
Citation: Lin, Z.; Liang, J. Edge

Caching Data Distribution Strategy

with Minimum Energy Consumption.

Sensors 2024, 24, 2898. https://

doi.org/10.3390/s24092898

Received: 4 April 2024

Revised: 24 April 2024

Accepted: 29 April 2024

Published: 1 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Edge Caching Data Distribution Strategy with Minimum
Energy Consumption
Zhi Lin * and Jiarong Liang

School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China;
13977106752@163.com
* Correspondence: 2113301024@st.gxu.edu.cn

Abstract: In the context of the rapid development of the Internet of Vehicles, virtual reality, automatic
driving and the industrial Internet, the terminal devices in the network show explosive growth. As a
result, more and more information is generated from the edge of the network, which makes the data
throughput increase dramatically in the mobile communication network. As the key technology of
the fifth-generation mobile communication network, mobile edge caching technology which caches
popular data to the edge server deployed at the edge of the network avoids the data transmission
delay of the backhaul link and the occurrence of network congestion. With the growing scale of
the network, distributing hot data from cloud servers to edge servers will generate huge energy
consumption. To realize the green and sustainable development of the communication industry
and reduce the energy consumption of distribution of data that needs to be cached in edge servers,
we make the first attempt to propose and solve the problem of edge caching data distribution with
minimum energy consumption (ECDDMEC) in this paper. First, we model and formulate the problem
as a constrained optimization problem and then prove its NP-hardness. Subsequently, we design
a greedy algorithm with computational complexity of O(n2) to solve the problem approximately.
Experimental results show that compared with the distribution strategy of each edge server directly
requesting data from the cloud server, the strategy obtained by the algorithm can significantly reduce
the energy consumption of data distribution.

Keywords: mobile edge computing; edge caching; green communication; mobile communication;
greedy algorithm

1. Introduction

The rapid advancement of mobile communication and Internet of Things (IoT) tech-
nologies has resulted in an exponential increase in the scale of mobile communication
networks and the proliferation of mobile terminal devices which will generate a massive
volume of data, leading to significant network traffic and congestion. Projections indi-
cate that by 2025 the aggregate number of diverse terminal devices connected to these
networks will soar to 34.1 billion and the global data volume will increase to 175 ZB [1,2].
The emergence of latency-sensitive applications, such as virtual reality, augmented reality,
autopilot systems, and real-time navigation, further exacerbates this issue. These applica-
tions demand high levels of real-time responsiveness, ultra-low latency, and substantial
network throughput. The traditional centralized network architecture, predominantly
based on cloud computing paradigms, is ill-equipped to meet the stringent requirements
of end-users in terms of these performance metrics [3,4].

Mobile edge computing (MEC) addresses the challenge of ensuring low latency, a
limitation often encountered in cloud computing [5]. In the MEC framework, edge servers
are deployed at base stations or wireless network access points located in close proximity
to end-user terminals [5,6]. This configuration enables application providers to lease
computing, caching, and communication resources on edge servers, facilitating the hosting

Sensors 2024, 24, 2898. https://doi.org/10.3390/s24092898 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092898
https://doi.org/10.3390/s24092898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24092898
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092898?type=check_update&version=2

Sensors 2024, 24, 2898 2 of 18

of data-intensive applications and delivering services with low latency to end-users [3,7].
By caching application data on the edge server, not only can the latency in data retrieval
and transmission be significantly reduced, but it also contributes to a decrease in traffic
on the backbone network and content distribution network, thereby mitigating network
congestion [1,8,9]. It is essential to note, however, that the storage capacity of edge servers
is constrained, leading to the caching of only highly popular data [10–12]. This selective
caching approach ensures optimal resource utilization.

In recent years, numerous scholars have conducted extensive research on edge caching
from various perspectives. A predominant focus in the field of edge caching has been
the reduction in data transmission delays. Ref. [13] explored the edge caching problem in
both single-slot and multi-slot scenarios. Leveraging multi-agent reinforcement learning
technology, the study in [13] minimized user data acquisition delays. In [14], the investiga-
tion incorporated considerations for device-to-device (D2D) communication interference.
To mitigate delays, an optimization algorithm for a probabilistic caching strategy was
proposed, resulting in a substantial reduction in data transmission delays.

Reducing the cost of edge caching and enhancing the revenue generated by edge caching
represents another significant research orientation in this domain. In [15], Abolhassani et
al. introduced a caching strategy driven by data freshness to tackle the caching challenges
posed by dynamically changing content in distributed edge caching and single edge caching
scenarios. The devised strategy effectively optimized cache space and reduced the average
cache cost of the system. Ref. [16] jointly considered the freshness, popularity, and similarity of
content, proposing a cost-effective edge caching algorithm termed SAPoC. Additionally, from
the perspective of application providers. In [17] Xia et al. presented an online mobile edge data
caching method known as OL-MEDC, aimed at maximizing cache revenue in mobile edge
computing systems. Experimental results demonstrated the method’s efficiency, reliability,
and superior performance compared to existing conventional approaches, showcasing its
suitability for large-scale deployment in practical edge computing environments. Moreover,
energy consumption cost is an integral component of edge caching expenses. To address the
cache energy efficiency problem in edge computing, Xu et al. [18] modeled the edge computing
scenario as a three-layer heterogeneous network structure comprising the server layer, edge
layer, and user layer. Subsequently, they considered distinct data lifetimes and designed
two energy-efficient cache methods with in-memory storage and processing technology.

The consideration of data popularity holds significant weight in the investigation of
edge caching; taking into account both data popularity and freshness in the named data
network, Alduayji et al. [19] proposed a scheme named PF EdgeCache. The experimental
results of [19] illustrated that the proposed scheme outperformed previously proposed
cache schemes in terms of simplicity and effectiveness. In [20], considering a two-layer
heterogeneous network comprising macro base stations and micro base stations, the authors
proposed a layered edge cache scheme based on deep learning. Initially, they introduced a
novel content popularity prediction method using the stacked autoencoder long short term
memory network (SAE-LSTMNet), characterized by high accuracy and short execution
time. Subsequently, leveraging the predicted content popularity, they formulated a layered
edge caching problem which is NP-hard. Finally, an approximate algorithm with low
computational complexity is devised to address this problem.

The security of data in edge caching systems has emerged as a prominent area of
research. In [21], the authors introduced blockchain technology and then they proposed
a decentralized and secure data caching strategy and transaction scheme. This proposed
scheme not only reduced data transmission delays but also enhanced data cache hit rates
and the transaction rate of data transactions while safeguarding against data leaks. Ad-
ditionally, in [22] the authors proposed a secure edge caching scheme based on reinforce-
ment learning principles. The scheme offered lightweight authentication mechanisms
and safeguarded user’s privacy against potential eavesdropping threats. Furthermore,
Wang et al. [23] introduced a multi-dimensional storage structure with encrypted keywords
(MSS-EK) tailored for sixth-generation mobile communication networks. Based on this

Sensors 2024, 24, 2898 3 of 18

framework, they proposed a secure and searchable edge precaching scheme. This scheme
can intelligently precache requested data at edge nodes by utilizing the user’s location and
directional information.

With the evolution of edge intelligence, industrial Internet, smart city, and related
technologies, the scale of mobile edge computing networks is expanding rapidly, leading
to increasingly dense deployments of base stations and edge servers. Consequently, the
distribution of data from cloud servers to edge servers is consuming increasingly large
amounts of energy. The substantial energy consumption costs incurred by data transmission
pose a significant burden on communication operators [24]. Therefore, it becomes crucial to
design a lowest energy consumption data distribution strategy that does not compromise
user experience.

In this paper, considering the premise of not hurting the experience of end-users,
we define the problem of minimizing energy consumption by distributing a data packet
that needs to be cached in the mobile edge computing network from the cloud servers
to the edge servers as the edge caching data distribution with minimum energy con-
sumption (ECDDMEC) problem. Edge cache technology is predominantly employed in
latency-sensitive scenarios where stringent network delay requirements are imposed. As a
consequence, the time complexity of the devised edge data distribution algorithm must be
kept low, ensuring prompt computation of results. The minimum k-Hop dominating set
(MkHDS) problem stands as a quintessential NP-hard problem, predominantly applied
in the realm of social networks in previous research [25,26]. In this paper, we make the
first attempt to introduce the MkHDS problem to mobile edge computing networks. Subse-
quently, a greedy algorithm with a computational complexity of O(n2) is devised to rapidly
and approximately address the edge caching data distribution problem with the aim of
minimizing energy consumption. The main contributions of this paper are as follows:

• We establish a system model for the edge caching system. Based on the system model,
an ECDDMEC problem, which is involved with network latency, communication
radius and energy consumption, is formulated.

• We prove the ECDDMEC problem to be NP-hard and use a greedy strategy to devise
an approximation algorithm with a computational complexity of O(n2) to solve it.

• Simulation results show that our proposed algorithm can reduce greatly the energy
consumption associated with data distribution.

2. System Model

Figure 1 depicts the edge caching system model considered in this paper, comprising
three components: the mobile edge computing network, cloud server, and mobile terminal
users. In the mobile edge computing network, each network node is composed of a base
station equipped with an edge server. The base station serves to provide communication
services to users, while the edge server delivers computing and caching services to both
users and application providers. R represents the communication radius of the base station.
When the distance between two base stations is less than the communication radius, they
can establish a communication link between each other. The communication link is repre-
sented by an undirected edge, named edge-to-edge (E2E) communication link. Furthermore,
the cloud Server can communicate with every edge server via cloud-to-edge (C2E) commu-
nication links. Users situated in the network coverage area establish communication with
the nearest base station. To ensure efficient and stable communication, the communication
between different base stations employs independent communication channels.

In this paper, the network nodes within the mobile edge computing network that
require caching of specific popular data are termed caching edge nodes, while the remaining
network nodes are referred to as non-caching edge nodes. Caching edge nodes are denoted
by the set V = {v1, v2, v3, . . . , vn}. Since the terminal users are mobile, caching edge nodes
are selected based on the terminal users’ geographical activity areas. Once an area is
selected, all network nodes in the area are designated as caching edge nodes.

Sensors 2024, 24, 2898 4 of 18

Cloud Server

1

3

5

8

4
2

9
6

10
11

12

7

Mobile Edge Computing Network

Base Station Edge Server End User

Figure 1. Edge caching system model Edge caching system model with 12 caching edge nodes
labelled “1, 2, · · · , 12”.

The mobile edge computing network depicted in Figure 1 is modeled as an undirected
graph, as shown in Figure 2. Here, vertices in the graph represent network nodes comprised
of base stations and edge servers, and edges in the graph denote communication links
between base stations. In Figure 2, the presence of an edge connecting vertex 1 and vertex 2
indicates that base station 1 and base station 2 are within each other’s communication
radius and can communicate directly.

1

2

9

3

4

6

5

10

8

7

11 12

Figure 2. Undirected graph simplified from the mobile edge computing network in Figure 1.

3. Problem Formulation

In this sections, we propose and formulate the ECDDMEC problem as a constrained
optimization problem and the notations for the problem are shown in Table 1.

Sensors 2024, 24, 2898 5 of 18

Table 1. Summary of Notations.

Notation Description

R the communication radius of the base station
c cloud server
vi caching edge node
V set of caching edge nodes
E set of communication links
evi ,vj communication link between node vi and node vj
n network size
Evi the energy consumption of the data packet transmission from the cloud

server to the caching edge node vi
C the size of the cache data packet
PC2E the energy consumed by transmitting a unit bit of data from the cloud

server to the edge server
PE2E the energy consumed by transmitting a unit bit of data in a single hop

between edge servers
hi the number of hops that a data packet is transmitted in the mobile edge

computing network during the distribution process from the cloud server
to the caching edge node vi

d(vi) the latency of data transmission from the cloud server to the caching
edge node vi

L the latency of data directly transmitted from the cloud server to the
caching edge node vi

M the maximum tolerable latency when transmitting data from the cloud
server to the caching edge node vi without compromising user experience

l the latency for a single-hop transmission in the mobile edge comput-
ing network

k the maximum number of hops of data transmission from the cloud server
to the caching edge node vi in mobile edge computing network without
compromising user experience

β the ratio of energy consumption for transmitting the same data from the
cloud server to the edge server remains and energy consumption for
transmitting a single hop in the mobile edge computing network

Td strategy of data distribution from the cloud server to caching edge nodes
Tm data distribution strategy with the minimum energy consumption
VC2E set of C2E caching nodes
VE2E set of E2E caching nodes
V∗C2E minimum set of C2E caching nodes
ETd the total energy consumption by distributing a data packet to all caching

edge nodes using data distribution strategy Td
ETm the energy consumption of the edge caching data distribution strategy Tm
EMAX the energy consumption resulting from the data distribution strategy

with |VC2E| = n
ai binary variable indicating whether vi is a C2E caching node
d(vi, vj) the hop count of the shortest path between node vi and node vj
D(vi, vj) Euclidean distance between node vi and node vj
N(u, k) the set of neighbors of vertex u with no more than k hops

The energy consumption associated with data distribution from cloud servers to cache
edge nodes can be categorized into two components: firstly, the energy consumption
during data transmission between cloud servers and edge servers, and secondly, the energy
consumption resulting from data transmission among edge servers. Let PC2E denote the
energy consumed by transmitting a unit bit of data from the cloud server to the edge server,
and PE2E represent the energy consumed by transmitting a unit bit of data in a single hop
between edge servers. Let C denote the size of the cache data packet. Therefore, the energy

Sensors 2024, 24, 2898 6 of 18

consumption of the data packet transmission from the cloud server to the caching edge
node vi, denoted as Evi , can be expressed as follows:

Evi = C · (PC2E + hi · PE2E) (1)

where hi represents the number of hops that a data packet is transmitted in the mobile edge
computing network during the distribution process from the cloud server to the caching
edge node vi.

For instance, let us consider node 6 as a caching edge node, and the data transmission
path is as follows: the data are initially transmitted from the cloud server to node 1, and
subsequently relayed from node 1 to node 6 through node 2. In this scenario, the number of
hops for data transmission in the mobile edge computing network amounts to 2, therefore,
h6 = 2.

Various application scenarios and data types impose distinct demands on data trans-
mission delays. We define the latency of data transmission from the cloud server to the
caching edge node vi, denoted as d(vi), subject to the constraint:

L ≤ d(νi) ≤ M (2)

where L denotes the latency of data directly transmitted from the cloud server to the caching
edge node vi, and M represents the maximum tolerable latency when transmitting data
from the cloud server to the caching edge node vi without compromising user experience.

Generally, in the same scenario, the latency for data transmission between edge servers
in a mobile edge computing network remains consistent for each hop. Let l denote the
latency for a single-hop transmission in the mobile edge computing network, thus:

d(νi) = hi · l + L (3)

Let k represent the maximum number of hops of data transmission from the cloud
server to the caching edge node vi in a mobile edge computing network without compro-
mising user experience, then:

L ≤ d(νi) = hi · l + L ≤ k · l + L ≤ M (4)

As both L and l are constants, for the sake of convenience of problem formulation and
algorithm design, the latency of data transmission from the cloud server to the caching
edge node vi is measured by hi. Thus, the latency constraint can be expressed as:

0 ≤ hi ≤ k (5)

In the mobile edge computing network, base stations communicate with each other
through wireless communication links, while the cloud server communicates with base
stations via wired communication links. Due to the limited communication radius of the
base station, adjacent edge servers are in close geographic proximity. Conversely, in most
cases, cloud servers and edge servers are considerably distant. Because of this, despite
wired communication being energy-efficient, the energy consumption for transmitting the
same data from the cloud server to the edge server remains substantially higher than that
for transmitting a single hop in the mobile edge computing network. In this paper, we
define a ratio β to represent the difference in energy consumption between them:

β =
PC2E
PE2E

(6)

The mobile edge computing network, composed of caching edge nodes set
V = {v1, v2, v3, v4, . . . vn}, can be simplified into an undirected graph G(V, E). The edges
set E represents the communication links, and n represents the network size. Let node c
denote the cloud server, and add node c into graph G(V, E). Then, connect node c with all

Sensors 2024, 24, 2898 7 of 18

nodes v ∈ V \ {c} to form a new graph Gnew and the strategy of data distribution from the
cloud server to caching edge nodes V can be represented as a spanning tree Td generated
by the graph G with c as the root.

During the data distribution process, caching edge nodes obtain data either from the
cloud server or from adjacent caching edge nodes. In this paper, we designate the caching
edge nodes that retrieve data from the cloud server as C2E caching nodes, represented by
set VC2E, and designate the caching edge nodes that obtain data from adjacent caching edge
nodes as E2E caching nodes, represented by set VE2E.

According to the properties of spanning trees in graph theory, for a given data distribu-
tion strategy Td, the number of communication links ec,vi from cloud servers to edge servers
is equal to the number of C2E caching nodes |VC2E|, and the number of communication
links evi ,vj , between edge servers is equal to the number of E2E caching nodes |VE2E|. Based
on these properties, the energy consumed by distributing a data packet to all caching edge
nodes using the data distribution strategy Td is given by:

ETd = C · (|VC2E| · PC2E + |VE2E| · PE2E)

= C · (|VC2E| · PC2E + (n− |VC2E|) · PE2E)

= C · (|VC2E| · β · PE2E + (n− |VC2E|) · PE2E)

= C · PE2E · (|VC2E| · β + (n− |VC2E|))
= C · PE2E · ((β− 1) · |VC2E|+ n)

(7)

In the process of data distribution, various strategies lead to varying energy consump-
tion levels. To mitigate the energy consumption cost of communication operators, enhance
network energy efficiency, and promote green and sustainable development in the com-
munication industry, it is imperative to minimize data transmission energy consumption
during the design of data distribution strategies. Therefore, in this paper, we consider
minimizing ETd which is the total energy consumption of distributing a data packet as the
optimization objective expressed as follows:

min ETd = min(C · PE2E · ((β− 1) · |VC2E|+ n))

= C · PE2E · n + C · PE2E · (β− 1) ·min |VC2E|
(8)

From Equation (8), it is evident that the data distribution strategy with |VC2E| = 1 yields
the lowest energy consumption. However, this strategy may potentially violate the delay
constraint stated in Equation (5), thereby hurting the experience of end-users. Conversely,
when |VC2E| = n, the energy consumption is maximized. Let EMAX denote the energy
consumption resulting from the data distribution strategy with |VC2E| = n. EMAX can be
expressed as follows:

EMAX = C · PE2E · β · n (9)

Based on the comprehensive analysis above, the ECDDMEC problem can be formu-
lated as a constrained optimization problem as follows:

objective:

C · PE2E · n + C · PE2E · (β− 1) ·min
n

∑
i=1

ai (10)

subject to:

∀vi ∈ V, ∃vj ∈ VC2E, 0 ≤ d(vi, vj) ≤ k (11)

where:

ai =

{
0 if vi /∈ VC2E

1 if vi ∈ VC2E
(12)

Sensors 2024, 24, 2898 8 of 18

Equation (10) represents the optimization objective for the ECDDMEC problem.
Constraint (11) denotes the latency constraint for data distribution, ensuring that any caching
edge node vi ∈ V can reach a C2E caching node vj ∈ VC2E within k hops, where d(vi, vj)
represents the hop count of the shortest path between node vi and node vj. Constraint (12) is
utilized to determine whether a caching edge node vi is a C2E caching node.

Upon solving the optimization problem, we obtain a minimum set of C2E caching
nodes which is represented by V∗C2E. Subsequently, we connect the cloud server node c to
every node in the set V∗C2E. Finally, we add edges e in set E to construct a tree, denoted as
Tm. In this constructed tree Tm, all nodes in set VE2E are included, and the distance between
the leaf nodes of the tree and root node c does not exceed k + 1 hops. Hence, Tm represents
the data distribution strategy with the minimum energy consumption.

4. Problem Hardness

In this section, we will prove that the ECDDMEC problem is an NP-hard problem.

Theorem 1. The ECDDMEC problem belongs to the class of NP problems.

Proof of Theorem 1. Given a data distribution strategy Td, we design the following ver-
ification algorithm to verify if it is a solution to the ECDDMEC problem. The designed
algorithm traverses all nodes vi in set V and verifies whether they adhere to constraints
(11) and (12). Clearly, the computational complexity of this algorithm is O(n), which
implies that it can run in polynomial time. Therefore, the ECDDMEC problem belongs to
the class of NP problems.

Theorem 2. The ECDDMEC problem is NP hard.

Proof of Theorem 2. To prove Theorem 2, we first introduce the MkHDS problem [25,26].
The MkHDS problem is a classic NP-hard problem, defined as follows [26]: Given an
undirected graph G(V, E), the MkHDS problem aims to find a minimum vertex set DSk
such that every vertex in the undirected graph G(V, E) either belongs to the set DSk or can
be connected to at least one vertex in the set DSk through a path of no more than k edges.
The mathematical model of the MkHDS problem is expressed as follows:

Objective:

Minimize ∑
v∈V

zv (13)

Subject to:

∑
v∈N(u,k)

zv ≥ 1, ∀u ∈ V (14)

where:

zv ∈ {0, 1}, ∀v ∈ V (15)

Here, zv is a binary variable indicating whether vertex v belongs to the k-hop dominat-
ing set, with zv = 1 if and only if v ∈ DSk is satisfied. N(u, k) denotes the set of neighbors
of vertex u with no more than k hops in graph G(V, E).

Suppose a popular data packet needs to be distributed to the edge servers in a certain
region. Use an undirected graph G(V, E) to represent the mobile edge computing network
in the region, where set V = {v1, v2, v3, v4, . . . vn} represents all nodes in G(V, E). Let Tm
be the data distribution strategy obtained for solving the ECDDMEC problem. Clearly, the
set of all neighboring nodes of the root c of Tm, the minimum C2E caching node set V∗C2E
and the minimum k-hop dominating set of graph G(V, E) are equivalent.

Based on the above analysis, when we obtain a solution Tm for the ECDDMEC problem,
we can find a minimum k-hop dominating set of graph G(V, E) using a polynomial-time
algorithm. This algorithm is described as follows, with an algorithmic complexity of

Sensors 2024, 24, 2898 9 of 18

O(1): compute all neighboring nodes of node c of Tm. Therefore, the minimum k-hop
dominating set problem can be reduced to an ECDDMEC problem in polynomial time.
Since the minimum k-hop dominating set problem is NP-hard, the ECDDMEC problem is
NP-hard.

5. Algorithm Design and Analysis

Given that the ECDDMEC problem is NP-hard, obtaining an exact solution in poly-
nomial time is infeasible when the network size is sufficiently large. Therefore, in this
section, we propose a greedy algorithm with a computational complexity of O(n2), named
ECDDMEC-A, to approximately and rapidly solve the problem in a large-scale mobile edge
computing network.

5.1. Algorithm Description

ECDDMEC-A consists of three sub-algorithms: ECDDMEC-A-1, ECDDMEC-A-2,
and ECDDMEC-A-3. ECDDMEC-A-1 is designed to construct a mobile edge computing
network, denoted by an undirected graph G(V, E), based on a given set of caching edge
nodes and the geographical location information of their base stations. ECDDMEC-A-2
aims to greedily and approximately find the minimum C2E caching nodes set V∗C2E for a
given mobile edge computing network G(V, E). ECDDMEC-A-3 is devised to obtain the
edge caching data distribution strategy aimed at minimizing energy consumption.

Algorithm 1 presents the pseudo-code of ECDDMEC-A-1 whose input is caching edge
nodes set V, where each node is associated with its geographical coordinates, and the
communication radius R of the base stations. Caching edge nodes are all mobile edge
computing network nodes in the caching area which is determined based on the request
information of data packages from end users.

Algorithm 1 ECDDMEC-A-1: Construction of Mobile Edge Computing Network

Input: caching edge nodes set V = {v1, v2, v3, v4, . . . vn}, geographical location informa-
tion of the base station of each node in the set V, communication radius of the base
station R

Output: G(V, E)
1: E← ∅
2: for each node vi ∈ V do
3: for each node vj ∈ V do
4: calculate the Euclidean distance D(vi, vj) between node vi and node vj
5: if D(vi, vj) ≤ R then
6: Add evi ,vj into E
7: end if
8: end for
9: end for

10: Using node set V and edge set E, construct a graph G(V, E)
11: return G(V, E)

ECDDMEC-A-1 begins by initializing an empty set E to store the edges of the graph
(lines 1). Subsequently, it iterates over each pair of nodes in V to calculate the Euclidean
distance D(vi, vj) between them using their geographical coordinates (lines 4). If the
distance between two nodes is less than or equal to the communication radius R, an
undirected edge evi ,vj which denotes a communication link between these two nodes will
be added to set E (lines 5–7). After completing the iteration, the algorithm constructs an
undirected graph G(V, E) using the node set V and the edge set E (lines 10). Finally, it
returns G(V, E) as the output, representing the mobile edge computing network of the
designated caching area (lines 11).

Sensors 2024, 24, 2898 10 of 18

Algorithm 2 presents the pseudo-code of ECDDMEC-A-2 whose input is k and mobile
edge computing network G(V, E). ECDDMEC-A-2 is a greedy algorithm starting with
initializing an empty set V∗C2E to store C2E caching nodes (lines 1). Then, the algorithm
iterates through a while loop (line 2–11) to approximately obtain the minimum C2E caching
nodes set V∗C2E. In each iteration of this while loop, the algorithm firstly traverses each
node vi in V in a breadth-first search (BFS) order through a for loop (line 3–6) to compute
the set N(vi, k) and the number of elements of set N(vi, k) which is denoted by n(vi).
Subsequently, the algorithm randomly selects a node ui from set U which consists of
nodes with the maximum neighbor nodes, within k hops, in the set V (line 7–8). Finally,
the algorithm adds ui into set V∗C2E and removes ui and nodes in set N(ui, k) from set V
(line 9–10). When set V becomes empty, the while loop terminates and the approximate
solution of minimum C2E caching nodes set V∗C2E is returned as the output.

Algorithm 2 ECDDMEC-A-2: Solution of Minimum C2E Caching Nodes Set V∗C2E

Input: G(V, E), k
Output: minimum C2E caching node set V∗C2E
1: V∗C2E ← ∅
2: while V ̸= ∅ do
3: for each node vi ∈ V in BFS order do
4: Compute N(vi, k)
5: n(vi)← |N(vi, k)|
6: end for
7: U ← arg max(n(vi))
8: Randomly select a node ui from set U
9: V∗C2E ← V∗C2E ∪ {ui}

10: V ← V \ {{ui} ∪ N(ui, k)}
11: end while
12: return V∗C2E

The pseudo-code of ECDDMEC-A-3 is presented by Algorithm 3. It takes the mobile
edge computing network graph G(V, E) constructed by Algorithm 1, the minimum C2E
caching nodes set V∗C2E obtained by Algorithm 2 and parameter k as input. The algorithm
proceeds in three steps. In the first step, for each node vi in the set V \V∗C2E, the algorithm
identifies the closest C2E caching node si in the set N(vi, k). This step establishes a mapping
from the set V \ V∗C2E to V∗C2E, which is stored using the function dominating(vi). This
mapping process is completed by the for loop from line 1 to line 4. In the second step, for
each node si in the set V∗C2E, the algorithm constructs a tree Tsi with si as the root, ensuring
that each node vi ∈ V satisfying si = dominating(vi) belongs to Tsi . This step is executed
by the for loop from line 5 to line 12. In the third step, The algorithm initializes a tree
Tm with node c as the root and adds c into Tm. Then, by connecting node c to all nodes
si in set V∗C2E, the algorithm links all trees Tsi together to construct a tree Tm with node c
as the root (lines 13–14). Finally, the algorithm returns the tree Tm as the output denoting
the edge caching data distribution strategy with minimum energy consumption (line 15).
Data packets needing to be cached at edge servers are distributed from the cloud server
following the topology of tree Tm.

Sensors 2024, 24, 2898 11 of 18

Algorithm 3 ECDDMEC-A-3: Obtaining Edge Caching Data Distribution Strategy with
Minimum Energy Consumption

Input: G(V, E), V∗C2E, k
Output: Tm
1: for each node vi ∈ V \V∗C2E do
2: Select a C2E caching node si ∈ V∗C2E in set N(vi, k) with the minimum hop count

from node vi.
3: dominating(vi)← si
4: end for
5: for each node si ∈ V∗C2E do
6: Initialize a tree Tsi with node si as the root: Tsi ← ∅ and add si into Tsi
7: for each node vi ∈ N(si, k) in BFS order do
8: if si = dominating(vi) then
9: Add vi into Tsi with the minimum d(vi, si)

10: end if
11: end for
12: end for
13: Initialize a tree Tm with node c as the root: Tm ← ∅ and add c into Tm
14: Add all tree Tsi into tree Tm by connecting node c with node si
15: return Tm

To intuitively display the execution process of the algorithm ECDDMEC-A, we take
the mobile edge computing network shown in Figure 1 as an example, supposing k = 2, and
present a possible execution scenario of the algorithm ECDDMEC-A through an illustration
shown in Figure 3.

Step 1: Select all nodes in the mobile edge computing network depicted in Figure 1
as caching edge nodes, and obtain geographical location information of each node which
typically are the longitude and latitude of the base stations’ location. Then, by executing
the sub-algorithm ECDDMEC-A-1, the mobile edge computing network is constructed as
an undirected graph G(V, E), consisting of 12 vertices and 14 edges. The result is shown in
Figure 3a.

Step 2: Execute sub-algorithm ECDDMEC-A-2 and obtain the minimum C2E caching
nodes set V∗C2E of G(V, E). During the execution of ECDDMEC-A-2, The while loop
(line 2 to line 11) iterates twice in total. In the first iteration, the algorithm traverses each
node v in G(V, E), computes N(v, 2) which is the set of neighbors of node v with no more
than two hops, and selects a node with the maximum number of neighbors. As a result,
node 1 is selected as the C2E caching node, as shown in Figure 3b. Finally, node 1 and its
neighbors within two hops (nodes 2, 3, 4, 5, 6, 7, 8, 9) are removed. Now, only nodes 10,
11, and 12 remain in G(V, E) and next comes the second iteration. Clearly, all these three
nodes satisfy the condition of having the maximum number of neighbors within 2 hops.
Randomly choose a node (node 10) as a C2E caching node and the minimum C2E caching
nodes set V∗C2E obtained by algorithm ECDDMEC-A-2 is 1,10, which is also the minimum
2-hop dominating set of G(V, E). The result is shown in Figure 3c.

Step 3: Obtaining two trees with node 1 and node 10 as roots, respectively. First of
all, traverse each E2E caching node in graph G(V, E) and find their closest C2E caching
node. This part is completed by executing lines 1 to 4 of the algorithm ECDDMEC-A-3.
Clearly, node 1 is the closest C2E caching node to nodes 2, 3, 4, 5, 6, 7, and 8, and the
closest C2E caching node to nodes 9, 11, and 12 is node 10. Specifically, node 6 has the
same distance as nodes 1 and 10. Hence, either node 1 or node 10 can be chosen as the
closest C2E caching node to node 6. Then, delete the edges of G(V, E) to obtain a tree
whose root is node 1 consisting of nodes 1, 2, 3, 4, 5, 6, 7, and 8, and a tree whose root is
node 10 consisting nodes 9, 10, 11, 12. This part is completed by executing lines 5 to 12 of
the algorithm ECDDMEC-A-3. The execution result of step 3 is shown in Figure 3d.

Step 4: Add a node c representing the cloud server, and then add edges to connect
node c with node 1 and node 10. This step is completed by executing lines 13 to 14 of the

Sensors 2024, 24, 2898 12 of 18

algorithm ECDDMEC-A-3. After executing lines 13 to 14 of ECDDMEC-A-3, a tree with
node c as root is formed and the execution results are as illustrated in Figure 3e,f. The
tree depicted in Figure 3f is the edge caching data distribution strategy with minimum
energy consumption.

1

2

9

3

4

6

5

10

8

7

11 12

1

2

9

3

4

6

5

10

8

7

11 12

1

2

9

3

4

6

5

10

8

7

11 12

1

2

9

3

4

6

5

10

8

7

11 12

1

2

9

3

4

6

5

10

87

11

12

c

1

2

9

3

4

6

5

10

87

11

12

c

(a) (b) (c)

(d) (e) (f)

Figure 3. Execution process of the algorithm ECDDMEC-A consisting of the subgraphs (a–f).

5.2. Algorithm Complexity Analysis

Algorithm 1 consists of a nested for loop with two levels, where each loop iterates over
every node vi in the set V of the graph G(V, E). Therefore, the computational complexity
is O(n2).

Algorithm 2 mainly comprises a while loop from line 2 to line 11. During the execution
of this algorithm, the while loop iterates |V∗C2E| times. Inside this while loop, there is a
nested for loop. In the worst-case scenario, the for loop, from line 3 to line 6, iterates n times
for each iteration of the while loop. Additionally, as the execution of line 4 of Algorithm 2
requires computation |N(vi, k)| times for each execution, the computational complexity of
each iteration of the while loop is O(n · |N(vi, k)|). Let |N(v, k)| denote the average value
of |N(v, k)|. Based on the analysis above, the computational complexity of Algorithm 2 is
O(n · |N(v, k)| · |V∗C2E|). Since O(|N(v, k)| · |V∗C2E|) = O(n), the computational complexity
of Algorithm 2 is O(n2).

Algorithm 3 consists of two for loops. The first for loop, from line 1 to line 4, iterates
over every node vi in the set V \ V∗C2E, thus looping |V \ V∗C2E| times. In the worst-case
scenario, each iteration of this for loop traverses all nodes in the set N(vi, k), resulting
in |N(vi, k)| operations per iteration. The computational complexity of the first for loop
is O(|N(v, k)| · (n − |V∗C2E|)), and since O(|N(v, k)| · |V∗C2E|) = O(n), the computational
complexity of the first for loop is O(|N(v, k)| · n− n) = O(|N(v, k)| · n).

The second for loop, from line 5 to line 12, iterates over every node si in the set V∗C2E,
looping |V∗C2E| times. This for loop is a nested loop and its inner loop is another for loop that
traverses each node vi in N(s, k), thus looping |N(s, k)| times. Its computational complexity
is O(|N(v, k)|). Similarly, since O(|N(v, k)| · |V∗C2E|) = O(n), the computational complexity
of the second for loop is O(n).

The computational complexity of lines 13 to 14 of the algorithm is O(1). Therefore, the
computational complexity of Algorithm 3 is O(|N(v, k)| · n + n + 1) = O(|N(v, k)| · n).

Sensors 2024, 24, 2898 13 of 18

In summary, the computational complexity of the ECDDMEC-A algorithm is
O(2n2 + |N(v, k)| · n) = O(n2); therefore, the algorithm can work out an approximate
solution of the problem in polynomial time.

6. Experimental Evaluation

In this section, the following simulation experiments are designed to evaluate the
performance of the algorithm in this paper.

6.1. Experimental Setup

The algorithms in this paper are implemented using the Python language. The simula-
tion experiments are conducted on a computer system equipped with a 2.30 GHz Intel(R)
Core(TM) i7-12700H CPU (Santa Clara, CA, USA), NVIDIA GeForce RTX 3070 Ti Laptop
GPU (Santa Clara, CA, USA), and 16 GB RAM. The software used for the simulation exper-
iments is Python 3.9, with the igraph, numpy, and matplotlib libraries employed for graph
computation and data visualization.

Assume that the communication radius of the base stations is uniform and β is 20.
For simplicity and objectivity, a network environment for the simulation experiment is
obtained in the following approach: n base stations are uniformly distributed in a square
area of 2 km× 2 km. Each base station, along with an edge server, forms a node in the
mobile edge computing network. In the experiments, the communication radius of the
base stations is set to 100 m, 200 m, 300 m, 400 m, 500 m, and 600 m, respectively. The
network size n varies from 100 to 2000 with an increment of 100. The maximum tolerable
delay hop number k, which represents the maximum number of hops in the mobile edge
computing network from the cloud server to the caching edge nodes, is a non-negative
integer. Under the same set of parameters, we randomly produce simulation networks. To
obtain an objective simulation result for each obtained simulation network, our proposed
algorithm is executed 100 times to produce the results. Finally, we calculate their average
value as the simulation results.

6.2. Performance Evaluation Metric

To evaluate the performance of the algorithms, this paper selects the energy consump-
tion ratio γ as the performance metric, defined as follows:

γ =
ETm

EMAX
(16)

where ETm represents the energy consumption of the edge caching data distribution strategy
Tm obtained by the algorithm proposed in this paper. Obviously, the smaller the energy
consumption ratio γ, the better the performance of the proposed algorithm.

6.3. Experimental Results

Figure 4 illustrates the relationship between network size n and energy consumption
ratio γ at different values of k when the communication radius of the base stations is,
respectively, set to 100 m, 200 m, 300 m, 400 m, 500 m, and 600 m. It can be observed from
Figure 4 that when the communication radius of the base stations and k are fixed, the energy
consumption ratio of the algorithm decreases with the increase in network size n. Moreover,
as the network size further increases, the energy consumption ratio eventually converges
to approximately 0.05. Additionally, when the network size and the communication radius
of the base stations are fixed, the energy consumption ratio decreases with the increase in k,
and this decrease becomes more significant as the network size decreases.

Sensors 2024, 24, 2898 14 of 18

(a) (b)

 (c) (d)

 (e) (f)

Network Size

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

Network Size

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

Network Size Network Size

Network Size Network Size

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

Figure 4. The relationship between network size and energy consumption ratio under different k
conditions. (a) The communication radius of the base station is 100 m. (b) The communication radius
of the base station is 200 m. (c) The communication radius of the base station is 300 m. (d) The
communication radius of the base station is 400 m. (e) The communication radius of the base station
is 500 m. (f) The communication radius of the base station is 600 m.

Figure 5 presents the relationship between the communication radius of the base
stations and the energy consumption ratio γ at different values of k, where the maximum
data transmission delay k from the cloud server to the caching edge nodes is set to 1, 2,
3, 4, 5, and 6, respectively. Five representative network sizes are selected, including 100,
200, 300, 500, and 1000 network nodes. It can be observed from Figure 5 that when k and
network size n are fixed, the energy consumption ratio γ decreases as the communication
radius of the base stations increases. Furthermore, as the communication radius increases,
the energy consumption ratio converges to approximately 0.05, and the convergence is
faster to reach larger network sizes.

Sensors 2024, 24, 2898 15 of 18

 (a) (b)

 (c) (d)

 (e) (f)

Communication Radius of Base Stations (m) Communication Radius of Base Stations (m)

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

Communication Radius of Base Stations (m) Communication Radius of Base Stations (m)

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

Communication Radius of Base Stations (m) Communication Radius of Base Stations (m)

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 R
a
ti

o

Figure 5. The relationship between base station communication radius and energy consumption ratio
under different network sizes n. (a) k = 1, (b) k = 2, (c) k = 3, (d) k = 4, (e) k = 5, (f) k = 6.

To explain the experimental phenomena mentioned above, we simultaneously com-
bine Equations (7), (9) and (16), and expand the definition equation of the energy consump-
tion ratio as follows:

γ =
ETm

EMAX

=
C · PE2E · n + C · PE2E · (β− 1) · |V∗C2E|

C · PE2E · β · n

=
n + (β− 1) · |V∗C2E|

β · n

=
1
β
+

β− 1
β
·
|V∗C2E|

n

(17)

Sensors 2024, 24, 2898 16 of 18

From the above equation, we can observe that the energy consumption ratio γ com-

prises two components: the first component is 1
β , and the second component is β−1

β ·
|V∗C2E |

n .
When β remains constant, the value of γ is only related to the network size n and the
number of C2E caching nodes |V∗C2E|.

Figure 6 illustrates the relationship between the network size n and the number of
C2E caching nodes under different values of k. From Figure 6, it can be observed that
as the network size n increases, the number of C2E caching nodes tends to stabilize at a
constant value, no longer varying with the increase in network size n. When the number of
C2E caching nodes ceases to change, as the network size n continues to grow, the value

of β−1
β ·

|V∗C2E |
n approaches 0. At this point, the value of γ tends towards 1

β , where β in this
paper is set to 20. Therefore, γ converges to around 0.05 as the network size n increases,
consistent with the experimental results shown in Figure 4.

(a) (b)

 (c) (d)

 (e) (f)

Network Size Network Size

Network Size Network Size

Network Size Network Size

N
u

m
b

e
r

o
f

C
2
E
 C

ac
h

in
g

 N
o

d
e
s

N
u

m
b

e
r

o
f

C
2
E
 C

ac
h

in
g

 N
o

d
e
s

N
u

m
b

e
r

o
f

C
2
E
 C

ac
h

in
g

 N
o

d
e
s

N
u

m
b

e
r

o
f

C
2
E
 C

ac
h

in
g

 N
o

d
e
s

N
u

m
b

e
r

o
f

C
2
E
 C

ac
h

in
g

 N
o

d
e
s

N
u

m
b

e
r

o
f

C
2
E
 C

ac
h

in
g

 N
o

d
e
s

Figure 6. The relationship between network size and the number of C2E caching nodes under different
k conditions. (a) The communication radius of the base station is 100 m. (b) The communication
radius of the base station is 200 m. (c) The communication radius of the base station is 300 m. (d) The
communication radius of the base station is 400 m. (e) The communication radius of the base station
is 500 m. (f) The communication radius of the base station is 600 m.

When the network size and the communication radius of the base stations remain
constant, with an increase in the maximum tolerable hop count k for data transmission

Sensors 2024, 24, 2898 17 of 18

from the cloud server to the caching edge nodes, the number of C2E caching nodes |V∗C2E|
decreases. Consequently, the value of γ decreases. When |V∗C2E| decreases to 1, γ reaches
its minimum value which is 1

β + β−1
β ·

1
n ≈

1
β . Given that β is set to 20 in this study, γ

converges to around 0.05, consistent with the experimental results depicted in Figure 4.
Similarly, when the maximum network latency k and the network scale n remain

constant, an increase in the communication radius of the base stations results in a decrease
in the number of C2E caching nodes |V∗C2E|. Consequently, the energy consumption ratio
γ decreases with the increase in the communication radius. When |V∗C2E| decreases to 1,
γ reaches its minimum value of 1

β + β−1
β ·

1
n ≈

1
β . Given that β is set to 20 in this study, γ

converges to around 0.05, consistent with the experimental results depicted in Figure 5.

7. Conclusions and Future Work

To reduce the energy consumption cost of telecommunication operators and achieve
the green and sustainable development of the communication industry, this study investi-
gates the problem of minimizing energy consumption in edge caching data distribution in
the context of mobile edge computing. This paper first formulates the problem and proves
its NP-hardness. Subsequently, a greedy algorithm with a computational complexity of
O(n2) is designed to approximately solve this problem. Experimental results demonstrate
that compared to the strategy of all edge servers directly fetching edge caching data from
the cloud server, the proposed algorithm significantly reduces energy consumption during
the data distribution process without compromising user experience. Moreover, in the same
geographical area, the effectiveness of the proposed algorithm becomes more pronounced
as the network size and the communication radius of the base station increase.

Utilizing artificial intelligence to predict the distribution and movement directions
of users can facilitate the precise selection of caching areas and caching nodes. Precise
selection of caching areas can not only reduce energy consumption during data distribution
but also efficiently utilize the caching space of edge servers, which serves as a future
research direction.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; software, Z.L.; validation, Z.L.;
formal analysis, Z.L.; investigation, Z.L.; resources, Z.L. and J.L.; writing—original draft preparation,
Z.L.; writing—review and editing, Z.L. and J.L.; visualization, Z.L.; supervision, J.L.; project adminis-
tration, J.L.; funding acquisition, J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
grant no. 61862003.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A.; Mangiullo, G. Caching Popular and Fresh IoT Contents at the Edge via

Named Data Networking. In Proceedings of IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 610–615.

2. Tang, Q; Xie, R; Feng, L; Yu, F; Chen, T; Zhang, R; Huang, T. SIaTS: A Service Intent-aware Task Scheduling Framework for
Computing Power Networks. IEEE Netw. 2023, . . [CrossRef]

3. Xia, X.; Chen, F.; He, Q.; Grundy, J.C.; Abdelrazek, M.; Jin, H. Online Collaborative Data Caching in Edge Computing. IEEE Trans.
Parallel Distrib. Syst. 2021, 32, 281–294. [CrossRef]

4. Tang, Q; Xie, R; Fang, Z; Huang, T; Chen, T; Zhang, R; Yu, F. Joint Service Deployment and Task Scheduling for Satellite Edge
Computing: A Two-Timescale Hierarchical Approach. IEEE J. Sel. Areas Commun. 2024, . [CrossRef]

5. Yu, G.; Wu, J. Content caching based on mobility prediction and joint user Prefetch in Mobile edge networks. Peer Peer Netw. Appl.
2020, 13, 1839–1852. [CrossRef]

http://doi.org/10.1109/MNET.2023.3326239
http://dx.doi.org/10.1109/TPDS.2020.3016344
http://dx.doi.org/10.1109/JSAC.2024.3365889
http://dx.doi.org/10.1007/s12083-020-00954-x

Sensors 2024, 24, 2898 18 of 18

6. Liu, Y.; He, Q.; Zheng, D.; Xia, X.; Chen, F.; Zhang, B. Data Caching Optimization in the Edge Computing Environment. IEEE
Trans. Serv. Comput. 2022, 15, 2074–2085. [CrossRef]

7. Xia, X.; Chen, F.; He, Q.; Cui, G.; Grundy, J.C.; Abdelrazek, M.; Xu, X.; Jin, H. Data, User and Power Allocations for Caching in
Multi-Access Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1144–1155. [CrossRef]

8. Li, Y.; Chen, Z.; Tao, M. Coded Caching With Device Computing in Mobile Edge Computing Systems. IEEE Trans. Wirel. Commun.
2021, 20, 7932–7946. [CrossRef]

9. Zhang, K.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. Cooperative Content Caching in 5G Networks with Mobile Edge Computing.
IEEE Wirel. Commun. 2018, 25, 80–87. [CrossRef]

10. Bilal, K.; Baccour, E.; Erbad, A.; Mohamed, A.; Guizani, M. Collaborative joint caching and transcoding in mobile edge networks.
J. Netw. Comput. Appl. 2019, 136, 86–99. [CrossRef]

11. Li, Z.; Yang, C.; Huang, X.; Zeng, W.; Xie, S. CoOR: Collaborative Task Offloading and Service Caching Replacement for Vehicular
Edge Computing Networks. IEEE Trans. Veh. Technol. 2023, 72, 9676–9681. [CrossRef]

12. Zhu, H.; Cao, Y.; Wang, W.; Jiang, T.; Jin, S. Deep Reinforcement Learning for Mobile Edge Caching: Review, New Features, and
Open Issues. IEEE Netw. 2018, 32, 50–57. [CrossRef]

13. Yang, Y.; Lou, K.; Wang, E.; Liu, W.; Shang, J.; Song, X.; Li, D.; Wu, J. Multi-Agent Reinforcement Learning Based File Caching
Strategy in Mobile Edge Computing. IEEE/Acm Trans. Netw. 2023, 31, 3159–3174. [CrossRef]

14. Gao, X.; Qian, Z.; Wang, X. Delay-Oriented Probabilistic Edge Caching Strategy in a Device-to-Device-Enabled IoT System. IEEE
Sens. J. 2023, 23, 28159–28171. [CrossRef]

15. Abolhassani, B.; Tadrous, J.; Eryilmaz, A. Single vs Distributed Edge Caching for Dynamic Content. IEEE/Acm Trans. Netw. 2022,
30, 669–682. [CrossRef]

16. Wei, X.; Liu, J.; Wang, J.; Wang, Y.; Fan, J. Similarity-aware popularity-based caching in wireless edge computing. In Proceedings
of the 17th ACM International Conference on Computing Frontiers, New York, NY, USA, 11–13 May 2020; pp. 257–260.

17. Xia, X.; Chen, F.; He, Q.; Cui, G.; Grundy, J.C.; Abdelrazek, M.; Bouguettaya, A.; Jin, H. OL-MEDC: An Online Approach for
Cost-Effective Data Caching in Mobile Edge Computing Systems. IEEE Trans. Mob. Comput. 2023, 22, 1646–1658. [CrossRef]

18. Xu, J.; Ota, K.; Dong, M. Saving Energy on the Edge: In-Memory Caching for Multi-Tier Heterogeneous Networks. IEEE Commun.
Mag. 2018, 56, 102–107. [CrossRef]

19. Alduayji, S.; Belghith, A.; Gazdar, A.; Al-Ajmadi, S. PF-EdgeCache: Popularity and freshness aware edge caching scheme for
NDN/IoT networks. Pervasive Mob. Comput. 2023, 91, 101782. [CrossRef]

20. Li, D.; Zhang, H.; Yuan, D.; Zhang, M. Learning-Based Hierarchical Edge Caching for Cloud-Aided Heterogeneous Networks.
IEEE Trans. Wirel. Commun. 2023, 22, 1648–1663. [CrossRef]

21. Wang, G.; Li, C.; Huang, Y.; Wang, X.; Luo,Y. Smart contract-based caching and data transaction optimization in mobile edge
computing. Knowl. Based Syst. 2022, 252, 109344. [CrossRef]

22. Xiao, L.; Wan, X.; Dai, C.; Du, X.; Chen, X.; Guizani, M. Security in Mobile Edge Caching with Reinforcement Learning. IEEE
Wirel. Commun. 2018, 25, 116–122. [CrossRef]

23. Wang, C.; Zhou, T.; Shen, J.; Wang, W.; Zhou, X. Searchable and secure edge pre-cache scheme for intelligent 6G wireless systems.
Future Gener. Comput. Syst. 2023, 140, 129–137. [CrossRef]

24. Sun, Y.; Xie, B.; Zhou, S.; Niu, Z. MEET: Mobility-Enhanced Edge inTelligence for Smart and Green 6G Networks. IEEE Commun.
Mag. 2023, 61, 64–70. [CrossRef]

25. Basuchowdhuri, P.; Majumder, S. Finding Influential Nodes in Social Networks Using Minimum k-Hop Dominating Set. In
Proceedings of Applied Algorithms—First International Conference, ICAA 2014, Kolkata, India, 13–15 January 2014; pp. 137–151.

26. Nguyen, H.; Ha, H.; Nguyen, D.; Tran, T. Solving the k-dominating set problem on very large-scale networks. Comput. Soc. Netw.
2020, 7, 4. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSC.2020.3032724
http://dx.doi.org/10.1109/TPDS.2021.3104241
http://dx.doi.org/10.1109/TWC.2021.3088892
http://dx.doi.org/10.1109/MWC.2018.1700303
http://dx.doi.org/10.1016/j.jnca.2019.02.004
http://dx.doi.org/10.1109/TVT.2023.3244966
http://dx.doi.org/10.1109/MNET.2018.1800109
http://dx.doi.org/10.1109/TNET.2023.3278032
http://dx.doi.org/10.1109/JSEN.2023.3305014
http://dx.doi.org/10.1109/TNET.2021.3121098
http://dx.doi.org/10.1109/TMC.2021.3107918
http://dx.doi.org/10.1109/MCOM.2018.1700909
http://dx.doi.org/10.1016/j.pmcj.2023.101782
http://dx.doi.org/10.1109/TWC.2022.3206236
http://dx.doi.org/10.1016/j.knosys.2022.109344
http://dx.doi.org/10.1109/MWC.2018.1700291
http://dx.doi.org/10.1016/j.future.2022.10.012
http://dx.doi.org/10.1109/MCOM.001.2200252
http://dx.doi.org/10.1186/s40649-020-00078-5

	Introduction
	System Model
	Problem Formulation
	Problem Hardness
	Algorithm Design and Analysis
	Algorithm Description
	Algorithm Complexity Analysis

	Experimental Evaluation
	Experimental Setup
	Performance Evaluation Metric
	Experimental Results

	Conclusions and Future Work
	References

