experiment, because in the spatial dimension, the process of mode-locking can be regarded
as a spatial self-organization process under the principle of energy optimization.

Obviously, the advantage of a laser with multi-transverse modes is that it can increase
the mode volume of the laser in the gain medium and thus increase the output power
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of the laser. Figure 9 shows the output powers of our CW mode-locked VECSEL with
TEM00 and TEM20 mode, respectively, when the temperature of the heat sink bonded to
the gain chip is 20 ◦C. As can be seen from Figure 9, the output power of the laser with
TEM20 mode is larger than that of TEM00 mode when the incident pump power is below
5.6 W, just as we expected. However, this advantage is not so significant in the experiment.
In fact, the maximum output power of the laser with TEM00 mode (716 mW) is bigger
than the maximum output power of the laser with TEM20 mode (666 mW), because the
thermal rollover of the laser with TEM20 mode occurs earlier. The above phenomenon is
understandable, since the diffraction loss of a laser with higher-order transverse mode
is relatively larger, and for a laser with small gain, like the VECSEL used in this work, it
means lower efficiency and a greater thermal effect; hence, thermal rollover occurs earlier.
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temperature of 20 ◦C. When the pump power exceeds 5.6 W, the output power of TEM20 begins to
decrease and is less than that of TEM00.

It should be noted that no obvious threshold of the mode-locking of high-order
transverse mode in a KLML VECSEL was observed in the experiment, that is, the threshold
of mode-locking is only a little bigger than that of the CW laser. Once the laser oscillation is
built up, the mode-locking can be established almost simultaneously, and the CW mode-
locked pulse train can be maintained even beyond the thermal rollover of the laser until
the output power drops sharply. We also find that the threshold of the mode-locked laser
increases slightly with the increase in the order of the transverse mode, but this increase is
not very significant.

3. Conclusions

In summary, we have demonstrated robust mode-locking in a KLML VECSEL with
high-order transverse mode using a simple straight-line resonant cavity, and stable CW
mode-locking accompanied by the transverse mode order up to TEM40 is observed. Output
powers of 717 mW under fundamental mode and 666 mW under TEM20 mode are achieved
with the pulse duration of 4.3 ps and a pulses repetition rate of 1.1 GHz. Mode-locking
with high-order transverse modes has not been realized in solid-state lasers, nor has it been
reported in semiconductor lasers yet. This could inspire research to further explore the
mechanism of mode-locking, especially the spatial dynamic process of mode-locking. At
the same time, because there is no certain conclusion on the mechanism of mode-locking in
a KLML VECSEL yet, the observation of mode-locking with high-order transverse mode
in a KLML VECSEL in this paper can also provide a useful reference for understanding
the exact physical picture of KLML in a VECSEL. In addition, from the practical point
of view, it is expectable that the average output power and the single-pulse energy of a
mode-locked laser can be significantly improved by using mode-locking under high-order
transverse mode if the thermal effect of the laser can be solved better. Combined with



Sensors 2024, 24, 2839 9 of 10

the wide wavelength coverage provided by semiconductor energy band engineering, the
advanced mode-locking of high-order transverse mode in a VECSEL would greatly expand
the application scenarios of mode-locked semiconductor lasers.
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