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Abstract: Gas detection is crucial for detecting environmentally harmful gases. Organic field-effect
transistor (OFET)-based gas sensors have attracted attention due to their promising performance
and potential for integration into flexible and wearable devices. This review examines the operating
mechanisms of OFET-based gas sensors and explores methods for improving sensitivity, with a focus
on porous structures. Researchers have achieved significant enhancements in sensor performance by
controlling the thickness and free volume of the organic semiconductor layer. Additionally, innovative
fabrication techniques like self-assembly and etching have been used to create porous structures,
facilitating the diffusion of target gas molecules, and improving sensor response and recovery. These
advancements in porous structure fabrication suggest a promising future for OFET-based gas sensors,
offering increased sensitivity and selectivity across various applications.

Keywords: organic semiconductor; organic field-effect transistors; gas sensor; sensitivity; porous
structure; microstructure

1. Introduction

Organic field-effect transistors (OFETs) have garnered significant attention as a promis-
ing candidate for flexible display backplanes [1]. Typically, OFETs consist of an organic
semiconductor, gate dielectric, and three electrodes (i.e., source, drain, and gate electrodes),
where the gate bias induces polarization in the gate dielectric, leading to an accumulation
of charge carriers (e.g., electrons, holes) in the organic semiconductor near the gate dielec-
tric [2]. The potential difference between the source and drain electrodes results in a current
flow from the source to the drain electrodes. The magnitude and direction of the gate bias
determine the current flow and corresponding switching capability. The carrier type is
determined by the energy gap between the Fermi level of the source/drain electrode and
the lowest unoccupied molecular orbital (LUMO) or highest occupied molecular orbital
(HOMO). P-type OFETs facilitate hole injection from the Fermi level of the source electrode
to the HOMO of the organic semiconductor [3–5].

Figure 1 illustrates a prototypical organic semiconductor used in p-type OFETs. Pen-
tacene and Dinaphtho [2,3-b:2′,3′-f] thieno [3,2-b] thiophene (DNTT) are small molecule
organic semiconductors deposited through thermal evaporation. Acene or hetero-acene
structures with extended conjugation are common motifs for enabling extended conjuga-
tion while reducing the bandgap in organic semiconductors [6,7]. Since pentacene is not
soluble in common organic solvents, the attachment of bulky alkyl groups (e.g., triisopropy-
lsilylethynyl group) can increase its solubility [8]. Thus, synthesized TIPS-pentacene is
soluble in organic solvents [9]. Furthermore, the attached bulky group can disturb her-
ringbone stacking, leading to co-facial stacking with minimized π-π stacking distance [10].
However, the microstructural development of TIPS-pentacene is very sensitive to pro-
cessing conditions, and optimizing solution processing conditions is necessary. On the
other hand, polymeric semiconductors such as poly(3-hexylthiophene) (P3HT) can serve
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as alternative organic semiconductors suitable for low-cost and high-throughput printing
processes [11]. Although the carrier mobility of P3HT FETs is typically low, recent ad-
vancements in polymeric semiconductors (e.g., bis(2-oxoindolin-3-ylidene)-benzodifuran-
dione (PBIBDF-BT), poly [4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophen-2-yl)-
alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT) ) can lead to high-performance OFETs [12].
In terms of carrier mobility, recent polymeric semiconductors rival pentacene or TIPS-
pentacene, exhibiting carrier mobilities exceeding 1 cm2/Vs. Recent review papers have
discussed the molecular aspects of synthesized organic semiconductors used in OFETs,
providing comparative analyses to determine charge carrier mobility in OFETs [13,14].
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Figure 1. Various organic semiconductors for OFET gas sensors.

In addition to their use in switching display backplanes, OFETs can also serve as
sensors for detecting chemical and biological elements. However, organic semiconductors
are vulnerable to oxidation in humid conditions, posing challenges for sensing in aqueous
environments. Therefore, the gaseous state of the target analyte is preferred, and gas sensors
utilizing OFETs could provide an alternative solution. OFET-based gas sensors operate
through chemical and physical interactions between gas analytes and semiconductor layers.
With numerous organic semiconductors available and various methods for specifically
binding gas molecules, OFETs can detect a wide range of target gas molecules. Particularly,
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environmentally harmful gases such as NOx and NH3 can be detected by monitoring the
source–drain current with OFETs [4,15–17].

In this review paper, we begin by discussing the operating mechanism of OFET-based
gas sensors. Then, we review several strategies to enhance gas diffusion for improved
sensitivity in OFET gas sensors. The control of thickness and free volume is one way to
enhance sensitivity. We will focus on reviewing porous structures that can be fabricated
through self-assembly methods or etching. Our paper reviews recent advancements in
fabricating various types of porous structures for highly sensitive OFET-based gas sensors.

2. OFET-Based Gas Sensors—Operating Mechanism

Figure 2 shows the operating mechanism of OFET-based gas sensors. Although the
n-type operation of OFET is possible by tuning the LUMO level near the Fermi level of
the source–drain electrode, the fabricated OFET typically shows low environmental stabil-
ity [18,19]. Thus, most OFET gas sensors have been fabricated with p-type OFETs where
holes are the major carrier type [20]. Because the carrier density of organic semiconductors
is typically low, negative gate bias needs to be applied to induce hole carriers near the gate
dielectric [21]. When hole carriers pass through between the source and drain electrodes,
the adsorbed gas molecules can affect the current flow. There might be several ways for the
effects of the adsorbed gas molecules. One is the scattering effect, which degrades carrier
mobility in OFETs [15]. On the other hand, the adsorbed molecule can induce a doping
effect, which changes the carrier density in OFETs. Because the electric field in OFETs is the
highest at the semiconducting layer near the gate dielectric, the adsorbed gas molecules
need to diffuse into the semiconductor–dielectric interface to amplify the scattering of the
doping effect [4,22].
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When polar gases such as NH3 or NOx are present, the diffused gas molecules can
induce a dipolar effect, thereby leading to current change. By monitoring current changes
in OFETs, it is possible to monitor the concentration of target gas molecules in a given OFET
structure [23]. There are several key performance parameters in gas sensing: selectivity,
sensitivity, recovery, and stability [24]. Selectivity, also known as cross-sensitivity, refers
to the ability to detect target gas molecules within a mixture of various gases. Sensitivity,
on the other hand, is the normalized gas response to specific gas molecules. Recovery
denotes the sensor’s ability to return to its original signal once the gas molecules are no
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longer present, while stability pertains to the sensor’s ability to operate effectively over an
extended period [25,26].

Numerous well-written review papers exist on achieving selectivity in OFET-based
gas sensors [27–29]. It is widely acknowledged that OFET-based gas sensors can detect
dipolar gas molecules. Notably, charge transfer and accumulation indeed occur between
organic semiconductors and gas molecules. Typically, p-type semiconductors are used in
OFET-based gas sensors [30,31]. Consequently, NH3, with its electron-donating character,
can deplete existing hole carriers in p-type semiconductors, leading to a decrease in the
current between the source and drain electrodes. Conversely, NO2, with its electron-
withdrawing character, can accumulate hole carriers, resulting in an increase in current.
This dipolar effect is also relevant in explaining the gas-sensing properties of OFETs. The
direction and magnitude of the source–drain current can thus be utilized for gas molecule
detection [32–35]. Given that the gas-sensing mechanism is closely tied to changes in the
magnitude and mobility of field-effect charge carriers near the semiconductor–dielectric
interface, the diffusion of gas molecules within the semiconductor is crucial. Microstructural
engineering of the semiconductor layers, including morphology and structure, offers a
viable approach to improving sensor performance [36]. Specifically, the enhanced surface
roughness of semiconducting layers provides sites for gas adsorption, thereby enhancing
sensor performance.

There are several methods to facilitate the diffusion of gas analytes into the active
channel of OFETs. The first approach involves creating air dielectric transistors, where the
gas analyte is directly in contact with the conductive channel of the semiconductor [37].
This allows for absorption and enhanced gas sensitivity. For instance, in a gas sensor
utilizing Copper phthalocyanine (CuPc) as a semiconductor, comparing the sensitivity of
two sensors—one with an air dielectric and the other with a PMMA dielectric—reveals a
difference of more than 200 times. However, these devices are more challenging to fabricate
than typical transistors. Thus, we will not cover this strategy in this review paper. The
second approach involves controlling the free volume of organic semiconductors. The third
approach is to thin the conductive channel, as many studies have shown that ultrathin
films can improve sensing response, recovery, and sensitivity [16,17]. The final approach
is to increase the contact between the gas and the conductive channel by fabricating a
microporous film. The porous film facilitates gas diffusion, proving to be an effective
strategy for enhancing sensor response and recovery. In the following section, we will
introduce strategies ranging from controlling thickness and free volume to forming porous
structures via self-assembly or etching.

3. Control of Thickness and Free Volume for Enhanced Sensitivity

Typically, the performance of OFET-based gas sensors relies on the capability of the
gas analyte to diffuse into the channel. Consequently, reducing the thickness of the channel
where gas adsorption and diffusion occur can serve as an effective strategy to enhance
the performance of gas sensors. By minimizing the diffusion route for gas molecules
within the organic semiconductor, the ultrathin layer of the semiconductor enhances the
device’s ability to sense. This shortened path can facilitate quicker interaction between the
analyte gas molecules and the charge carriers in the charge–transport layer [17,38,39]. To
investigate the effect of film thickness on gas-sensing capabilities, Jiang et al. fabricated
CuPc-based OFETs with varying thicknesses ranging from 10 nm to 40 nm and compared
the NO2 gas sensitivity at these different thicknesses [38]. As illustrated in Figure 3a on
the right, it was observed that as the thickness of the CuPc film decreased from 40 nm to
10 nm, the sensitivity to gas increased from 7% to 241%.
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Various methods, including deposition [42], spin-coating [43], bar-coating [25], and
Langmuir–Schaefer [31], have been proposed to reduce the film thickness in OFETs. Specif-
ically, the production of ultrathin films via solution-based methods continues to be a
significant challenge, driving continuous research in the field [41]. Zhang et al. introduced
an unusual spin-coating technique named “on-the-fly dispensing spin-coating” to create
sub-10 nm ultrathin n-type OFETs [40]. By casting the solution while the substrate was
rapidly rotating, they produced films, notably a 4nm ultrathin layer, which exhibited a
gas response an order of magnitude greater than that of a 70 nm thick film, as shown in
Figure 3b. Chen et al. utilized the semiconducting polymer bithiophene and PBIBDF-BT to
fabricate an ultrathin film for gas sensors with a minimum thickness of 4 nm [41]. They
employed vertical phase separation, an effective method for creating ultrathin films [44],
and controlled the film thickness through solution concentration adjustments. To achieve
self-assembled conjugated polymer films, they blended the material with polystyrene (PS),
and the incompatibility between PBIBDF-BT and PS resulted in vertical phase separa-
tion after spin-coating. Subsequently, etching PS with ethyl acetate yielded the ultrathin
PBIBDF-BT film. The thickness of the resulting PBIBDF-BT film varies according to the
blend ratio of PBIBDF-BT to PS, with an increase in the PS ratio leading to thinner films. It
was observed that a decrease in film thickness correlates with an increase in sensitivity to
gas analytes, as shown in Figure 3c,d.

In addition to enhancing the gas-sensing capabilities, considerable research has fo-
cused on modulating these characteristics via the manipulation of the material’s chemical
structure [36]. To control thickness, the manipulation of the material’s chemical structure
can be a vital approach to control free volume for enhanced sensitivity. Yang et al. reported
the preparation of a porous pDPPBu-BT organic semiconductor (OSC) film, a polymer
semiconductor, with thermal annealing at 240 ◦C. This thermal annealing process was used
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to expel gaseous isobutylene and convert tert-butoxycarboxyl groups into COOH, thereby
augmenting NH3 gas sensitivity alongside the formation of a porous structure resulting
from the isobutylene removal [45]. Ahn et al. explored the impact of side-chain variations
on gas sensing by comparing PTQ-T, which features an alky chain, against PTQ-TEG, dis-
tinguished by its ethylene glycol-based side chain [46]. The ethylene glycol derivative side
chain of PTQ-TEG exhibits greater flexibility relative to the more rigid alky chain of PTQ-T,
thereby enhancing the free volume and facilitating the adsorption and desorption of gases
(Figure 4a). This characteristic notably improves response and recovery times, as illustrated
in Figure 4b. Furthermore, the inclusion of an oxygen atom in the ethylene glycol-based
side chain enhances gas adsorption, especially for electron-withdrawing analytes such
as NO2.
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Hong et al. adjusted the side chain length of Poly(3-alkylthiophene) (P3AT) to fa-
cilitate the penetration of gas analytes into the OSC film [47]. The alkyl chain of P3AT
influences various material properties, including mechanical characteristics, morphology,
and intermolecular interactions. While longer alkyl chains are generally known to de-
crease charge transport efficiency [13], the free volume generated by long side chains can
enhance analyte penetration, potentially improving gas sensor performance (Figure 4c).
Long alkyl chains can form an insulating barrier between the conjugated backbone and
the electrode, hindering the injection of charge carriers and potentially degrading the
electrical properties of the OFET. However, Poly(3-dodecylthiophene) (P3DDT), which
possesses the longest alkyl side chain, demonstrated superior NO2-sensing properties, with
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a sensitivity of 0.45%/ppm and a limit of detection (LOD) value of 0.26 ppt, approximately
twice as effective as P3HT (Figure 4d). Thus, adjusting the length of the side chain can
facilitate gas diffusion, enhancing sensor performance. Additionally, the fabricated P3DDT
FET exhibited superior mechanical flexibility compared to the P3AT FETs with shorter
side-chain lengths.

4. Porous Structure for Enhanced Sensitivity

Porous structures are advantageous for maintaining the transport pathway of charge
carriers while providing passages for the diffusion of target gas molecules (see Figure 5).
Consequently, field-effect charge carriers near the gate dielectric are affected by the diffused
gas molecules, leading to an increase in response and recovery during gas detection.
The porous structure (so called, breath figure) needs to be finely constructed to maintain
charge carrier mobility [48]. There are several strategies to construct porous structures.
One method involves using spontaneous self-assembly during the solution process [49].
Thin film de-wetting could be utilized to directly fabricate the porous film [50]. Another
approach involves using added solvents and polymers to facilitate the formation of porous
structures [51]. Alternatively, unwanted regions can be removed using physical or chemical
etching methods. The etching method is preferable for selecting material types. Both
thermally evaporated organic semiconductors and solution-processed ones can be used for
the formation of porous structures via etching [52]. In the next section, we will introduce
representative works on the formation of porous structures for sensitive OFET-based
gas sensors.
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4.1. Self-Assembled Porous Structure

Research in the field has been directed towards manipulating the morphology or
microstructure of OSC films by employing additive or blend solutions to augment the
crystallinity and uniformity of the film coverage. The blend approach is quite benefi-
cial for the formation of multicomponent films via spontaneous self-assembly and phase
separation [54]. By using organic semiconductor/insulating polymer blends, OFET perfor-
mance could be enhanced in several aspects. Predominantly, insulating polymers such as
polystyrene have been identified as enhancing both the stability and mechanical properties
of OFETs when integrated with diverse semiconductors. The control of solubility and sur-
face energy plays a critical role in vertical phase separation and the formation of ultrathin
semiconducting films on polystyrene. However, the performance of solution-processed
OFETs is influenced by processing conditions such as spin-coating time. Investigations by
Na et al. into polythiophene films have shown that the amount of residual solvent, con-
tingent upon the spin-coating time, affects the electrical properties [55]. Optimal residual
solvent levels were found to enhance the ordering of polythiophene molecules, crucial
for modulating the crystallization rate and molecular orientation. Such adjustments are
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instrumental in determining the OSC film morphology. The morphological characteristics
of the OSC film play a pivotal role in dictating the performance of gas sensors, as they
directly influence gas diffusion rates and the extent of the contact area between the sensor
and gas molecules [36].

Lee et al. developed a method to produce porous OSC films by blending TIPS pen-
tacene, a crystalline low-molecular-weight semiconductor, with polystyrene, an insulating
polymer [56]. The morphology of TIPS pentacene can exhibit diverse structural configura-
tions contingent upon the matrix in which it is embedded [57]. TIPS pentacene blended
with polystyrene, when subjected to a brief spin-coating time, exhibits a predilection for a
one-dimensional (1D) growth mode due to the abundance of residual solvent. This process
initiates crystallization from the edges, culminating in the formation of 1D needle-like
crystals. Conversely, an extended spin-coating time results in a reduction in residual sol-
vent quantity, thereby facilitating the random nucleation of spherulites that leads to the
development of two-dimensional (2D) porous crystals [58]. The characterization of surface
microstructures, as illustrated in Figure 6a, demonstrates that 1D crystals are characterized
by large-scale inter-crystal gaps, while 2D crystals feature a high density of voids. These
morphological differences significantly impact the gas-sensing properties. As shown in
Figure 6b, OFETs with a 2D crystal structure, produced through prolonged spin-coating
processes, exhibited over twice the response, recovery, and sensitivity compared to those
with a 1D crystal structure, which were fabricated with a shorter spin-coating time. This
enhanced performance is attributed to the porous structure of 2D crystals, which facilitates
the facile passage of gas molecules through the channel region. It is thereby confirmed
that within organic semiconductor/insulating polymer blend systems, the optimization
of spin-coating time allows for the control of OSC film morphology and microstructure,
thereby enabling the regulation of device performance through the strategic manipulation
of processing conditions.
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Figure 6. (a) Schematic illustration of TIPS-pentacene/PS OFETs in different spinning times.
(b) Left: Repetitive sensing curves of OFET gas sensors based on the blend films upon exposure to
successive pulses of NO2 (50 ppm) and N2. Right: Sensing parameters of TIPS-pentacene/PS sensors
upon exposure to NO2 (50 ppm) and N2. All sensing experiments were carried out at VGS =−10 V
and VDS =−10 V, respectively. Reproduced with permission from Lee et al. [56], Copyright © 2019,
Springer Nature.

In the fabrication of an organic semiconductor film by manipulating the coating dy-
namics of a blend solution, the formation of a porous structure is often challenged by the
occurrence of aggregation, which is attributed to the pronounced molecular interactions
during the solvent-annealing phase. This aggregation complicates the pore creation process.
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Dong et al. employed water to fabricate honeycomb-structured microporous films [59].
Research on nature-inspired breath figure models, which do not utilize lithography or
etching processes, has been reported [60]. Notably, the formation of well-defined pore
structures in films utilizing polystyrene has been reported [61]. Zhang et al. developed a
porous OSC film employing polystyrene through the integration of an organic semiconduc-
tor/insulating polymer blend system alongside the breath figure model [62]. Conducting
the spin-coating process for films in a high-humidity environment results in water conden-
sation on the film surface. Subsequent thermal annealing to evaporate this water leads to
the formation of a microporous film. The porosity of this microstructure varies with the
relative humidity (RH%). As the RH value decreases, less water condensation occurs, cul-
minating in the development of a denser film. It has been confirmed that OFETs fabricated
through the breath figure model, despite possessing a porous structure with micropores,
exhibited negligible variation in field-effect mobility.

The primary motivation for rendering porous gas sensors is to facilitate gas diffu-
sion and increase the contact area. Transforming the conductive channel with which gas
molecules interact into a three-dimensional structure is a strategic approach to enhancing
gas sensor performance. Gao et al. fabricated a P3HT film and enhanced the gas response
by stacking OSC films in multiple layers [63]. Each layer was produced by utilizing water
condensation that occurs during spin-coating in a high-humidity environment, and the
OFETs were constructed as monolayer, bilayer, or trilayer based on the number of layers
stacked. Scanning Electron Microscopy (SEM) verified the formation of a three-dimensional
porous structure (Figure 7a). OFETs with a porous multilayer configuration have a larger
gas adsorption surface area compared to monolayers, enabling more sensitive detection
of current changes due to analytes. In fact, gas-sensing properties varied with the stacked
layers; for NO2 gas, at concentrations of 1~5 ppm, trilayer OFETs exhibited over twice the
sensitivity compared to monolayer OFETs (Figure 7b). In addition, OFETs with porous
multilayer films exhibited excellent mechanical performance compared to the dense film.
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Figure 7. (a) Schematic illustration of OSC films by breath figure model. (b) Sensitivity of multilayer
porous OFETs under various concentrations of NO2. Reproduced with permission from Gao et al. [63],
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Beyond utilizing water condensation to create porous structures, water can also serve
as a nonsolvent to fabricate porous films. Guillen et al. employed a combination of polymer,
solvent, and nonsolvent to generate porous films, discovering that the morphology varies
based on the miscibility between the nonsolvent and solvent. When the miscibility between
solvent and nonsolvent is high, a rapid solvent–nonsolvent exchange occurs, resulting in
the formation of a finger-like morphology. Conversely, if the miscibility between solvent
and nonsolvent is poor, the solvent–nonsolvent exchange happens more slowly, leading to
the development of a sponge-like morphology [64].

Liang et al. fabricated a porous PCDTPT film utilizing a solvent–nonsolvent exchange
process [65]. Chlorobenzene was employed as the solvent to dissolve the polymer, and
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deionized water (DI water) was used as the nonsolvent. Upon spin-coating, the polymer
solution onto a substrate and immediately immersing it in water, the initially dense film
transforms into a porous structure (Figure 8a). The resultant PCDTPT polymer film acquires
a cobweb-like appearance with thin, irregular pores. The size of these pores varies depend-
ing on the duration the film is submerged in the DI water nonsolvent; longer exposure
times lead to larger pores (Figure 8b). The control of solubility parameters can change
the dimensions of the porous structure. Thus, a solvent–nonsolvent exchange offers a
direct means of controlling morphology. As the size of the pores increases, gas diffusion
becomes more favorable; however, this can lead to a deterioration in the performance of
OFET devices, necessitating the careful consideration of this effect.
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Figure 8. (a) Immersing a spin-coated, dense PCDTPT film into deionized water for a few seconds
and then taking it out. Comparison of the schematic illustrations and AFM images of the initial and
immersed PCDTPT film. (b) Influence of immersion time on the morphology of ultrathin porous
polymer films. AFM images (4 µm × 2 µm) and height curves of ultrathin porous PCDTPT films
with different immersion times. Reproduced with permission from Liang et al. [65], Copyright ©
2020, American Chemical Society.

4.2. Porous Semiconducting Polymer via Etching

One of the most straightforward methods for creating a porous structure is controlling
film surface morphology through physical etching. The etching process entails removing a
portion of the surface layer of the fabricated OSC film, thereby enlarging the area available
for gas analyte adsorption. Furthermore, it reduces the layer’s thickness, bringing it closer
to the conductive channel, which leads to an increase in response and enhanced recovery
capabilities. Wang et al. fabricated a composite film by blending a conjugated polymer with
poly(1,4-butylene adipate) (PBA) and applying spin- coating, followed by etching away the
PBA to create a microporous film (Figure 9a) [66]. The microporous film, from which PBA
was etched away, exhibited more than 800 times of current change upon exposure to NH3
(Figure 9b). It was compared to continuous films; there was an enhancement in sensitivity
exceeding 200 times (Figure 9c).



Sensors 2024, 24, 2862 11 of 18
Sensors 2024, 24, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 9. (a) Fabrication process: the dropping of the PBIBDF-BT/PBA blend on the substrate, then 
the phase separation of the polymer/PBA blends, and the obtained PBIBDF-BT film after washing 
with solvent. (b) Cyclic test performance of the sensors based on the PBIBDF-BT microporous film. 
(c) Histogram showing the properties of the microporous- and continuous-film-based sensors. Re-
produced with permission from Wang et al. [66], Copyright © 2016, WILEY-VCH. 

The etching method, leveraging differences in solubility, can be applied to materials 
beyond polymers. Park et al. utilized small molecules, instead of polymers, as the etching 
substance to create pores that allow for gas ingress and egress [67]. After spin-coating a 
blend of P3HT and phenyl-C61-butyric acid methyl ester (PCBM), n-butyl acetate (BA) 
was employed to selectively etch PCBM (Figure 10b). This enhanced the response of the 
P3HT:PCBM film compared to standalone P3HT film, as shown in Figure 10c. The solvent-
based etching technique, applied post-blend solution coating, faces difficulties in pore size 
regulation, highlighting the need for additional investigation [68]. Tran et al. fabricated 
an OFET gas sensor with a nanoporous film through shear coating and utilized shearing-
assisted phase separation (SAPS) to adjust pore size by varying coating speeds [69]. When 
coating a blend solution of P3HT and PS using the SAPS method, the shear rate can be 
varied from 0.5 mm/s to 40 mm/s to achieve pore sizes ranging from 90 nm to 500 nm. 
Below a shear rate of 4 mm/s, an increase in rate leads to a decrease in pore size; however, 
beyond 4 mm/s, an increase in shear rate results in larger pores. At shear rates above 40 
mm/s, the pore size exceeds 500 nm, larger than those obtained via spin-coating (Figure 
10a). They observed that films sheared at 4 mm/s exhibited over 70% response to gas, and 
with increasing shear rates, the sensitivity to gas analytes decreased. This demonstrates 
that by simply adjusting the shear rate, it is possible to control the pore size of the porous 
structure, thereby enhancing gas-sensing properties. 

 

Figure 9. (a) Fabrication process: the dropping of the PBIBDF-BT/PBA blend on the substrate, then
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with solvent. (b) Cyclic test performance of the sensors based on the PBIBDF-BT microporous
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Reproduced with permission from Wang et al. [66], Copyright © 2016, WILEY-VCH.

The etching method, leveraging differences in solubility, can be applied to materials
beyond polymers. Park et al. utilized small molecules, instead of polymers, as the etching
substance to create pores that allow for gas ingress and egress [67]. After spin-coating a
blend of P3HT and phenyl-C61-butyric acid methyl ester (PCBM), n-butyl acetate (BA)
was employed to selectively etch PCBM (Figure 10b). This enhanced the response of
the P3HT:PCBM film compared to standalone P3HT film, as shown in Figure 10c. The
solvent-based etching technique, applied post-blend solution coating, faces difficulties in
pore size regulation, highlighting the need for additional investigation [68]. Tran et al.
fabricated an OFET gas sensor with a nanoporous film through shear coating and utilized
shearing-assisted phase separation (SAPS) to adjust pore size by varying coating speeds [69].
When coating a blend solution of P3HT and PS using the SAPS method, the shear rate
can be varied from 0.5 mm/s to 40 mm/s to achieve pore sizes ranging from 90 nm to
500 nm. Below a shear rate of 4 mm/s, an increase in rate leads to a decrease in pore size;
however, beyond 4 mm/s, an increase in shear rate results in larger pores. At shear rates
above 40 mm/s, the pore size exceeds 500 nm, larger than those obtained via spin-coating
(Figure 10a). They observed that films sheared at 4 mm/s exhibited over 70% response
to gas, and with increasing shear rates, the sensitivity to gas analytes decreased. This
demonstrates that by simply adjusting the shear rate, it is possible to control the pore size
of the porous structure, thereby enhancing gas-sensing properties.

4.3. Porous Evaporated Semiconductor via Etching

The fabrication of OSC films from small-molecule semiconductors like pentacene or
Dinaphtho [2,3-b:2′,3′-f] thieno [3,2-b] thiophene (DNTT) through thermal evaporation
is a well-established method. Small-molecule semiconductors form crystals through π-π
interactions as molecules pack together, allowing for the control of the desired OSC film
morphology by managing these interactions. Typically, the insertion of a self-assembly
monolayer (SAM) between the semiconductor layer and the substrate can regulate the
nanoscale ordering and interface characteristics of the organic semiconductor layer [70].
Lee et al. demonstrated that the properties of the interface could be controlled by adjusting
the deposition temperature [71].
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Control over deposition temperature for interface management serves as an effec-
tive strategy for morphology control by inducing the selective adsorption of molecules.
Kang et al. leveraged temperature-controlled deposition to induce the 2D crystal growth
of pentacene using a rubbery template with a smooth surface [72]. A template of m-
bis(triphenylsilyl)benzene (TSB3), a small molecule dielectric compound with a low glass
transition temperature (Tg) of approximately 33 ◦C, was deposited on an OTS-treated
substrate, followed by the deposition of the semiconductor pentacene to create a porous
structure OSC film. Due to the low surface energy of the smooth OTS layer, when TSB3
is deposited, the substrate is in a state above TSB3’s Tg, preventing full coverage by the
rubbery state TSB3 and leading to some agglomeration during film deposition. Depositing
pentacene on the dewetted TSB3 film results in preferential adsorption onto TSB3 due to its
higher interaction energy requirement with OTS. Consequently, pentacene deposits follow
the morphology of the underlying TSB3, facilitating the creation of a porous structure OFET
that allows for easy analyte penetration. On the other hand, the deposition rate significantly
influences the kinetics of nucleation and growth processes during film formation. Higher
deposition rates can result in higher nucleation density and hinder the growth of large
crystalline domains, thus favoring the formation of porous structures with smaller pore
sizes and higher surface areas [73].

While it is possible to pre-fabricate a porous template for semiconductor layer stacking,
an alternative approach involves pre-patterning pores on the template before depositing the
semiconductor layer. Lu et al. fabricated a porous structure OFET gas sensor using DNTT
and PS, as shown in Figure 11a [74]. Using the vacuum freeze-drying method, polystyrene
microspheres were deposited onto the substrate, followed by the thermal evaporation
of DNTT. Subsequently, the polystyrene microspheres were physically removed using
adhesive tape, creating a porous DNTT OSC film (Figure 11c). This process resulted in
the formation of pores approximately 10 µm in size where the PS had been removed.
A comparison between porous OSC films and dense pristine OSC films (Figure 11b,d)
revealed that the porous OFETs were capable of sensing gas concentrations starting from
10 ppb, whereas the pristine OFETs could only detect gas concentrations above 0.1 ppm.
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Figure 11. (a) The device structure of the porous OFET-based sensors and the molecular structure
of DNTT (top). Optical images of a porous DNTT film (bottom left) with polystyrene microspheres
and (bottom right) after removing polystyrene microspheres. (b) (left) The ID changes in the pristine
and porous OFETs with different concentrations of NH3. (right) The relative sensitivity (RS) of
the pristine and porous OFET-based sensors in response to various concentrations of NH3 vapor.
(c) The fabrication procedure of the porous OFET-based sensors. (d) Sensing responses of the pristine
and porous OFETs, with air acting as background vapor. Compared ID changes in the two OFETs
in response to (left) 0.1 ppm NH3 and (right) 1 ppm NH3. Reproduced with permission from Lu
et al. [74], Copyright © 2017, WILEY-VCH.

Table 1 summarizes performance of OFET-based gas sensors in this review.

Table 1. A summary of OFET-based gas sensors in this review.

Method Processing Sensing Material Analyte Detection Range Detection Limit Sensitivity
[%/ppm] Refs.

Thickness control Spin coating CuPc NO2 1~30 ppm - [40]
Thickness control Spin coating PBIBDF-BT NH3 0~10 ppm 2 ppm - [41]
Side Chain control Spin coating PTQ-TEG NO2 50 ppm 1.59 ppb 6.9 [46]
Side Chain control Spin coating P3DDT NO2 10~50 ppm 0.26 ppt 0.45 [47]

Self-assembled porous
structure Spin coating TIPS-

pentacene/PS NO2 1~50 ppm - ~2 [56]

Breath figure method Spin coating P3HT/PS NO2 0~20 ppm - 48.2 [62]
Breath figure method Spin coating C8-BTBT/PS NH3 0~20 ppm - 12.5 [62]
Breath figure method Spin coating N2200/PS NH3 0~20 ppm - ~4.5 [62]

Multiple layered Breath
figure model Spin coating P3HT NO2 0.5~30 ppm 2.3 ppb 457 [63]

solvent–nonsolvent exchange Spin coating PCDTPT NO2 0~30 ppm <1 ppm 9.89 × 103 [65]
Selective Etching Spin coating PBIBDF-BT NH3 10 ppm 0.5 ppm [66]
Selective Etching Shear coating P3HT/PS NH3 0.5~30 ppm 0.5 ppm 7.02 [69]
Selective Etching Spin coating P3HT NH3 10 ppm 1 ppm [67]
Porous template evaporation DNTT NH3 0~10 ppm 10 ppb 340 [74]

5. Conclusions and Future Perspective

In this review, we have explored the operating mechanisms and strategies for enhanc-
ing sensitivity in OFET-based gas sensors. By focusing on factors like carrier mobility,
charge carrier density, and gas diffusion, we have highlighted the importance of control-
ling thickness and free volume within the organic semiconductor layer. These strategies,
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along with manipulating material chemical structures, have shown promise in significantly
improving sensor performance. Porous structures have emerged as a key avenue for en-
hancing sensitivity in OFET-based gas sensors. These structures facilitate the diffusion of
target gas molecules while maintaining the transport pathway for charge carriers. Through
innovative fabrication techniques such as self-assembly methods and etching, researchers
have been able to create porous structures with tailored morphologies, leading to increased
response and recovery during gas detection. The optimization of processing conditions,
including spin-coating time and solvent selection, has played a crucial role in controlling
film morphology and microstructure, thereby enabling the precise regulation of device per-
formance. Additionally, physical etching techniques have been explored to create porous
structures, effectively enlarging the surface area available for gas analyte adsorption.

There are several advantages to methods for constructing porous structures in OFETs.
For instance, in solution processes, the ability to regulate solvent evaporation rates during
film deposition offers precise control over pore formation, facilitating the fine-tuning of
pore sizes without requiring additional template materials. Furthermore, the availability
of solution-based techniques enables easy deposition onto flexible substrates, and their
compatibility with roll-to-roll processing methods like slot–die coating or gravure printing
ensures high throughput and scalability for the mass production of porous OFETs [75].
These methods can coat large areas rapidly and continuously, making them suitable for
industrial-scale manufacturing. Despite their advantages, certain limitations exist. Some
techniques may struggle to achieve extremely small or large pore sizes, hindering optimiza-
tion for specific device requirements. Additionally, methods requiring precise control over
parameters like solvent evaporation rates or assembly conditions can be complex and re-
quire meticulous optimization, increasing the difficulty of fabrication [76]. Moreover, issues
such as uneven surfaces, roughness, or the formation of defects within the porous structure
can adversely affect OFET device performance. Thus, the development of OFET-based gas
sensors relies on optimizing sensor properties by addressing these issues.

The sensing properties of OFET gas sensors could be influenced by the structure’s
geometry. Recent work has revealed that the placement of the source–drain electrodes in
OFET gas sensors determines whether the structure is top contact or bottom contact [43].
The top-contact structure features a longer injection path, which is more susceptible to
the influence of charge carriers from adsorbed NO2 molecules, thereby enhancing its
sensing performance. In contrast, the bottom-contact structure, with a shorter injection
pathway [77], exhibits lower sensitivity. Consequently, the response in the top-contact
structure tends to be higher compared to that observed in the bottom-contact structure.
Further works on optimizing device geometry can increase the sensor performance. Be-
cause the organic semiconductor has several drawbacks, the performance of OFET gas
sensors could be enhanced by adopting 2-dimensional materials such as graphene [78,79].
This hybrid-type sensor can widen the sensing capability of various types of sensors. In
particular, OFET performance is greatly affected by the humidity in atmospheric conditions.
The degradation of sensor performance could be reduced by the choice of inorganic materi-
als, which can serve as erasers of water molecules. These advancements pave the way for
the development of highly sensitive and selective OFET-based gas sensors with potential
applications in environmental monitoring, industrial safety, and healthcare [80,81].
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