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Abstract: Bats play a pivotal role in maintaining ecological balance, and studying their behaviors
offers vital insights into environmental health and aids in conservation efforts. Determining the
presence of various bat species in an environment is essential for many bat studies. Specialized audio
sensors can be used to record bat echolocation calls that can then be used to identify bat species.
However, the complexity of bat calls presents a significant challenge, necessitating expert analysis
and extensive time for accurate interpretation. Recent advances in neural networks can help identify
bat species automatically from their echolocation calls. Such neural networks can be integrated
into a complete end-to-end system that leverages recent internet of things (IoT) technologies with
long-range, low-powered communication protocols to implement automated acoustical monitoring.
This paper presents the design and implementation of such a system that uses a tiny neural network
for interpreting sensor data derived from bat echolocation signals. A highly compact convolutional
neural network (CNN) model was developed that demonstrated excellent performance in bat species
identification, achieving an F1-score of 0.9578 and an accuracy rate of 97.5%. The neural network
was deployed, and its performance was evaluated on various alternative edge devices, including the
NVIDIA Jetson Nano and Google Coral.

Keywords: IoT; bioacoustics; bat echolocation analysis; bat species classification; LoRaWAN; machine
learning; NVIDIA Jetson; Google Coral

1. Introduction

The advent of compact and cost-effective acoustic sensors has revolutionized eco-
logical research, particularly in the monitoring and analysis of wildlife and their natural
habitats. This method has gained prominence for its passive yet insightful data collec-
tion [1]. Such data collection methods have been used for bats, whose complex echolocation
system exhibits significant variability influenced by numerous factors [2]. Bats navigate
and perceive their surroundings through the echoes returned from their environment by
utilizing high-frequency pulses ranging from 9 kHz to 200 kHz, which is well beyond
human hearing [3]. As nocturnal creatures, these echolocation calls serve as a crucial tool
for researchers to study various aspects of bat populations. To this end, ultrasound micro-
phones like the Pettersson DX1000, capable of capturing frequencies from 5 to 235 kHz,
are employed by researchers. While signals in the time domain offer limited insights,
frequency-based analyses of the spectrograms reveal distinct call shapes unique to each bat
species [2,4]. However, variations within a species are common, with factors like habitat,
wing morphology, and recording timing influencing call characteristics. Moreover, bats
emit various sounds for behaviors like mating, expressing distress, or defending terri-
tory [2]. This complexity introduces inter-observer variability in the study of bat calls,
emphasizing that accurate analysis demands significant expertise and time.
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The unique signatures within the echolocation calls of a particular bat species offer
an innovative avenue for species identification. Utilizing neural networks (NN) trained to
discern species based on these acoustic signals presents a promising alternative to man-
ual monitoring, potentially circumventing its labor-intensive nature. The integration of
artificial intelligence (AI) with the internet of things (IoT), commonly referred to as AIoT,
stands at the forefront of this technological approach. Such systems harness advanced
AI methodologies, particularly deep learning, to facilitate the remote classification of bat
species. The ultrasound sensors employed in our study capture audio data rich in insights
into bat species. Utilizing supervised learning algorithms, we can extract features from the
recorded data to classify bat species via their echolocation calls. The workflow for our anal-
ysis is shown in Figure 1, demonstrating how signals from the time domain are converted
into the frequency domain, which is essential for extracting features with a CNN model.
These features are crucial for automated analysis, with this paper focusing specifically on
species classification. This task is notably difficult without the aid of automated systems [1].

Figure 1. Recording and processing of a bat’s acoustic signal. The computed spectrogram (frequency-
domain representation) is processed by a deep convolutional neural network, which extracts features
pivotal for a spectrum of analysis.

The application of machine learning (ML) models requires a significant amount of
meticulously labeled data to establish an effective monitoring system. Our approach lever-
ages expert knowledge to label a subset of bat data collected from the wild, focusing on the
identification of species by analyzing frequency patterns within audio segments. Building
on this annotated dataset, we use supervised learning methods to develop a neural network
(NN) model for the classification of bat species, which is subsequently integrated into IoT
edge devices for deployment. Our research used echolocation call recordings of bats from
the Hajar Mountains in the UAE, documented by Emirates Nature (WWF) [5]. The data col-
lection process entailed precise identification of bats through morphological measurements,
capture via mist nets, affixing bioluminescent markers for species identification, and subse-
quent release. The Pettersson D1000X ultrasound detector was utilized to record calls from
eight distinct bat species: Rhinopoma muscatellum, Taphozous perforatus, Pipistrellus
kuhli, Rhyneptesicus nasutus, Eptesicus bottae, Rousettus aegyptius, Myotis emarginatus,
and Asellia tridens.

The primary contributions of this study are as follows: Firstly, we have crafted a super-
vised neural network algorithm tailored for the real-time monitoring of bat species. This
innovative aspect of our research introduces a custom-designed, lightweight convolutional
neural network (CNN) model optimized for deployment across a spectrum of edge devices,
demonstrating its versatility and efficiency. We have bench-marked the performance of
this small model on a variety of hardware-edge devices. Finally, we have developed a
detection-to-database transmission pipeline, facilitating an efficient end-to-end monitoring
system. To our knowledge, this is the first study to openly provide the complete source code
for a bat detection system to the community. This move aims to encourage collaboration
and speed up advancements in bio-acoustic monitoring. With few open-source projects
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available in this field [6], our contribution offers a practical alternative to commercial op-
tions like Sonobat [7] or Kaleidoscope [8], making advanced research tools more accessible
to researchers.

The remainder of the paper is structured as follows: Section 2 discusses existing
literature and foundational knowledge pertinent to our study. Section 3 offers an in-depth
examination of our proposed system, detailing the deep learning models employed, the
evaluation metrics used, and the system-level details of the architecture. Following this,
Section 4 presents a thorough analysis of our findings from the supervised approaches to
studying bat echolocation calls. We conclude our paper in Section 5.

2. Background and Related Work
2.1. IoT Edge Devices

Integrating machine-learning capabilities into edge devices presents many challenges
and requires careful consideration of many decision criteria [9]. Such architectures are
particularly valuable in scenarios where the latency of data transmission and bandwidth
constraints are critical. The selection of an appropriate edge device is highly dependent
on the specific requirements of the application in question, including both the context
and computational demands [10]. A commonly preferred option is the use of general-
purpose microcomputers like the Raspberry Pi (RPI), which have been deployed in diverse
applications ranging from IoT agricultural systems for disease monitoring in strawberry
farming [11] to more traditional computing tasks [12,13].

In addition to general-purpose devices, specialized edge devices are designed ex-
plicitly for deep learning applications [10,14]. Such devices include the Nvidia Jetson
Nano [15] and the Google Coral Accelerator [16], each with its own set of performance
trade-offs. For example, Antonini et al. [17] conducted a comparison and reported that the
Google Coral demonstrated significantly faster inference times across various CNN models,
including those for audio processing, in contrast to the Nvidia Jetson Nano. Furthermore,
it was observed that the Jetson Nano’s consumption of power was considerably higher
when utilizing the TensorFlow-GPU framework as opposed to TensorFlow-RT, despite
similar inference times. In a related study, Silveira et al. [18] benchmarked the Nvidia
Jetson Nano against the RPI 3B+, employing the simultaneous localization and mapping
(SLAM) algorithm. Their findings highlighted the nano’s superior performance, achieving
12.6 frames per second (FPS) and 12.1 FPS across two datasets, in stark contrast to the RPi
3B+’s 4.4 FPS and 3.6 FPS, respectively.

2.2. IoT Network Architectures

An IoT architecture, which processes data at the edge, significantly reduces network
bandwidth requirements, making low-power wide-area network (LPWAN) technologies a
suitable choice for various AIoT applications [19,20]. Among these technologies, LoRaWAN
emerges as a good option due to its extended battery life and efficient power consumption,
which is critical for remote applications like bat monitoring [10,21]. Although network
alternatives like NB-IoT may offer better quality of service (QoS), LoRaWAN’s superior
battery performance—up to ten times longer than NB-IoT—and the ability to drastically
reduce data transmission make it ideal for deployments in areas lacking reliable internet
access or where devices are solar-powered [21].

Comparative studies, such as those by Lalle et al. [22], highlight LoRaWAN’s ad-
vantages over NB-IoT and SigFox, including better battery life and lower latency, further
underscoring its suitability for IoT-based monitoring tasks. Practical implementations in
diverse environments have demonstrated LoRaWAN’s impressive range, from up to 9 km
in urban settings to 47 km in rural landscapes [23]. This capability has been leveraged in
various real-time IoT monitoring systems, from smart irrigation and agriculture to wildlife
tracking, showcasing LoRaWAN’s broad applicability and efficiency in reducing power
consumption by up to 50% compared to baseline networks [24–27]. To sum up, while there
are several network technologies available for AIoT applications, LoRaWAN stands out for



Sensors 2024, 24, 2899 4 of 25

bat monitoring and similar applications in the wild due to its low power consumption and
effective latency management, making it a preferred choice for enhancing the sustainability
and reach of IoT deployments.

2.3. The Internet of Audio Things

The Internet of Audio Things (IoAuT) [28] represents a specialized IoT system centered
around audio data collected from diverse environments. Unlike the internet of musical
things (IoMuT), which caters exclusively to musical interactions with human stakeholders,
IoAuT encompasses a broader range of applications, including environmental and wildlife
monitoring. The distinction between IoAuT and IoMuT extends to the specific challenges
each faces, such as latency, audio quality, and data pre-processing, which differ markedly
due to their unique operational contexts [28]. A key application of IoAuT is ecosystem
monitoring, often referred to as “eco-acoustics”, which plays a critical role in assessing
the health and diversity of natural habitats [28]. Research [29] has shown that audio data,
especially from microphone arrays, serves as an effective tool for estimating the density
and identifying the species of animals, including birds and bats. However, bat species
recognition presents a significant challenge due to the complexity of their vocalizations [29].
Additionally, IoAuT technologies enable acoustic localization, pinpointing the positions
of animals based on their sounds, which is invaluable for tracking and studying wildlife
behavior [30].

2.4. Classification Based on Audio Data

Deep learning has revolutionized audio-based classification, outperforming tradi-
tional methodologies with significant advancements [31]. The process typically involves
converting audio data into spectrograms, which serve as visual representations, which are
then analyzed by supervised learning algorithms, particularly CNNs, to identify unique
features. In the medical field, Kutsumi et al. [32] utilized a CNN to analyze bowel sounds
captured by smartphone microphones as a non-invasive measure of gastrointestinal health.
Similarly, Peruzzi et al. [33] explored the use of acoustics for diagnosing bruxism-related
disorders, and Tariq et al. [34] leveraged audio data from lung and heart sounds for the clas-
sification of various medical conditions, contributing to the advancement of early disease
diagnostics across multiple health domains. Additionally, Henry et al. [35] focused on en-
hancing auditory systems, employing Mel spectrogram features from speech to synthesize
improved auditory outputs for cochlear implant users. Beyond healthcare, Di Maggio [36]
applied knowledge transfer techniques within the audio domain to train a CNN model
for the diagnosis of industrial bearing faults with a remarkable accuracy of 99.07%. Simi-
larly, Jung et al. [37] utilized 2D sound spectrograms in conjunction with CNNs to detect
rotor failures, achieving a validation accuracy exceeding 99%. Earlier, Tran et al. [38] em-
ployed Mel-frequency cepstral coefficients (MFCC) features from drill sounds to develop
a classifier capable of categorizing drill noise into three distinct categories for automated
fault detection.

Within the realm of acoustic environmental research, AI methodologies have been
effectively leveraged in a diverse array of studies. These include the detection of orca
whales [39] and dolphins [40], the classification of fish [41], owl species [42], and bird
songs [43]. Additionally, some research has integrated deep learning with traditional
machine learning (ML) approaches for enhanced classification of anurans, birds [44], and
robust bird classification [45]. Beyond supervised learning, unsupervised learning tech-
niques have been employed to analyze marine audio data, clustering distinct sounds such
as those from fish, shrimp, and ships, using methods like long-term spectrogram (LTS) and
periodicity-coded non-negative matrix factorization (PC-NMF) for effective data visualiza-
tion and separation [46]. Potamitis [47] demonstrated the efficacy of unsupervised learning
in clustering bird audio calls from extensive field recordings, achieving an impressive
F1-score of 0.88 in bird call detection with a Random Forest algorithm, showcasing the
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broad applicability and potential of deep learning in audio classification across diverse
ecological studies.

Significant progress has been made in the field of bat species analysis via deep learning.
Aodha et al. [4] employed a CNN model to detect bat calls within audio streams, drawing
upon data from various European regions, and achieved an impressive F1-score of 0.8548. Ear-
lier, Hughes et al. [48] utilized discriminant functional analysis (DFA) on manually grouped
audio calls of Thai bat species based on frequency ranges, with classification accuracies of be-
tween 70.4% and 96.7%. The application of DFA extended to field sampling enhancements [49]
and canonical discriminant analysis for analyzing echolocation call structures [50]. Tabak et
al. [51] employed the frequency-over-time data derived from zero-crossing (ZC) echolocation
signals to train a CNN, successfully classifying 10 species of bats with a testing accuracy
of 90%. This performance markedly surpassed that of two commercial software solutions,
Kaleidoscope Pro and BCID. Similarly, Paumen et al. [52] harnessed MFCC as features to train
a CNN, attaining a classification accuracy of 96% for bat species. Alipek et al. [6] introduced
a novel supervised model leveraging compressed spectrograms derived from unsupervised
UMAP clustering for species and genus classification, with F1-scores ranging from 92.3%
to 99.7% and 94.6% to 99.4%, respectively. However, unsupervised methods like k-means
clustering fell short in comparison [53]. This review underscores a critical gap: the need
for an integrated end-to-end monitoring pipeline incorporating lightweight supervised
classification models for efficient bat species detection.

3. Methodology

In the following section, we describe the architecture of the proposed system, en-
compassing the system device and protocols, the data pre-processing pipeline, and the
implementation of the supervised model. Our source code is publicly available on GitHub
at https://github.com/Taslim-M/Bat2Web (accessed on 5 February 2024).

3.1. System Architecture

Figure 2 shows the detailed architecture of our proposed bat species monitoring system,
employing IoT technology. This system is characterized by the integration of edge devices,
each outfitted with a microphone and an embedded edge device for on-site deployment of a
CNN model. Specifically, the system utilizes a high-fidelity 16-bit, 384 kHz analog-to-digital
(A/D) Pettersson M500-384 USB Ultrasound microphone for audio signal acquisition.

Figure 2. IoT system architecture diagram. (A) illustrates the edge device connected to the ESP-32
LoRaWAN device in (B). The detection data is relayed to the LoRaWAN gateway depicted in (C) and
subsequently forwarded to The Things Network (TTN), which is highlighted in (D). Finally, TTN
sends the message to the application server (E) using the MQTT broker.

https://github.com/Taslim-M/Bat2Web
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The edge devices establish a connection with the microphone via USB 3.0 interfaces.
These devices are responsible for capturing audio signals, processing them through the
CNN to classify bat species, and subsequently transmitting the processed data to a cloud-
based server. This transmission is facilitated through a LoRaWAN network, connecting to
the server via a LoRaWAN gateway. The data relayed includes crucial information such as
the identified bat species, the corresponding time stamp, and the geographical location of
the detected call. A detailed specification of the ultrasound sensor used in the system is
presented in Table 1.

Table 1. Specifications of the Pettersson M500-384 [54] Ultrasound Microphone. The device is sourced
from Pettersson Elektronik AB, Uppsala, Sweden.

Feature Specification

Weight 60 g
Dimensions 43 × 114 × 13 mm
Sampling Frequency 384 kHz
ADC Resolution 16 bits
Frequency Range 10–160 kHz

Compatibility Computers/laptops/tablets/smartphones with Android, Linux
(Ubuntu), OS X, iOS, or Windows

Drivers Standard sound device drivers
Enclosure Slim and durable aluminum
Microphone Technology Advanced electret (similar to D500X)
Modes Directional and omni-directional

Software Compatibility
Must support recording at 384 kHz. Compatible with BatSound
and BatSound Touch (Windows), Audacity (Windows,
macOS, Linux)

Interface USB 2.0, full speed, OTG/host
Anti-aliasing Filter 8th order, 160 kHz
Power USB bus powered

3.2. System Server and Front End View

The back-end architecture, comprising both the server and database, provides an
advanced interface designed for researchers to efficiently access, analyze, and interact
with the echolocation data recordings. The application server, functioning as the primary
node, handles HTTP requests, orchestrating the retrieval, processing, and presentation
of data alongside the generation of HTML content for end-user interaction. This system
encapsulates several critical operations, including a dynamic filtering mechanism that
accommodates precise data retrieval based on user-specified criteria. Furthermore, the
development of a comprehensive dashboard is undertaken to present aggregated data
through visual graphs, offering an intuitive summary of key findings for researchers. A
pivotal feature includes the integration of geo-spatial visualization, enabling the mapping
of bat territories for enhanced geographical analysis. This functionality leverages the
Google Maps API (3.44.2), selected for its extensive adoption and its capability to render
diverse terrains via Google Earth, thereby facilitating a versatile platform for ecological
study. The web application undergoes rigorous unit testing to ascertain functionality and
reliability, with a steadfast commitment to adhering to W3C standards (WCAG 2.0). This
ensures the application’s compliance with global web protocols, optimizing interoperability
and the user experience across diverse computing environments.

3.3. System Network Connection

For this application, a traditional network protocol for communications, such as Wi-Fi
or 3G, would not be suitable as the edge devices are deployed in remote areas where
coverage may not be available. While Wi-Fi can be used for transmitting data between a
fixed central gateway and the application server, the edge devices are not fixed. Researchers
are able to deploy them flexibly in any location in a given habitat, such as a rainforest. No
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static network infrastructure can be relied upon due to this flexible deployment ability.
Furthermore, power consumption considerations for the network component are critical,
as the edge device will rely on low-power charging methods like solar panels. Since the
edge devices will be remote and will not be exposed to sunlight at all times, a conservative
approach must be taken to power consumption planning. Hence, a network protocol was
required that allowed for long-range communications and utilized relatively less power.

From the literature review, it was concluded that LoRaWAN was the most apt protocol
for our particular use case. Firstly, LoRaWAN possesses a suitable range in the order
of 10s of kilometers without having to rely on existing infrastructure like Wi-Fi. This
helps ensure that the edge devices can flexibly be deployed over a given bat habitat,
allowing researchers to explore and study a wide area of the region. Secondly, when
compared to other candidates for such a protocol, like NB-IoT, LoRaWAN has been shown
to demonstrate significantly lower power consumption. Given that the edge device must be
a small and inaccessible component that already utilizes some of its power to collect audio
data and process the NN model, it is essential to be as frugal as possible with the network
communication power requirements. The specifications for the utilized LoRa Gateway
(ESP32) are presented in Table 2.

Table 2. Specifications of the LoRaWAN Adapter.

Attribute Details

Modem Hope RFM95W
Frequency Range 868/915 MHz
Ports CH340C USB-to-Serial interface & Micro-B USB connector for power and programming
Power 350 mW (5 V @ 70 mA)

The review also indicated that there are some issues with LoRaWAN’s choice. For
example, other network protocols, like NB-IoT, have demonstrated higher QoS during their
transmissions. However, this was not considered to be a critical issue because the nature of
our particular payload is not highly sensitive. For a given bat detection event, there are
likely to be many repeated detections of the same bat that are transmitted to the server.
Even if some of these transmissions are dropped by the network, overall, the detection
will most likely still be captured in our system. The volume of data being transmitted
implies that a few missed transmissions due to low QoS will not massively impact the
system’s performance, unlike some other more sensitive applications. Nevertheless, this is
a disadvantage of the choice of LoRaWAN that must be considered.

The outline of the specific LoRaWAN setup that is used for implementing the proposed
system is as follows: The edge device, labeled Figure 2A, is directly connected to the ESP-32
LoRa Gateway (setup as a LoRaWAN device), labeled Figure 2B, to enable LoRaWAN
messages to be transmitted from the edge device in the event of a species detection. This is
done via the CH340C USB-serial bridge port connected via a USB cable to the edge device.
The edge device uses the serial Python library to open a serial connection to the USB port to
which this cable is connected. Whenever a bat detection is registered, a comma-separated
string is written to this serial connection, consisting of the species code, latitude, and
longitude. The ESP-32 was programmed using Arduino and the Arduino-LMIC library.
This Arduino script features an endless loop that, if a payload is detected on the serial
connection, transmits the same string to the LoRaWAN Gateway, labeled Figure 2C. This is
done by registering the ESP-32 as an application on The Things Network web portal.

The LoRa Raspberry Pi Gateway serves as the middleman during the communications,
as it will receive the messages from the edge device over the LoRaWAN protocol and
forward them to The Things Network (TTN) broker, labeled Figure 2D. This gateway
was configured to follow the relevant LoRa channel for our region (EU 863-870) and was
registered in The Things Network web portal. The specifications for the LoRaWan Gateway
are presented in Table 3.
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Table 3. Specifications of the LoRaWAN Gateway. The device is sourced from SparkFun Electronics,
Colorado, USA.

Attribute Details

Engine LoRa Concentrator Engine: Semtech SX1301
Sensitivity upto −142.5 dBm (Spreading Factor 12, Bandwidth 125 KHz)
Range 15 km (Line of Sight), 2 km in dense urban areas
Temperature −40 to 85 °C
Power Output 350 mW/25.5 dBm
Antennae 2x SX1257 as Tx/Rx front-ends

The TTN uses an MQTT broker, which forwards the packets to the application server,
labeled Figure 2E, over the internet. The application server is an MQTT subscriber and re-
ceives the messages published by the LoRaWAN RPi gateway. Specifically, it is a subscriber
to the topic “esp32-device-bat-proj-/devices/second-esp32-edge-node/up”. The original
string is now parsed using JavaScript string operations and converted to an object. This
object is then saved to the MongoDB database.

3.4. Edge Device Selection

In our study, we conducted a comprehensive comparison of edge devices equipped
with TPU, GPU, and CPU capabilities to identify the optimal hardware for deploying a
neural network with reduced inference response time suitable for real-time applications.
The evaluation encompassed a range of widely used devices, including the Raspberry Pi
(RPi) 3B+ and 400 (CPU), NVIDIA Jetson Nano (GPU), and Google Coral (TPU). TPUs,
designed with a grid of simplified ALUs and leveraging a pipelining effect across an nxn
matrix, offer low memory requirements and reduced power consumption due to minimal
memory access [55]. GPUs, utilizing tensor cores, excel at performing large, parallel matrix
operations but typically involve longer training and inference times due to higher calcula-
tion precision. CPUs, with their multiple cores and high processor frequencies, provide
an alternative by facilitating inference through interconnected compute nodes, with their
effectiveness slightly constrained by memory bandwidth limitations. The selected edge
devices were rigorously assessed based on critical metrics pertinent to IoT deployments:
power consumption, latency during model inference, and CPU utilization. These factors
are crucial in determining the suitability of hardware for IoT applications, influencing both
operational efficiency and the feasibility of real-time processing [9,10].

3.5. Data Preprocessing

In our methodology, supervised learning tasks were conducted using an image-based
representation of the raw audio recordings. Each audio (WAV) file was segmented into
3-s intervals and subsequently converted into spectrograms utilizing the Librosa Python
library. We experimented with three types of feature representations as inputs for the
machine learning models: short-term Fourier transform (STFT), Mel-scaled filter banks
(MSFB), and Mel-frequency cepstral coefficients (MFCC). In terms of the order of processing
these features, STFT is calculated first, followed by applying Mel filters to create an MSFB,
and then optionally doing a discrete cosine transform (DCT) to create an MFCC plot.
DCT is often employed to get rid of correlations among Mel filter bank coefficients in the
MSFB representation. Among these, the MSFB representation yielded the most favorable
results, as detailed in our prior research [56]. Before processing, the audio files were
downsampled to a sampling rate of 44.1 kHz, shifting the bat call frequency pattern without
changing their shape structure. This downsampling reduces the size of the resulting
spectrogram, effectively decreasing the number of parameters required by the model.
As an example calculation regarding the CNN structure described in Section 3.6, using
a sampling frequency of 342 kHz to produce the spectrograms results in the model’s
parameters increasing to 432k. This is more than double the 204k parameters obtained
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when spectrograms are generated at 44.1 kHz. The data processing steps employed are
as follows:

1. Audio WAV files were imported utilizing the Librosa library, adhering to a sampling
rate of 44,100 Hz.

2. Each audio file was segmented into fixed lengths of 3 s each; this threshold was
determined to be a safe margin with a probability of approximately 90%, where at
least one bat call could be seen.

3. Upon import of the 3 s audio segment, spectrograms were generated through short-
time Fourier transform (STFT) employing a Hann window of 25 ms with a hop length
of 10 ms, resulting in a 15 ms overlap.

4. Subsequent to STFT, Mel-scaled filter banks (MSFB) were constructed from the power
spectrum using 128 mel filters, followed by logarithmic transformation of the filter
bank outputs.

5. Finally, a discrete cosine transform (DCT) was executed, with the preservation of
20 MFCC coefficients for subsequent MFCC analysis.

The distribution of the dataset, comprising 3-s audio samples, is shown in Figure 3,
highlighting a significant imbalance across the classes. Specifically, the dataset reveals a
pronounced disparity, where the class represented by Rhinopoma muscatellum possesses
approximately 60 times the amount of recorded audio compared to that of the least repre-
sented class, Assellia tridens. Training with imbalanced data can sometimes impact the
ML model’s performance. Hence, we prepare an oversampling method for the minority
samples in the training pipeline using SMOTE [57].

Rhinopoma muscatellum

55.2%

Taphozous perforatus13.4%

Pipistrellus kuhli

9.9%

Rhyneptesicus nasutus

8.9%

Eptesicus bottae

4.1%

Rousettus aegyptius

4.0%

Myotis emarginatus

3.7%

Asellia tridens
0.8%

Figure 3. Distribution of data across the 8 bat species. A total of 3018 audio segments were converted
to spectrograms to experiment with the CNN model.

Figure 4 presents sample images across three distinct representations for four bat
species, illustrating both the similarities and unique frequency band characteristics cap-
tured in each. Among these, the MSFB representation notably accentuates the specific
patterns of bat calls, making it the most distinctive. For scenarios necessitating data trans-
mission, the MFCC representation emerges as a viable option due to its reduced storage
demands. Nevertheless, the MSFB representation has demonstrated superior performance
in conjunction with CNN models. An initial approach to noise reduction involved manual
curation, specifically removing images that were evidently devoid of data. Although auto-
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mated noise removal tools were initially considered [4], they proved excessively stringent
for our purposes, leading to the undesirable exclusion of potentially informative data.
Consequently, a method of visual inspection was adopted for noise management in this
phase. For future endeavors, particularly those involving extensive datasets, the utilization
of open-source software like BatDetect (v1.0.8) [4] is advocated to streamline this process.

Figure 4. Short-time Fourier transform (STFT), Mel-scaled filter bank (MSFB), and Mel-frequency
cepstral coefficients (MFCC) samples, respectively. (a,e,i) Pipistrellus kuhli. (b,f,j) Rhyneptesicus
nasutus. (c,g,k) Taphozous perforatus. (d,h,l) Asellia tridens. The amplitude (energy) of the signals is
represented with the varying color intensity.

3.6. CNN Model for Species Classification

We created a supervised convolutional neural network (CNN) model specifically
designed for the classification of bat species on edge devices, leveraging the Mel-scaled filter
bank (MSFB) representation for audio analysis as established in our preceding work [56].
Our preliminary investigations showed an improvement in model accuracy when utilizing
MSFB features—achieving an increase of 2.5% over STFT features and 3.9% over MFCC
features. This improvement is corroborated by the distinct visibility of bat classes when
analyzed with MSFB features, as illustrated in Figure 4. The diminished resolution of
higher frequencies in MFCC features affects the accuracy of representing echolocation calls
within the higher frequency range. This limitation contributes to the inferior performance
during CNN training. Given that a considerable portion of echolocation calls occur at
the higher end of the frequency spectrum, relying on MFCC features could lead to a less
effective differentiation of bat calls, particularly at higher sampling rates.

With a focus on edge deployment, the model was engineered to maintain a small size.
Built using the TensorFlow framework, the architecture of this CNN, presented in Table 4,
incorporates convolutional layers for initial feature extraction from the input spectrograms,
followed by dense layers responsible for the classification task. Batch normalization was
integrated to enhance model stability and performance, standardizing the output from
each layer. Pooling layers contribute to downsampling, aiding in feature generalization,
while spatial dropout and traditional dropout techniques were implemented to mitigate
overfitting by intermittently deactivating certain filters and node outputs. The model
culminates in the application of a SoftMax activation function, facilitating the probabilistic
classification of bat species. During the development of the model, attention was dedicated
to optimizing the hyperparameters. This optimization process included varying the size of
convolutional filters (choosing between 3, 5, or 7), the number of filters (ranging from 56
to 512), the number of nodes within dense layers (spanning 48 to 512), the count of dense



Sensors 2024, 24, 2899 11 of 25

layer groups (from 1 to 3), and adjusting dropout rates (0 to 0.1 for spatial dropout and
0.1 to 0.4 for regular dropout) to prevent overfitting. To achieve efficient and systematic
hyperparameter tuning, the Hyperband algorithm, implemented through the keras-tuner
tool [58], was utilized.

Table 4. Architecture of the proposed compact CNN model. The Total parameters amount to 204,256
(797.88 KB), and the Trainable parameters amount to 203,648 (795.50 KB).

Layer (Type) Output Shape Param #

InputLayer (None, 112, 170, 3) 0
Conv2D (None, 56, 85, 56) 8288

BatchNormalization (None, 56, 85, 56) 224
Activation (ReLU) (None, 56, 85, 56) 0

MaxPooling2D (None, 28, 43, 56) 0
Dropout (None, 28, 43, 56) 0

Conv2D (None, 14, 22, 72) 100,872
BatchNormalization (None, 14, 22, 72) 288
Activation (ReLU) (None, 14, 22, 72) 0
AveragePooling2D (None, 7, 11, 72) 0

Dropout (None, 7, 11, 72) 0

Conv2D (None, 7, 11, 56) 36,344
BatchNormalization (None, 7, 11, 56) 224
Activation (ReLU) (None, 7, 11, 56) 0
AveragePooling2D (None, 4, 6, 56) 0

Dropout (None, 4, 6, 56) 0

Conv2D (None, 4, 6, 72) 36,360
BatchNormalization (None, 4, 6, 72) 288
Activation (ReLU) (None, 4, 6, 72) 0
AveragePooling2D (None, 2, 3, 72) 0

Dropout (None, 2, 3, 72) 0

Flatten (None, 432) 0
Dense (None, 48) 20,784

BatchNormalization (None, 48) 192
Activation (ReLU) (None, 48) 0

Dropout (None, 48) 0

Output (Softmax) (None, 8) 392

For the training phase, the CNN was fed with labeled spectrograms, utilizing an
NVIDIA Quadro RTX. The model was trained with a batch size of 8 and using a learning
rate of 0.003, employing the Adam optimizer. This CNN model is particularly suited for
edge deployment, given that its total parameter count is approximately 200k. To further
refine the model for edge device compatibility, we converted it into more compact formats,
including TensorFlow Lite and TensorRT. These conversions were instrumental in reducing
both the parameter count and the overall size of the CNN model. In addition to evaluating
the model’s top 1% accuracy, the F1-score was also employed as a performance metric,
considering the imbalanced nature of our dataset. The F1-score was calculated using the
formula provided in Equation (1).

F1-Score = 2 × Precision × Recall
Precision + Recall

(1)

To provide a thorough evaluation of our CNN model’s performance, we present
the confusion matrix alongside precision, recall, and AUROC (area under the receiver
operating characteristic) scores for each class. Recognizing the dataset’s imbalance, as
depicted in Figure 3, we employed a stratified sampling approach to construct a test dataset
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that constitutes 20% of the total data. Table 5 shows the quantity of data available in each
training, validation, and testing set.

Table 5. Samples per Strata with the Stratified Sampling Strategy.

Species Training Samples Validation Samples Testing Samples

R. muscatellum 1199 300 167
T. perforatus 290 73 40

P. kuhli 215 54 30
R. nasutus 194 48 27
E. bottae 89 22 12

R. aegyptius 87 22 12
M. emarginatus 81 20 11

A. tridens 18 5 3

In the training phase, we allocated 20% of the data from the training folds to serve as
the validation set. To guarantee the reproducibility of our findings, we used a consistent
seed to divide the datasets for training and testing purposes. The test data were maintained
as unseen datasets across all evaluations to ensure the integrity of our results. The purpose
of the validation set was to track the progress of the training and assist in fine-tuning
the hyperparameters. We implemented the SMOTE (neighbors = 5, equal classes) as an
oversampling strategy, affecting only the quantity of training samples. Specifically, this
technique was used to augment the size of smaller classes to equal the sample count of the
largest class, which contained 1199 samples, thereby equalizing the representation of each
class in the training dataset.

Semi-Supervised Model

Given the complexity and time-intensive nature of labeling echolocation data, necessi-
tating extensive domain knowledge, recent advancements have highlighted the efficacy of
semi-supervised learning techniques like fixmatch and mean teacher in capitalizing on un-
labeled data within audio classification tasks [59]. To obviate the need for fully labeled data,
we further explored the use of a semi-supervised generative adversarial network (SGAN),
previously validated for its robustness in processing physical sensor data [60]. SGAN
innovatively combines a generator and discriminator in a unified framework, wherein the
generator’s primary role is to synthesize deceptive, unlabeled images from latent space
noise, thereby enhancing the discriminator’s accuracy, as depicted in Figure 5.

The discriminator, integrated within our proposed supervised CNN model (outlined
in Table 4), operates with dual outputs, functioning as two distinct models with shared
weights. The first output, C_out, caters to the supervised aspect, differentiating among the
8 bat species (with 8 classification outputs) through Softmax activation and sparse cross-
entropy loss. The second output, D_out, addresses the unsupervised segment, discerning
between fake and real images, utilizing a specialized activation function alongside binary
cross-entropy loss. This hybrid approach, merging labeled and unlabeled data, substantially
amplifies the discriminator’s classification precision beyond the capabilities of models
trained solely on labeled datasets. The generator’s only objective is to use random noise
in the latent space and generate fake, unlabeled images to improve the discriminator’s
performance. The generator used in our experiment is presented in Table 6.

The generator’s latent space dimensionality in our experiments was configured to
100, utilizing a standard normal distribution to generate latent vectors. The generator
transformed these vectors into synthetic images, termed ‘fake images’, which constituted a
defined proportion of the training dataset for the discriminator. To assess the classification
performance of the SGAN model (C_out), we employed the same seed and data distribution
ratio for splitting the testing dataset in the supervised algorithm (see Table 5), ensuring
a consistent benchmark for comparison. In each epoch, a random number of samples is
selected from the training data to represent the real data in the supervised samples. The
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selection depends on the proportion of real data defined in the experiment. Since SGAN
training was aimed at assessing performance under data-limited conditions, we did not
apply SMOTE to the training data. In each training epoch, the discriminator’s weights
are trained twice—one for real and another for fake images—whereas the generator is
trained once.

Figure 5. SGAN Architecture.

Table 6. Architecture of the Generator model in SGAN. The input shape of the discriminator model
was modified to allow the synthetic image produced by the generator model to be used in the training.

Layer (Type) Output Shape Param #

InputLayer (None, 100) 0
Dense (None, [150,528]) 15,203,328

LeakyReLU (None, [150,528]) 0
Reshape (None, 28, 42, 128) 0

Conv2DTranspose (None, 56, 84, 128) 262,272
LeakyReLU (None, 56, 84, 128) 0

Conv2DTranspose (None, 112, 168, 128) 262,272
LeakyReLU (None, 112, 168, 128) 0

Conv2D (None, 112, 168, 3) 18,819

4. Results and Discussion

In this section, we conduct a comprehensive analysis of our findings, showing the per-
formance of the supervised deep learning model for species classification and an evaluation
of the overall output of the integrated end-to-end bat monitoring system.

4.1. Species Classification Using Supervised Learning

The convolutional neural network (CNN) model, tailored for the classification of
labeled bat species, showed good performance, achieving an average test accuracy of
97.5% with a standard deviation of 0.9% and a mean F1-score of 0.9578, with a standard
deviation of 0.02 using the MSFB features. These metrics, quantitatively denoted with their
respective standard deviations, underscore the model’s consistent reliability and accuracy in
classification tasks. Given the dataset’s imbalanced nature, a detailed classwise evaluation
is imperative to gauge the model’s capacity for feature extraction and differentiation across
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varied species more accurately. The precision, recall, and F1-Scores for each class shown in
Figure 6 show uniformly high values across all species, with the exception of Rousettus
aegyptius. The confusion matrix depicted in Figure 7 shows the details of errors. During
model optimization, training and validation loss curves showed no overfitting.

Figure 6. Average Precision, Recall, and F1-Score Values Per Species.
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Figure 7. Normalized confusion matrix for the best performing model. The performance of the
minor classes suggests that the CNN effectively discriminates features from the limited data of
echolocation signals.
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A pairwise ROC analysis was also conducted, with the outcomes shown in Figure 8.
This analysis reaffirms our initial observations, showcasing area under the curve (AUC)
scores spanning from an impressive 0.97 to an optimal 1.0, predominantly achieving the
latter. These findings underscore the proposed model’s superior or comparable efficacy
against contemporary alternatives while highlighting its advantage as a significantly more
efficient neural network in terms of computational resource requirements. For misclas-
sifications, particularly those concerning the R. aegyptius class, it becomes evident that
environmental noise significantly contributes to prediction inaccuracies. Additionally, the
variation within species—attributed to differences in foraging behavior and habitat condi-
tions (open versus closed environments)—emerges as a factor in some misclassifications.
This suggests that bat calls for a given species may exhibit noticeable differences in varying
ecological contexts. Enriching our dataset to encompass a broader spectrum of echolocation
call variations within species is posited as a strategy to enhance the classifier’s accuracy.
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Figure 8. Pairwise ROC curves with the AUC score for each curve.

Adapting the original CNN model to TensorFlow Lite and TensorRT formats for
deployment on edge devices necessitates an evaluation of the potential impact on model
accuracy and efficiency. Converting the model to TensorFlow Lite (TF Lite) and TensorRT
incorporates techniques such as post-training quantization and model pruning, which
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are essential steps to optimize the model for deployment on embedded systems [10]. For
example, TensorRT optimizes the original TF model by scanning the graphs and optimizing
the subgraphs [61]. After the optimizations by TensorRT, the resulting model can only
run on NVIDIA GPUs. TensorFlow Lite models are generated using the TF Lite converter
tool, which takes in the standard model and performs specific quantization optimizations
and pruning to generate a TFLite model file (.tflite) [62]. This model is run on a CPU and
can leverage GPU delegates to speed up executions. Both frameworks leverage the data
conversion from a higher precision variable (such as float32) to a smaller precision format
(such as int8), which modifies the weights of the model and can result in a model size that is
up to 4× smaller than the original [10]. These modifications, while instrumental in reducing
the computational and memory footprint of the model, may lead to a slight decrease in
model accuracy [63]. As detailed in Figure 9, we conducted a 10-fold cross-validation to
compare the performance of the embedded models against the original TensorFlow model,
as depicted in Table 4. The comparative analysis reveals a slight decrease in accuracy and an
increase in the F1-scores following the conversion to the embedded formats. This suggests
that the translation to TensorFlow Lite and TensorRT did not significantly compromise
and may, in some aspects, enhance the model’s performance. In terms of model size, the
conversion to TensorFlow Lite resulted in a 12.4% reduction, whereas the TensorRT model
saw a 12.8% decrease in size.
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Figure 9. Performance and Size Comparison Based on ML Software Framework.

In our exploration of a semi-supervised learning approach, we evaluated our CNN
model within the semi-supervised generative adversarial network (SGAN) framework,
adjusting the ratios of labeled to unlabeled (synthesized) data. The outcomes, including F1
scores and accuracy for varying data proportions, are systematically displayed in Figure 10.
Initially, we benchmarked the performance with our fully supervised CNN model. Sub-
sequent trials reveal a decrement in both F1 scores and accuracy upon introducing a 50%
blend of labeled and generated data, with a further decline observed when the labeled data
is limited to 25%. These observations align with theoretical expectations. Presently, within
each training epoch, the discriminator’s weights undergo dual training phases—separately
with real and synthesized images—whereas the generator’s weights are adjusted once.
This discrepancy suggests an avenue for future exploration; enhancing the SGAN model’s
performance might be achievable by equalizing the training frequency of the generator.
Additionally, the application of hyper-parameter optimization strategies, such as Bayesian
optimization, holds promise for refining SGAN parameters. Data augmentation techniques,
including temporal and speed perturbation, are also proposed as methods to improve the
model’s semi-supervised learning efficacy, potentially leading to significant improvements
in SGAN performance.
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Figure 10. Accuracy and F1-Score as % of labeled data fed to the supervised discriminator in
SGAN changes.

4.2. Web Platform

In this study, we have developed a comprehensive end-to-end program utilizing our
supervised CNN model for real-time bat species detection. Presently, the system features a
web-based application interface designed to facilitate interactive user engagement with
the detection data via signals received from edge devices. The resulting system, which
connects the edge node to the web platform, is highlighted in Figure 11. The next sections
will delve into the specifics of the web application component, detailing its implementation
and operational functionalities.

Figure 11. The figure illustrates the system’s network architecture and data flow following the
detection of a bat event. The middleware components, specifically the network server (NS) and
application server (AS), are responsible for facilitating data collection, storage, and retrieval from
edge devices. The NS operates on the publicly available The Things Network (TTN), as depicted in
Figure 2. The AS, meanwhile, serves as the foundation of the web platform, enabling user access
to stored data through the HTTP protocol and managing interactions with the database for new
detection updates or data retrieval requests from web platform users.

4.2.1. Database Management System

We have elected to utilize the document-oriented MongoDB NoSQL database sys-
tem [64] for data management purposes. Interfacing with the database within the appli-
cation server is facilitated through the use of the Mongoose library. This setup allows for
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efficient storage and retrieval of detection data, which is categorized according to three
primary attributes: the geographic location of the detection (latitude and longitude co-
ordinates), the timestamp of the detection (formatted according to the ISO 8601-1:2019
standard), and the scientific name of the detected bat species.

4.2.2. Map Interface of Bat Detections

The development of the website’s front-end was accomplished using a combination
of JavaScript (ES12), HTML 5.0, CSS 3, and Bootstrap 4 [65], ensuring a design that is
both responsive and mobile-friendly, as depicted in Figure 12. The backend features an
ExpressJS-based web server [66].

Figure 12. Web app displayed on iPhone X.

The web platform’s homepage is characterized by a map interface facilitated through
the Google Maps API, which displays markers for each detection event. These markers are
accompanied by a color-coded legend to aid in data visualization, as illustrated in Figure 13.
Users have the capability to interact with the map, selecting markers to obtain detailed
information on specific detection events. Additionally, the interface offers a toggle feature,
allowing users to switch between the marker view and a heatmap representation. This
heatmap functionality enables an effective visualization of bat population density across
different regions, enhancing the user’s ability to interpret and analyze detection data.

Figure 13. Map interface with bat detection markers.

Additionally, the web platform offers users the functionality to filter detections based
on the species of bat and the date of detection, enhancing the specificity of the data
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displayed. Users can also limit the number of detections shown on the interface. For
those preferring a different data presentation format, an option is provided to display
the detections in tabular form. The average response time for the tested web pages is
827 milliseconds, ensuring smooth transitions and accessibility for the end user.

4.2.3. Dashboard Interface of Bat Detections

The dashboard section of the web application is designed to present a comprehensive
summary of the bat detections, aggregating data stored within the database. To develop
this interactive dashboard, we employed the Plotly JavaScript library, chosen for its robust
feature set that includes versatile filter controls integrated with the charts. These controls
enable users to interactively customize their data visualization experience, such as by
selecting specific time ranges for line charts or choosing to include or exclude particular
bat species from the displayed chart. Further visualizations of our front-end interface are
provided in the GitHub repository.

4.3. Edge Device Analysis

In our study, the selection of edge devices for deploying our model was rigorously
assessed based on key performance metrics: latency, power consumption (measured as
current drawn), and CPU utilization. Latency measurements, cataloged in ascending order,
are depicted in Figure 14, captured within a 10-min interval. The figure elucidates the
aggregate duration, encompassing both preprocessing and CNN model inference times.
Notably, the compact nature of our model results in the inference phase constituting
less than 10% of the total processing time. Given the processing of 3-s audio segments
for spectrogram analysis, all evaluated edge devices were deemed compatible with our
requirements. By analyzing the audio segment and transmitting the signal through the
LoRaWAN protocol, real-time classification of subsequent audio segments in the buffer is
facilitated. Particularly, the TensorFlow Lite modified model, when executed on an RPi 400,
demonstrated the most efficient performance, achieving the lowest average latency of 0.39 s.
Conversely, the RPi 3B+ exhibited a marginally higher latency, recording a total time of 0.57 s
while running the identical model. The Jetson Nano, despite its TensorRT optimization,
exhibited a longer total processing time. This observation suggests that, contrary to typical
expectations where GPU and TPU-equipped microcomputers excel in machine learning
tasks, our model’s compactness and efficiency do not significantly leverage advanced
computational resources. For devices further constrained to computational resources,
savings can be introduced in the audio-to-spectrogram conversion process. One could
opt to use the STFT-based spectrogram, which does not require the additional mel-filters
to be applied to generate the MSFB. Alternatively, a more practical approach can involve
using algorithms that can reduce the overall computations to generate the spectrogram,
such as nnAudio, which can be four times faster than the librosa package in producing
spectrograms for the same input signal [67].

We also test the current drawn by each of the edge devices for a fixed voltage source of
5 V. The summary of the current drawn by each device over a 10-min window is presented
in Figure 15. The current was measured using a digital USB ammeter (Yocto-Amp [68])
connected in series with the edge devices. The measured values in mA are then read via
a USB serial interface. The CPU-based RPi 3B+, followed by the RPi 400, consumes the
least amount of current, making the RPi 3B+ most suitable for deployment in a power-
constrained remote setting. The Google Coral running the TPU consumed the most current,
with a mean of 789 mA. A Kruskal-Wallis test shows that there is a statistically significant
difference in current consumption between the 5 test cases with a p-value of 0.0. All the
maximum currents drawn are compared against the hardware datasheet, and they are
lower than the recommended maximum.
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In a battery-powered configuration utilizing the RPi 3B+ with an average current draw
of 528 mA from a 5 V source, the operational power demand of the system is approximately
2.64 W. Employing a 50 Ah commercial power bank as the energy reserve, the effective
output is calculated to be 250 Wh (50 Ah × 5 V), projecting the operational longevity of our
edge device on this power supply to be around 94 h (250/2.64). Considering the variable
nature of CPU usage, a conservative estimate adjusts the expected battery life to 50% of this
duration [69], translating to an operational range between 47 and 94 h without the need for
manual intervention. Previous work [70] has shown that integrating an RPi with a 12 V
50 W solar panel with a solar charger and a 12 V battery can facilitate continuous operation
in the field, devoid of frequent maintenance needs.

Figure 16 shows the CPU utilization percentages for various edge devices, revealing
that the average utilization across all devices does not exceed 12%, with the RPi 3B+
peaking at under 75% utilization. Additionally, temperature measurements for these
devices confirmed adherence to operational norms set forth in their respective datasheets.
A detailed analysis of CPU utilization, captured over a five-minute interval while the
CNN model operates on these devices, is illustrated in Figure 17. Initial fluctuations
observed across all devices can be attributed to the operating system’s memory allocation
processes and the setup phase. Notably, when running the TensorRT model, the Jetson
Nano exhibits more pronounced variations in CPU utilization compared to the TensorFlow
Lite (TFLite) model, offering insights into its differential impact on power usage. The RPi
3B+ experiences a significant utilization spike at the simulation’s onset and another at
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approximately the halfway mark. Despite its lower overall power consumption, selecting
the RPi 3B+ necessitates consideration of these initial power surges.
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Figure 16. CPU Utilization by Edge Device.
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Figure 17. Graph of CPU utilization over 5 min per edge device.

A detailed breakdown of the system’s total cost, amounting to $712.75 at the time
of purchase, is provided for reference. The RPi 3B+ is selected for this analysis due to
its smaller current requirements as well as its most affordable cost. This cost encom-
passes various components: the LoRa Raspberry Pi Gateway with Enclosure ($199.95), the
SparkFun LoRa Gateway—1-Channel (ESP32) ($34.95), the Pettersson M500-384 USB Ultra-
sound Microphone ($342.00), the Adafruit 6 V 6 W Solar Panel ($69.00), a Solar Lithium
Ion/Polymer charger ($17.50), a Lithium Ion Polymer Battery ($9.95), and the Raspberry
Pi 3B+ ($40.00) [63]. This cost analysis offers a comprehensive view of the financial re-
quirements for implementing such a system. In comparison, the SonoBat 4 (version 3.1.7p)
software suite itself costs $680 for the Universal package and $1536 for the North American
version [7], while the SM4BAT bat recorder system by Kaleidoscope costs $999 [8].

5. Conclusions

This study presents a supervised algorithm pipeline equipped for edge-based bat
species classification, utilizing a compact CNN model architecture. The proposed model
can accurately classify eight bat species with an accuracy of 97.5% and an F1-score of
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0.9578. This resulted in an integrated end-to-end system that efficiently transmits detection
data from edge devices to a backend server via the LoRaWAN protocol and The Things
Network. To enhance user interaction and data accessibility, we designed a responsive
website that showcases real-time bat detections. This platform features both a map view
for geographical tracking and a dashboard summary for aggregated insights. Drawing
on previous findings that underscore the potential for technology to reduce errors and
streamline data collection [71], our framework promises to enrich our comprehension of bat
species and contribute to ecosystem health assessments. We also explore the data-constraint
training of our proposed CNN model in a semi-supervised SGAN framework to perform
exploratory analysis on its robustness when labeled data is limited. By leveraging a genera-
tor network, the model is still able to perform relatively well within a smaller percentage of
labeled data. Additionally, in a field where open-source resources are notably scarce [6], our
contribution of openly available code stands to catalyze progress in bioacoustic research,
offering a valuable starting point for projects embarking on machine learning and software
development in this domain.

One of the limitations inherent in our present study concerns the absence of gener-
alizability to other bat species. Given that our dataset comprises 8 bat species frequently
encountered in the UAE, it will be necessary to do further retraining and parameter tweak-
ing for species not examined in this project. Furthermore, it should be noted that our
system has not been subjected to site testing in order to evaluate the potential effects of
the environment and wildlife on the field deployment. Potential future endeavors may
involve extending our research to develop a comprehensive feature extractor for bat species
that can optimize various AI tasks. In future research, we also aim to investigate other
semi-supervised studies further to assess more effective frameworks for training models
with limited data. Finally, further investigation is necessary to examine the bat behav-
ior that is inherent in the bat echolocation calls through the application of unsupervised
learning techniques.
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