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Abstract: Consider a drone that aims to find an unknown number of static targets at unknown
positions as quickly as possible. A multi-target particle filter uses imperfect measurements of the
target positions to update an intensity function that represents the expected number of targets. We
propose a novel receding-horizon planner that selects the next position of the drone by maximizing
an objective that combines exploration and target refinement. Confidently localized targets are saved
and removed from consideration along with their future measurements. A controller with an obstacle-
avoidance component is used to reach the desired waypoints. We demonstrate the performance of
our approach through a series of simulations as well as via a real-robot experiment in which a Parrot
Mambo drone searches from a constant altitude for targets located on the floor. Target measurements
are obtained on-board the drone using segmentation in the camera image, while planning is done off-
board. The sensor model is adapted to the application. Both in the simulations and in the experiments,
the novel framework works better than the lawnmower and active-search baselines.

Keywords: multi-target search; probability hypothesis density filter; Parrot Mambo minidrone;
exploration-based search

1. Introduction

We consider a drone exploring a 3D environment to find an unknown number of
static targets at unknown locations as quickly as possible. Examples of such target-search
problems include search and rescue [1], monitoring activities [2], exploration of unknown
places for hazards [3], etc. The specific problem motivating our approach is the search for
underwater litter: see https://seaclear-project.eu (accessed on 1 March 2024). The main
goal is to reduce the trajectory length (number of steps) since, in practice, real-world robot
motion and sensor samples are often the most costly resources. The drone is equipped
with an imperfect sensor that has a limited field of view (FOV), may miss targets, and
takes noisy measurements of the detected targets. The FOV is the extent of the scene
visible by the sensor from a given position, and is modeled using a position-dependent
probability of detection. Based on the measurements, a sequential Monte Carlo–probability
hypothesis density (SMC-PHD) multi-target filter [4] is run in the framework of random
finite sets [5,6]. The filter uses weighted particles to represent an intensity function, which
is a generalization of the probability density that integrates, not to a probability mass, but
to the expected number of targets [5].

Many ways have been proposed to search for and identify a known or unknown num-
ber of dynamic or static targets from measurements taken by mobile agents in robotics [7–15],
control [16–19], reinforcement learning [20–29], multi-target filtering [5,12–14,18,23,30–34],
etc. Among all these fields, we focus here on multi-target filtering with an intensity function
representation because this framework best accommodates our setting. Approaches in other
fields use different models of uncertainty (e.g., uncertainty on the robot’s pose and location
on the map, versus our case of an unknown number of targets at unknown locations that
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are unreliably and noisily detected) and different representations, like occupancy maps,
which are less suited to our setting than intensity functions. For instance, targets clustered
in a single cell of an occupancy map will not be identified properly, and if the number of
targets is not very large, an occupancy grid may be inefficient. From the point of view of
path planning and exploration, our main contribution is to formulate a search potential to
be maximized and a corresponding strategy such that all targets are found with sufficient
accuracy and in minimum time given the uncertainty concerning the number of targets
and detecting targets and available noisy measurements.

In multi-target filtering, most methods use only variants of mutual information (MI) to
evaluate the potential waypoints of the agents, e.g., [5,18,33]. MI measures the amount of in-
formation between agent trajectories and the event of not seeing any targets, so maximizing
MI decreases the chances of not seeing previously observed targets (in other words, it in-
creases the chances of seeing them). A key shortcoming of such methods is that exploration
of the environment to find new targets is—to our best knowledge—not explicitly considered.
Instead, some methods include a search component for an unknown-target intensity func-
tion [35–37], which can be seen as an indirect form of exploration. Methods from other fields
do explore or even aim to search and map the whole environment [10–15,21,25,27,38,39],
but, as explained above, they are unsuitable in our setting.

We therefore propose here the first method to search for an unknown number of
targets based on intensity functions that explicitly explores for new targets. In this method, a
new drone path planner selects future positions by maximizing a finite-horizon objective
function that balances two components: exploration and target refinement, somewhat
similar to the basic behaviors and the corresponding potential fields in, e.g., [12,40,41]. The
exploration component drives the drone toward unseen regions of space. It is implemented
using an exploration bonus that is initialized to 1 over the entire environment and then
is decreased in the observed regions. Target refinement aims to better locate targets for
which measurements were previously received and is computed in one of two ways. The
first option is standard MI, like in [18,30–33,42]. Moreover, since evaluating MI requires
expensive computation, we introduce a computationally cheaper option than MI, in which
the probabilities of detection at estimated target locations are summed up.

As a result of maximizing the objective function, the planner returns a sequence
of waypoints, the first of which is implemented using a controller that also performs
obstacle avoidance. The procedure is repeated for the receding horizon. Estimated target
locations are computed as the centers of K-means clusters of particles [43–45]. Narrow
enough clusters that contain a large enough intensity mass are declared as found targets To
prevent re-identifying found targets, we remove their corresponding particles and future
measurements that are likely to originate from them.

The proposed method is extensively validated in a series of simulations and experi-
ments that are concerned with finding an unknown number of targets. We first study the
influence of the planning horizon and find that horizon 1 suffices in practice. We then
pitch our method against three baselines: a predefined lawnmower pattern that uniformly
covers the environment [46], compared to which we aim to reduce the number of robot
steps required to find all the targets, and two active-search methods representative of the
multi-target filtering field: an MI-only method without any exploration, adapted from [33],
and a method with an unknown-target search component, adapted from [35]. For both
uniformly distributed and clustered targets, our method finds all targets faster than these
baselines. Using the full exploration-based objective, we then compare MI to our center-
probability technique and find that computational cost is reduced without introducing any
statistically significant difference in target detection performance. A key contribution is
our real-life experiment, which involves a Parrot Mambo minidrone that searches from a
constant altitude for targets on the floor. Here, our new method again works better than
the lawnmower and the MI-only methods, confirming the simulation results.

Summarizing, the key contributions of our paper include:
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• A method to search for an unknown number of static targets at unknown positions that
uses an intensity-function multi-target filter to handle highly uncertain sensors and is
the first to combine such a filter with an explicit exploration objective in the planner;

• Detailed simulation results in which we compare our method to three baselines,
including a lawnmower and two active search methods;

• A real experiment involving a Parrot Mambo that searches indoors for targets lo-
cated on the floor and via which we compare our method to lawnmower and active-
search methods.

This paper is a heavily extended and revised version of our preliminary conference
version [47], with the following additional elements: (i) validation via real-life experiments
using a Parrot Mambo minidrone (manufactured by Parrot SA, Paris, France) (ii) extension
of the planner to a receding horizon, whereas it was myopic (single-step) before, (iii)
generalization from 2D to 3D, and (iv) the addition of an obstacle avoidance strategy to the
control of the drone.

Next, Section 2 formulates the problem, followed by background information about
PHD filtering in Section 3. Section 4 describes the proposed method. Section 5 presents
simulation results, followed by the hardware setup and experimental results in Section 6.
Section 7 concludes the paper.

2. Problem Formulation

The problem we are addressing concerns a drone that navigates a 3D space (envi-
ronment) E containing an initially unknown number of stationary targets, as depicted in
Figure 1 (left). The primary goal is to identify the positions of all the targets as accurately
as possible using a trajectory that is as short as possible. The main challenge is that target
sensing is affected by two sources of uncertainty: missed targets due to a probabilistic field
of view and measurement noise for those targets that are detected: see the sensor model
below. A planner will be formulated in Section 4.1 that aims to both find new targets and
to reduce uncertainty about seen targets.

The drone’s dynamics are defined by:

qt+1 = f (qt, ut) (1)

where t represents the discrete time step. The input ut can be, for example, a state feedback
control law:

ut = h(qt), (2)

but various other controllers can be employed. It is assumed that the drone’s state qt ∈ E
is known accurately enough to avoid the need for an explicit treatment of state uncertainty,
and that for any ϵ > 0, the controller can maneuver the drone to within an ϵ-neighborhood
of any location in E in a finite number of steps.

At the given discrete time step k, a set Xk contains Nk stationary targets at positions
xik ∈ E, i = 1, 2, . . . , Nk. Note that the drone’s dynamics have a time scale (time step t)
that different from that of the measurement and planning (time step k). Both the cardinality
Nk and the locations of the targets are initially unknown. Although we assume that the
real set of targets is static, new targets are seen over time, so a time-dependent notation
is employed.

The sensor model describes how measurements are taken. Sensor uncertainty mani-
fests in two ways. Firstly, at each step, the sensor does not see all the targets but may miss
some depending on a probabilistic FOV. Secondly, the measurements of seen targets are
affected by noise.

In general, the probability with which the drone at position q detects a target at
position x is denoted by π(x, q). For example, in our simulations, we will consider an
omnidirectional ranging sensor [2,3,19,33,48] for which the probability is defined as:

π(x, q) = Ge−∥ζ∥/2 (3)
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where scalar G ≤ 1, and:

ζ =

(Xx −Xq

FX
,
Yx −Yq

FY
,
Zx −Zq

FZ

)
is a normalized distance between the target and the sensor (drone). In this expression,
(Xx,Yx,Zx) is the 3D position of the target, (Xq,Yq,Zq) are the 3D coordinates of the
drone position q, and (FX ,FY ,FZ ) are normalization constants that may be interpreted as
the size of the (probabilistic) FOV. For example, when these constants are all equal, π is
radially symmetric around the drone position, as illustrated in Figure 1 (right). The planner
works for other forms of π, and, in fact, for the real drone, the FOV will be different: see
Equation (19).

Figure 1. Left: 3D space with 12 targets and a drone. Right: drone with a spherical field of view that
is symmetrical in all three axes. The dark-orange-to-blue colors show the probability of observation
(higher-to-lower) at the current position of the drone. This is a 2D slice of the 3D probability
of observation.

The binary event bik of detecting a target xik then naturally follows a Bernoulli dis-
tribution given by the probability of detection at k: bik ∼ B(π(xik, qk)). Given these
Bernoulli variables and the actual target positions (Xxik ,Yxik ,Zxik ) in the space E, the set of
measurements Zk is:

Zk =
⋃

i ∈{1,...,Nk} s.t. bik=1

[gik(xik) + ϱik] (4)

where gik(xik) is defined as:

gik(xik) = [dik, θik, ϖik]
T

dik =
√
(Xxik −Xqk )

2 + (Yxik −Yqk )
2 + (Zxik −Zqk )

2,

θik = arctan
Yxik −Yqk

Xxik −Xqk

, ϖik = arcsin
Zxik −Zqk

dik

So, for each target that is detected, the measurement consists of a range dik, bearing angle
θik, and elevation angle ϖik with respect to the drone. This measurement is affected
by Gaussian noise ϱik ∼ N (., 0, R) with mean 0 = [0, 0, 0]⊤ and diagonal covariance
R = diag(σ2, σ2, σ2). Thus, the target measurement density is:

p(zk|x) = N (zk, gk(x), R), (5)

i.e., it is a Gaussian density function with covariance R centered on g(x). This density will
be used to estimate the target locations.
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3. Background on PHD Filtering

The probability hypothesis density (PHD) D : E → [0, ∞), or intensity function, is
similar to a probability density function, with the key difference being that its integral∫

S D(x)dx over some subset S ⊆ E is the expected number of targets in S instead of the
probability mass of S, as it would be for a density.

The PHD filter [4] performs Bayesian updates of the intensity function based on the
target measurements and is summarized as:

Dk|k−1 = Φk|k−1(Dk−1|k−1)

Dk|k = Ψk(Dk|k−1, Zk)
(6)

Here, Dk|k−1 is the prior intensity function predicted based on intensity function Dk−1|k−1 at
time step k− 1, and Dk|k denotes the posterior generated after processing the measurements.
The multi-target prior Dk|k−1 at step k is defined by:

Dk|k−1(xk) = Φk|k−1(Dk−1|k−1)(xk) = Υ +
∫

E
ps(ξ)δξ(xk)Dk−1|k−1(ξ)dξ (7)

where ps(ξ) is the probability that an old target at position ξ still exists, and the transition
density of a target at ξ is defined as the Dirac delta δξ(x) centered on ξ. This is because in
our case, targets are stationary. Finally, Υ denotes the intensity function of a new target
appearing and is chosen here as a constant. The posterior intensity function Dk|k at step k
using the measurements Zk is computed as:

Dk|k(xk) = Ψk(Dk|k−1, Zk)(xk) =

1 − π(xk, qk) + ∑
z∈ Zk

ψkz(xk)〈
ψkz, Dk|k−1

〉
(xk)

 · Dk|k−1(xk) (8)

where ψkz(xk) = π(xk, qk)p(zk|xk) denotes the overall probability of detecting a target at xk,
with p defined in (5), and

〈
ψkz, Dk|k−1

〉
=

∫
E ψkz(xk)Dk|k−1(xk)dxk. In practice, we employ

the SMC-PHD filter [4], which uses at each step k a set of weighted particles (xi
k, ωi

k|k) to

represent Dk|k, with the property that
∫

S Dk|k(x)dx ≈ ∑xi
k∈S ωi

k|k for any S ⊆ E. For more
details about the particle-based implementation, see Appendix A.

An example of an intensity function in 2D is given in Figure 2, where the three peaks
correspond to possible target locations, and the circles illustrate the weighted particles.
Note that in reality, there is no constraint that particle weights are on the PHD surface; this
situation is shown here to give a more intuitive representation. The red patch in Figure 2
is the intensity function D defined over the corresponding rectangle S lying in the (X, Y)
plane. The integral of D over this red region gives the expected number of targets in S.

Figure 2. Illustration of an intensity function defined over 2D space.
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The PHD filter will be used by the planner in the following section to estimate target
locations from measurements.

4. Exploration-Based Search

This section presents the main contribution of the paper: the novel target search
algorithm, which is organized in three components. First, the proposed drone path planner
is described in Section 4.1. Second, in Section 4.2, we present a method to mark well-defined
targets as found and disregard measurements likely to come from these targets in the future.
Finally, an obstacle avoidance mechanism is given in Section 4.3.

4.1. Planner

Consider first the problem of designing a 3D path to follow so as to find the targets.
A classical solution to this problem would be a 3D variant of a lawnmower trajectory
that fills the space in a uniform manner. We evaluate the lawnmower as a baseline in our
experiments, but a solution that finds the targets more quickly is desired. We next propose
a receding-horizon path planner that generates such a solution as a sequence of waypoints
for the drone to track and, in addition to exploring the space with the goal of finding all
targets, focuses on refining potential targets that were already (but poorly) measured.

At each step k, a new waypoint is generated by the planner. To formalize the planner,
first define the integer horizon τ > 0 and a potential sequence of next positions of the robot
qk = (qk+1, qk+2, . . . , qk+τ). In this sequence, each potential next position is defined relative
to the previous one:

qk+j+1 = qk+j + δqj, for j = 0, . . . , τ − 1 (9)

where the set of possible position changes δq is discrete and should be sufficiently rich to
find the targets. The sequence of next positions is determined by solving the following
optimization problem:

q∗
k ∈ argmaxqk

{α ·E(qk) +T(qk)} (10)

The objective function has two components: exploration E(qk) and target refinement T(qk),
with α being a tunable parameter that controls the tradeoff between the two components;
a larger α emphasizes exploration more. The first of the positions found by (10) will be
the next waypoint of the drone, and then, the optimization procedure is repeated, leading
overall to a receding-horizon scheme similar to model-predictive control [49].

The exploration component E(qk) of (10) is novel and drives the robot to look at unseen
regions of the environment. To achieve this, first define an exploration bonus function ι,
which is initialized to 1 for the entire environment and decreases at each step k and each
position x by an amount related to π(x, qk). The meaning is that each position x has been
explored to an amount related to the probability of detection at that position. To implement
the exploration bonus, we represent ι on a 3D grid of points xijl , which is initialized with:

ι0(xijl) = 1, ∀i, j, l

and updated with:

ιk(xijl) = ιk−1(xijl) · (1 − π(xijl , qk)), ∀i, j, l, ∀k ≥ 1 (11)

Then, the exploration component is defined as:

E(qk) =
τ

∑
j=1

ck

∑
i=1

ιk(qk) (12)

where ιk at positions qk that are not on the grid are computed by trilinear interpolation.
The target refinement component T(qk) in (10) focuses on refining the locations of

targets about which measurements were already received by driving the robot to areas
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where the intensity function is larger. The refinement component can be computed in
two ways.

The first option is the MI between the targets and the empty measurement set along
the horizon, which we use and compute as in [33]. Since this MI is maximized, the event
of receiving empty measurements is expected to become low-probability. Note that since
probabilities of detection depend on the position sequence qk, the MI also depends on these
positions. A shortcoming of MI is that it is computationally expensive due to the need to
compute the entropy of the target intensity function and the conditional entropy between
the next position of the agent and a binary measurement event.

We therefore propose a second, computationally more efficient alternative. At each
step k, we extract potential targets as clusters of particles generated with K-means [4]. The
target refinement component then consists of the sum of the observation probabilities of all
cluster centers that have accumulated along the horizon:

T(qk) =
τ

∑
j=1

ck

∑
i=1

π(x̂i,k, qk+j) (13)

where the probability of detection π was defined in (3), ck denotes the number of clusters
at k, and x̂i,k is the center of the ith cluster Ci,k. This center has the meaning of an estimated
target position. This option will be called “center probabilities”, for short. The intuition is
that the probability of observing estimated target locations is maximized.

Note that in classical target searching [30–33,42], only MI target refinement is used,
which means that the robot only focuses on targets that it already saw, without exploring
for new targets. Conversely, when no targets have been seen yet (or when all seen targets
have been marked as found, see below for details), planner (10) will compute the robot’s
trajectory solely based on the exploration component, so a space-filling lawnmower-like
trajectory is obtained: see experiment E6 in Section 5 for an example. In most cases, both
objectives are important, and the proposed planner strikes a balance between them as
controlled by the tuning parameter α.

4.2. Marking and Removal of Found Targets

Even when certain targets are well-determined (i.e., they have clear peaks in the
intensity function), the target refinement component will still focus on them, which is
not beneficial since the time would be better spent refining poorly seen targets or looking
for new targets. To achieve this, the algorithm removes such well-determined targets, as
explained next. After a measurement is processed, we extract potential targets as clusters
of particles with K-means [4]. Then, each cluster that is narrow enough and is associated
with a large enough concentration of mass in the intensity function is taken to correspond
to a well-determined, or found, target. Two conditions are checked: that the cluster radius
ri,k is below a threshold Tr and that the sum of the weights ωj of the particles in the cluster
is above a mass threshold Tm. The center x̂i,k of such a cluster is added to a set X̂ of found
targets, and the particles belonging to that cluster are deleted.

To prevent the formation of another intensity peak at the locations of old, already-
found targets, measurements likely to be associated with these targets are also removed
from future measurement sets. Of course, the algorithm has no way of knowing which
target generated a certain measurement. Instead, among any measurements zk that are
closer than a threshold Tz to some previously found target x̂ ∈ X̂, i.e.,

∥∥∥g−1
k (zk)− x̂

∥∥∥ ≤ Tz,
the closest measurement to x̂ is removed from Zk (note the transformation of z to Cartesian
coordinates). Only a single measurement is removed because a target generates at most
one measurement.

4.3. Obstacle Avoidance

Recall that a low-level controller is used to drive the drone to the next waypoint
determined by the planner. Along the trajectory, obstacles may appear. We use a simple
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and computationally efficient method to avoid detected obstacles. A collision danger
indicator between the drone position q and the obstacle o closest to it is computed as [50]:

O =

{
1, ∥q − o∥ < dl

0 otherwise
(14)

where dl is the minimum admissible distance to the obstacle.
The control input is then modified by a collision avoidance term, which gets activated

whenever O becomes 1:
ũt = ut − kobsO (15)

where kobs is a positive gain. Recall that for the low-level control, we use the time index t.
Moreover, if at any point the next waypoint is generated too close to an obstacle, this

waypoint is moved to the minimum admissible distance from the obstacle along the line
joining the drone and the waypoint.

Algorithm 1 summarizes the target search procedure and integrates the components
from Sections 4.1–4.3. Exploration bonus ι0 is 1 everywhere, and the set X̂ of found targets
is initially empty.

Algorithm 1 Target search at step k

1: get measurements Zk from sensor
2: for x̂ ∈ X̂ do
3: Zaux = {zk ∈ Zk | ∥g−1(zk)− x̂∥ ≤ Tz} measurements from found target.
4: if Zaux is nonempty then
5: remove measurement:
6: Zk = Zk \ argminzk∈Zaux

∥g−1
k (zk)− x̂∥

7: end if
8: end for
9: run filter from Section 3 with measurements Zk

10: use K-means to find clusters Ci,k, i = 1, . . . , ck
11: for each cluster i = 1, . . . , ck do
12: if ri ≤ Tr and ∑i ∈Ck

ωi ≥ Tm then target found:
13: delete all particles i ∈ Ci,k
14: X̂ = X̂ ∪ x̂
15: end if
16: end for
17: update exploration component ιk using (11)
18: for each qk generated with (9) do
19: compute exploration E(qk) (12) and target refinement T(qk) (13)
20: end for
21: find best sequence q∗

k with (10)
22: go to the first position q∗k+1 =: qd while avoiding obstacles with (15)

5. Simulation Results

To validate the efficiency of the proposed target search algorithm, we run seven
simulated experiment sets in 3D target space, referred to as E1 through E7. In E1, we
investigate the performance of the receding-horizon planner as a function of the horizon τ.

In E2 (for uniformly, sparsely distributed targets) and E3 (for clustered targets),
we compare the new algorithm against three baselines. The first baseline is a stan-
dard lawnmower that covers the environment uniformly. The other two baselines are
representative of the literature on active target searching with intensity-function filter-
ing [7,19,30,32,33,35–37,42]: a planner that uses only MI without exploration, like in [33],
and one with an unknown-target search component, based on [35]. In [35], the intensity
function is represented as a Gaussian mixture, target refinement is achieved by driving to
the closest Gaussian, and (in separate experiments) target searching is achieved by driving
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to the widest Gaussian. A future research direction suggested by the authors of [35] is to
mix the two strategies. Here, we adapt their method firstly by applying it to the clusters
in our particle-based representation instead of Gaussian components since they have the
same meaning of being potential targets. Secondly, we choose a simple mix between search
and refinement: the drone first drives to the nearest cluster, then to the widest, then to the
nearest, and so on.

Starting with E4, we return to our method that includes exploration. In E4, we evaluate
the influence of the cluster width threshold Tr on the error between the real and estimated
target positions. In E5, we compare MI with center-probability target refinement. Note that
all other experiments employ MI in order to align with the existing target search literature.
In E6, an experiment is run without any targets to demonstrate how the drone fills the
space with an exploratory trajectory similar to that of a lawnmower. Finally, E7 illustrates
our obstacle avoidance scheme.

In all these experiments, the 3D environment is E = [0, 250]× [0, 250]× [0, 250] m3. The
distance from the current position to the next one is set to 12 m, and the candidates δq are
six different position choices at this distance, as shown in Figure 3. When a 3D lawnmower
is used, the altitude difference between each 2D “lawnmower layer” is constant and is set
to 48 m, and the X − Y lawnmower spacing in each such layer is also set to 48 m. This
spacing is chosen to be large enough so that the lawnmower is relatively fast but does not
run the risk of missing targets.

Figure 3. Position changes δq for the simulations in Section 5.

A Parrot Mambo minidrone model is used [51], which matches the type of drone used
in our experiments below, and a linear quadratic controller is designed to move between
waypoints. Note that the model has 12 states in reality, but for simplicity at the planning
level, we keep the convention that the state is equal to the drone position. The initial
position of the drone is q0 = [0, 0, 0]T .

The parameters of the probability of detection π(x, q) from Section 2 are: G = 0.98,
FX = FY = FZ = 25. The covariance matrix for the sensor noise is R = diag[1.9, 0.25, 0.41].
We set the maximum number of particles as 5000 to reduce the computation time. The
threshold values in Algorithm 1 are set as Tr = 1.1 m, Tm = 2.2, and Tz = 5 m. The value of
the parameter α, which trades off exploration with refinement in (10), is set to 5.

In experiments E1–E3 and E5, we report the mean number of targets detected, along
with 95% confidence intervals on the mean out of 10 independent runs. Target positions
are randomized in each run. The trajectory length is chosen differently for each experiment
so that all algorithms have a chance to detect all the targets.

E1: Influence of the planner horizon: We consider 12 targets uniformly distributed at random
locations. The trajectory length is chosen to be 330 steps. Figure 4 shows the number of
target detections over time for a varying horizon τ = 1, 2, 3. It can be seen that horizon 1
is statistically indistinguishable from 2 and 3. Therefore, we choose horizon τ = 1 for the
remaining simulations as it is computationally more efficient.

E2: Planner performance for uniformly distributed targets: We consider 12 targets uniformly
and randomly distributed throughout E. The trajectory length is chosen to be 812 steps
since the lawnmower needs this length to complete the search of the whole space. The
length is the same for all algorithms for fairness.
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Figure 4. Average number of targets detected for targets placed uniformly at random locations on
10 maps with 95% confidence intervals on the mean using horizons τ = [1, 2, 3].

The results in Figure 5 show the number of target detections as a function of the
number of measurement samples. Our proposed planner works better than the three
baselines: lawnmower, the MI-only method adapted from [33], and the method adapted
from [35]. The lawnmower is much slower than our planner, whereas the performance of
the method adapted from [35] is between that of the lawnmower and that of our planner.
Finally, MI-only does not find all the targets but focuses on those targets that happen to be
detected. Note that instead of choosing constantly spaced waypoints, the method adapted
from [35] drives to arbitrarily far away clusters. To make the comparison fair, along the
trajectories, this method measures at intervals equal to the waypoint spacing in our method,
and the horizontal axis represents, in this case, the number of measurements.

Figure 5. Average number of targets detected on 10 maps with our algorithm, the lawnmower
baseline, the MI-only baseline adapted from [33], and the baseline adapted from [35].

Figure 6 shows all the algorithms’ trajectories in one of the 10 experiments. Thanks
to the inclusion of the exploration component, our algorithm finds all the targets, unlike
the MI-only method. The lawnmower covers the 3D environment uniformly, so it finds
all the targets but more slowly than our method since we focus on relevant regions first.
The method adapted from [35] also focuses on relevant regions, so it is faster than the
lawnmower, but as already shown in Figure 5, it is still slower than our method.

Regarding computation time, our new method takes 0.041s to plan, the MI-only
approach takes 0.012 s, the lawnmower takes 0.005 s, and the method adapted from [35]
takes 0.011s, where all the times are averages across waypoints. The computer used is an
HP (HP Inc., Palo Alto, CA, USA) equipped with an Intel 1165G7 CPU and 16 GB of RAM,
running MATLAB R2023. The relationship between computation times is to be expected
due to the higher complexity of the exploration-based planner compared to the baselines.
Recall also that our main goal is to reduce the length of the trajectory of the robot in the
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environment since, in practice, real-world robot motion and sensor samples are often much
more costly than computation.

Figure 6. Examples of trajectories with the actual targets (black diamonds) and estimated targets (red
diamonds). Top left: Our method (mutual information with exploration). Top right: Lawnmower
baseline. Bottom left: MI-only baseline adapted from [33]. Bottom right: Baseline adapted from [35].

E3: Planner performance for clustered targets: We consider 12 targets placed in 2 clusters of
6 targets, each at a random location. The trajectory length is the same as for E2. Figure 7
(top) shows the number of targets detected over time. We see that the performance of our
algorithm is again better than those of the three baselines. Figure 7 (bottom) shows the
positions of the actual targets as well as the target locations estimated by our method. The
root mean squared error (RMSE) between the actual and estimated positions is 3.14 m,
which is relatively small for a domain with a size of 2503 m3. This RMSE value depends on
the covariance of the Gaussian noise in the sensor model (4) and the threshold values in
Algorithm 1. For instance, we can reduce the error by making the cluster width threshold
Tr smaller, as we show in the next experiment.

E4: Threshold value versus RMSE. For 12 targets uniformly distributed at random locations,
we used 20 different values of the cluster radius threshold Tr that varied in range from
0.5 to 2.4. The results in Figure 8 (left) show the RMSE values between the actual and
estimated target locations as a function of the threshold value Tr. Errors are directly related
to threshold values and can be made smaller by reducing Tr. Doing this, of course, increases
the number of steps taken by the drone to find all the targets, as shown in Figure 8 (right).

E5: Target refinement with center probabilities: In this experiment, we compare the perfor-
mance when the target refinement component is MI versus when the center-probabilities
version (13) is used. Exploration is included. We consider 12 uniformly and randomly
distributed targets. The trajectory length is 330 steps. Figure 9 shows the number of targets
detected over time. The algorithm found all targets in a nearly equal amount of steps
using the two options for target refinement. The main difference is in computational time:
the MI-based algorithm takes an average of 0.041 s per step to plan, while using center
probabilities is faster, with an average of 0.018 s per step.
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Figure 7. Top: Average number of clustered targets detected in 10 random maps. Bottom: Estimation
error using our method.

Figure 8. Results for E4. Left: Target position error for different thresholds. Right: Number of steps
taken by the drone to find all targets.

Figure 9. Detected average number of targets with MI and the center-probabilities methods in
10 random maps.
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E6: Trajectory with no targets: We show in Figure 10 (left) how the drone explores the
environment in the absence of targets. The trajectory length is chosen as 600 steps. The
drone flies similarly to a lawnmower pattern because in the absence of target measurements,
the exploration component drives it to cover the whole environment.

E7: Obstacle avoidance: We consider 12 targets and 5 obstacles with various sizes placed
manually at arbitrary locations, as shown in Figure 10 (right). The trajectory length is
380 steps. For obstacle avoidance, dl is set to 11 m, and kobs = 0.09 is used in (15). Figure 10
(right) shows the drone searching for the targets while avoiding the obstacles. It takes
about 380 steps to find all the targets, compared to 330 steps without obstacles.

Figure 10. Left: Drone trajectory when there is no target. Right: Drone avoiding obstacles while
searching for targets.

Next, we present our hardware setup and experimental results.

6. Experimental Results

In this section, real-life implementation results are given using a Parrot Mambo drone.
Since creating real, free-floating static targets would be difficult, for this experiment, the
problem is reduced to a 2D search with targets on the floor and the drone flying at a
constant altitude.

We start with an overview of the experimental framework in Figure 11. After getting
the measurements, we update the target intensity function, and the planner generates a new
reference position for the drone. However, the Parrot Mambo minidrone has little memory
and computation power, so it is not possible to do all of the processing onboard. To solve
this problem, we created two different nodes: one deployed on the drone, and the second
used remotely on the computer. To share information between these nodes, we establish a
UDP communication channel. On the minidrone, we implement low-level segmentation of
the images and perform a coordinate transformation to get the measurements, which are
then transmitted to the host. On the computer, we run the filter and the planner to generate
the each next waypoint. This waypoint is transmitted to the minidrone and is tracked using
the built-in controller of the minidrone.

Next, we describe the hardware and low-level software in Section 6.1. The high-level
setup for the experiment as well as the real-world results illustrating the performance of
our algorithm are described in Section 6.2.
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Figure 11. Block diagram of the Parrot Mambo application.

6.1. Hardware, Sensing, and Control

The Parrot Mambo is a quadcopter that can be commanded through MATLAB 2023
via Bluetooth. Figure 12 illustrates the drone searching for unknown targets. The drone is
equipped with an inertial measurement unit (IMU) containing a three-axis accelerometer
and a three-axis gyroscope, ultrasound and pressure sensors for altitude measurements,
and a downward-facing camera that has a 120 × 160 pixel resolution at 60 frames per
second, which is useful for optical flow estimation and image processing [52]. The MAT-
LAB/Simulink support package version 12 [8] allows access to the internal sensor data and
deployment of control algorithms and sensor fusion methods in real-time.

Figure 12. Parrot Mambo minidrone searching for targets (blue markers).

We placed several blue markers that represent targets on the ground. Through the use
of the drone-mounted camera, pictures containing these markers are taken and fed into an
image processing algorithm for the identification and localization of the markers. The FOV
of the camera depends on the drone’s altitude, and to keep the FOV the same size as well
as to ensure that the targets are reasonably sized, the drone flies at a constant altitude of
1 m above the ground.

Given an RGB image (R, G, B) for which the three channels R, G, B are each an n × m
dimensional matrix, image segmentation is used to identify the blue markers. A simple
way of doing this is through thresholding [53]. First, to enhance the blue color, we compute
matrix Op = B − R

2 − G
2 , where operations are applied element-wise. After applying a

single-level threshold of value Tim, the resulting binary image Tim ∈ {0, 1}n×m is:
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Tim(xim, yim) =

{
0, Op(xim, yim) < Tim

1, Op(xim, yim) > Tim
(16)

An example of thresholding is shown in Figure 13, with the threshold Tim = 35.

Figure 13. Example of blue color thresholding. Left: before thresholding. Right: after thresholding.

After segmentation, we compute the homogeneous coordinates Pim =
[
xim yim 1

]T

of the segmented target’s centroid in the image plane. A backward projection is performed
to find the world-frame homogeneous coordinates Pw =

[
xw yw zw 1

]T of the target.
Here, the targets are on the floor, so zw is taken as zero [52]. Then, Pw is computed
by solving:

Pim = CΛPw (17)

where Λ defines the transformation between the world and camera frames and is defined
using the position of the drone (xq, yq, zq) centered on the FOV, and C is the camera’s
intrinsic matrix, which has the standard form:

C =

βx 0 xic 0
0 βy yic 0
0 0 1 0

 (18)

where βx and βy represent the pixel focal length, and (xic, yic) are the optical center co-
ordinates expressed in pixels. By finally transforming xw, yw into a bearing and range,
we obtain the target measurement. The entire pipeline constructed above to output this
measurement constitutes our sensor.

For low-level control, we use the built-in altitude and position controllers from the
Simulink model provided by MathWorks (Natick, MA, USA) [8].

6.2. High-Level Setup and Results

The targets (blue markers) are located in a 2D environment belonging to the floor
plane and having the shape [−0.3, 2] m × [−0.3, 2] m. The planner considers eight possible
position changes: forward, backward, right, left, and the diagonals, each shifting the
position by 0.2 m.

Due to the particularities of the hardware experiment, the sensor model is different
from the one in Section 2: see again the perception pipeline in Section 6.1. In particular, the
detection probability is:

π(x, q) =

{
1 xik ∈ F
0 xik /∈ F

(19)

where F = [Xq − 0.2,Xq + 0.2] × [Yq − 0.2,Yq + 0.2] is the camera’s FOV at the 1 m
altitude of the drone. Target measurements have a form similar to (4):

Zk =
⋃

i ∈{1,...,Nk} s.t. bik=1

[ĝik(xik) + ϱ̂ik] (20)
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but now, ĝik = [dik, θik]
T contains only the Euclidean distance dik between the 2D positions

qk and xik and the bearing angle θik, which is computed as in (4). Moreover, ϱ̂ik is 2D
Gaussian noise. To estimate its covariance R, we captured 100 images of a single target
from different positions of the drone and then computed the empirical covariance of these
measurements, obtaining R = diag[0.016, 0.052]. Note that due to the binary π, bik = 1 if
and only if xik ∈ F . We set α = 5.

The filter and planner equations from Sections 3 and 4 hold in 2D, with the mention
that the exploration bonus ι is now interpolated bilinearly on a 2D grid.

To validate our algorithm, we initialize the drone at coordinates [0, 0]T . We set the
maximum number of particles to 5000 to reduce the computation time. The threshold
values in Algorithm 1 are set experimentally to Tr = 0.1,Tm = 0.2, and Tz = 0.3. Up to
100 s is allocated to complete the experiment. The high-level sampling period used for
estimation, generating new waypoints, and communication is 3.05 s.

We consider 12 targets manually placed at arbitrary locations. Figure 14 (left) shows
our algorithm’s trajectory, together with the actual and estimated target locations. The
drone finds the targets with an RMSE between the actual and estimated target locations
of 0.08 m, which is relatively small. There is some drift because we rely on the onboard
sensors. A video of a real-world experiment is available online at http://rocon.utcluj.ro/
files/mambo_targetsearch.mp4 (accessed on 27 July 2023).
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Figure 14. Left: Trajectories with our algorithm in 2D real-world with actual and estimated targets.
Right: Number of targets detected using real Parrot Mambo minidrone compared to the lawnmower
and MI-only baselines.

Figure 14 (right) shows the number of targets detected using our method compared to
real-life implementations of the lawnmower and MI-only baselines. The X-Y lawnmower
spacing in each such layer is set to 0.2 m. Like in the simulations, the proposed method
works better than the lawnmower and MI-only methods.

7. Conclusions

In this paper, we addressed the problem of finding an unknown number of static
targets using a drone. The proposed method is composed of a multi-target filter, a planner
based on exploration and target refinement, and a method to remove found targets. The
effectiveness of the proposed algorithm was validated through extensive simulations and
in a real-robot experiment. The results demonstrate that the proposed algorithm is better
than the two active-search baselines and the lawnmower approach.

Our solution has several limitations that should be addressed in future work. Control
costs, such as the energy consumed by the drone, are not taken into account, and we aim to
include such costs in the planning objective. Importantly, our experiments were conducted
indoors, where weather conditions were not a factor. Outdoor experiments introduce
nontrivial challenges such as weather-resilient target detection in images, for which the
methods from [54,55] could be used. Finally, our algorithm assumes that the drone’s pose
is known; joint filtering of target and pose measurements can be performed, as in [56].

http://rocon.utcluj.ro/files/mambo_targetsearch.mp4
http://rocon.utcluj.ro/files/mambo_targetsearch.mp4
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Appendix A. Smc-Phd Filter

In this appendix, we describe in more detail the sequential-Monte-Carlo-based proba-
bility hypothesis density (SMC-PHD) filter.

The overall PHD filter [4] was summarized in Section 3. Recall that Dk|k−1 is the prior
intensity function and Dk|k denotes the posterior. Here, we detail the particle-based (SMC)
implementation of the PHD filter.

Let D̂k|k =
{

ωi
k, xi

k
}Lk

i=1 denote a particle approximation of Dk|k, where Lk is the number
of particles at k. The multi-target prior Dk−1|k−1 at time step k − 1 for k ≥ 1 is represented

in terms of Lk−1 particles as D̂k−1|k−1(xk−1) = ∑
Lk−1
i=1 ωi

k−1δxi
k−1

(xk−1). Here, ωi
k−1 is the

weight of the ith particle at time step k − 1, and δxi
k−1

is the Dirac delta centered on the

particle. Note that E
[
|Ξk ∩ S|

∣∣Z1:k
]
≈ ∑Lk

j=1 1s(xi
k)ω

j
k gives the expected number of targets

in the set S, where 1s(xi
k) is the indicator function.

A particle approximation of the predicted intensity function Φk|k−1(D̂k−1|k−1)(xk) is
derived by applying importance sampling. In our specific framework for static target detec-
tion, (1) we keep the existing Lk−1 particles, and additionally, (2) we generate Jk particles
corresponding to target birth. Therefore, the required particles are drawn according to [4]:{

xi
k = xi

k−1 i = 1, . . . , Lk−1

xi
k ∼ p̃(·) i = Lk−1 + 1, . . . , Jk

where Lk−1 is the number of existing particles, and Jk is the number of new particles arising
from the birth process. We take the proposal density p̃ for target birth to be uniform over
the domain E.

Thus, the Monte Carlo approximation is obtained as:

Φk|k−1(D̂k−1|k−1)(xk) =
Lk−1+Jk

∑
i=1

ωi
k|k−1δxi

k
(xk) (A1)
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The weights of the particles are computed as [4]:

ωi
k|k−1 =

{
ωi

k−1 i = 1, . . . , Lk−1
ΥV
Jk

i = Lk−1 + 1, . . . , Lk

where V is the volume of the environment, and ΥV can be interpreted as the total number
of targets that may appear at a measurement step. We denote Lk := Lk−1 + Jk. The prior
step yielded a function D̂k|k−1 represented by (ωi

k|k−1, xi
k)

Lk
i=1. Next, the update operator

Ψk(D̂k|k−1, Zk)(xk) maps D̂k|k−1 into D̂k|k with particle representation (wi
k, xi

k)
Lk
i=1:

D̂k|k(x) = Ψk(D̂k|k−1, Zk)(xk) =
Lk

∑
i=1

ωi
kδxi

k
(x)

by modifying the weights of the particles as:

ωi
k =

[
1 − π(xi

k, qk) + ∑
z∈ Zk

ψkz(xi
k)

Ck(z)

]
ωi

k|k−1 (A2)

where Ck(z) = ∑Lk
j=1 ψkz(xj

k)ω
j
k|k−1. Equation (A2) is a particle-based representation of (8).

The algorithm is designed such that the concentration of particles in a given region of
the target space, say S, represents the approximated number of targets in S. At times, there
may be too few or too many particles for a set of targets; thus, the allocation of particles per
target should be adapted. Since the expected number of targets Nk|k is N̂k|k = ∑Lk

i=1 ωi
k, it is

natural to have the new number of particles L+
k = N̂k|k, where the superscript “+” means

“after resampling”.
To avoid the common problem of the weight variance increasing, we resample.

The new particles are drawn randomly from the old set of particles with probabilities

ai =
ωi

k

∑
Lk
i=1 ωi

k

, and the weights are set as ω+i
k =

N̂k|k
L+

k
and thus sum up to N̂k|k = ∑Lk

i=1 ωi
k.
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51. Sütő, B.; Codrean, A.; Lendek, Z. Optimal Control of Multiple Drones for Obstacle Avoidance. IFAC-PapersOnLine 2023, 56,

5980–5986. [CrossRef]
52. Maer, V.M. Design and Reference Solution of an Autonomous Quadcopter Racing Competition. Master’s Thesis, Technical

University of Cluj-Napoca, Cluj-Napoca, Romania, 2020.
53. Milan, S.; Vaclav, H.; Roger., B. Image Processing, Analysis and Machine Vision, 4th ed.; Global Engineering: Fairfax, VA, USA, 2008.
54. Jing, Z.; Yang, C.; Shuai, F.; Yu, K.; Wen, C.C. Fast Haze Removal for Nighttime Image Using Maximum Reflectance Prior.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 7016–7024.

55. Yun, L.; Zhongsheng, Y.; Jinge, T.; Yuche, L. Multi-Purpose Oriented Single Nighttime Image Haze Removal Based on Unified
Variational Retinex Model. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 1643–1657.

56. Mahler, R. Statistical Multisource-Multitarget Information Fusion; Artech: Norwood, MA, USA, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSP.2014.2364014
http://dx.doi.org/10.1109/TSP.2006.881190
http://dx.doi.org/10.1109/TSP.2015.2393843
http://dx.doi.org/10.1007/s10514-017-9687-0
http://dx.doi.org/10.1016/j.ifacol.2022.07.614
http://dx.doi.org/10.1017/S0263574719000900
http://dx.doi.org/10.1016/j.procs.2020.03.038
http://dx.doi.org/10.1016/j.ifacol.2023.10.200

	Introduction
	Problem Formulation
	Background on PHD Filtering
	Exploration-Based Search
	Planner
	Marking and Removal of Found Targets
	Obstacle Avoidance

	Simulation Results
	Experimental Results
	Hardware, Sensing, and Control
	High-Level Setup and Results

	Conclusions
	Smc-Phd Filter
	References

