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Abstract: Within the context of a smart home, detecting the operating status of appliances in the
environment plays a pivotal role, estimating power consumption, issuing overuse reminders, and
identifying faults. The traditional contact-based approaches require equipment updates such as
incorporating smart sockets or high-precision electric meters. Non-constant approaches involve
the use of technologies like laser and Ultra-Wideband (UWB) radar. The former can only monitor
one appliance at a time, and the latter is unable to detect appliances with extremely tiny vibrations
and tends to be susceptible to interference from human activities. To address these challenges, we
introduce HomeOSD, an advanced appliance status-detection system that uses mmWave radar. This
innovative solution simultaneously tracks multiple appliances without human activity interference
by measuring their extremely tiny vibrations. To reduce interference from other moving objects,
like people, we introduce a Vibration-Intensity Metric based on periodic signal characteristics. We
present the Adaptive Weighted Minimum Distance Classifier (AWMDC) to counteract appliance
vibration fluctuations. Finally, we develop a system using a common mmWave radar and carry out
real-world experiments to evaluate HomeOSD’s performance. The detection accuracy is 95.58%, and
the promising results demonstrate the feasibility and reliability of our proposed system.

Keywords: Internet of Things; smart home; appliance operating-status detection; mmWave radar;
vibration

1. Introduction

The rapid development of Internet of Things (IoT) technology [1–3] has led to increas-
ing attention towards smart homes. One of the key functions of smart homes is appliance
operating-status detection, which involves tasks such as measuring fan wind speeds or
detecting the washing or drying of a washing machine. This capability offers numerous ben-
efits, including estimating power consumption, providing alerts for improper usage, and
identifying appliance anomalies. Several sensing technologies exist for detecting the operat-
ing status of appliances. A conventional approach involves using smart sockets to monitor
and record the power consumption of each individual appliance to detect status [4–6].
However, this approach requires attaching a new sensor for each appliance, which can
be intrusive, cumbersome, and impractical for larger homes with many appliances. Non-
Intrusive Load Monitoring (NILM) is indeed a more efficient system for estimating the
power consumption of individual devices [7–10]. It utilizes a single smart meter to measure
the total power consumption of a household and then calculates the power consumption of
each appliance. However, it can be challenging to detect simultaneous status changes in
multiple appliances using only the total power consumption.

In addition to monitoring power consumption, researchers explore the use of vi-
bration as an alternative method for detecting appliance operating status. For example,
some studies employ laser Doppler vibrometers to capture the vibrations produced by

Sensors 2024, 24, 2911. https://doi.org/10.3390/s24092911 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092911
https://doi.org/10.3390/s24092911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24092911
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092911?type=check_update&version=2


Sensors 2024, 24, 2911 2 of 23

appliances [11,12]. However, a limitation of this approach is its inability to simultane-
ously capture the vibrations of multiple appliances. Another approach integrating Ultra-
Wideband (UWB) technology with visual sensing has been proposed [13]. However, it is
limited by the wavelength of UWB signals, which renders it unable to detect the extremely
tiny vibrations of appliances such as fridges. Furthermore, it fails to consider the potential
impact of human activity on the detection accuracy.

Overall, research on detecting the operating status of electrical appliances can be
categorized into two approaches: contact-based and non-contact-based. A contact-based
method requires additional sensors to be integrated into the existing circuitry. Conversely,
non-contact methods utilize sensors such as laser or UWB radar, which do not require any
modification to the household wiring. However, non-contact approaches either lack the
capability to simultaneously monitor multiple appliances or are vulnerable to interference
from surrounding human activity. Therefore, our objective is to develop a non-contact
system that is capable of simultaneously detecting the operating status of multiple electrical
appliances without interference from human activity. We propose utilizing Millimeter
Wave (mmWave) radar as a non-contact sensing technology. mmWave radar is known
for its ability to detect multiple targets at different distances without physical contact.
Previous research studies [14–17] demonstrate the capability of mmWave radar for detecting
tiny vibrations.

However, there are several challenges that need to be addressed. Firstly, the vibration
of appliances is tiny, making the mmWave signal changes caused by these vibrations easily
distorted. This poses a challenge in accurately detecting and interpreting the subtle changes
in the mmWave signal. Secondly, when detecting vibrating appliances, interference from
other moving objects, such as people, can occur. This interference may affect the accuracy
of the detection and introduce false readings or inconsistencies in the results. Overcoming
this challenge requires developing robust algorithms and signal-processing techniques
to distinguish between the vibrations of the appliances and other sources of movement.
Thirdly, due to the instability of the electrical current and mechanical wear and tear, the
frequency of appliance vibrations may undergo certain fluctuations, thus affecting the
recognition results.

In this study, we propose HomeOSD, a system for detecting appliance operating
status based on mmWave radar. To tackle the challenge of signal distortion, we propose
a solution. In particular, we process the original mmWave signal and employ special
periodic average calculations to remove various types of noise present in the signal. By
applying these calculations, the signal quality can be enhanced and the system performance
can be improved. To address the second challenge of interference from other moving
objects, we propose a novel Vibration Intensity Metric, which is designed to estimate the
intensity of vibration while disregarding the Doppler effect caused by other movements. By
focusing specifically on the Vibration Intensity related to appliances, we aim to differentiate
it from other sources of movement and minimize interference in the detection process.
To tackle the third challenge, we propose an Adaptive Weighted Minimum Distance
Classifier (AWMDC) that can mitigate the impact of fluctuations in appliance vibrations on
classification results. By incorporating adaptive mechanism, the classifier can adapt to the
fluctuations in appliance vibration frequencies.

We conduct comprehensive evaluations to assess the performance of HomeOSD in
various scenarios. The results demonstrate an impressive average detection accuracy of
95.58% in real-world settings. This highlights HomeOSD’s ability to accurately detect the
operating status of multiple appliances simultaneously, even when there is interference
from human activities. Our contributions can be summarized as follows:

1. We propose a novel appliance operating-status detection system called HomeOSD,
which utilizes mmWave radar technology. As far as we know, HomeOSD stands out as
the first non-contact system capable of simultaneously monitoring the operating status
of multiple appliances without interference from human activity. This advancement
significantly enhances smart sensing capabilities for home environments;
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2. We propose a novel metric called Vibration Intensity Metric for detecting vibrating
objects and design an AWMDC classifier. The Vibration Intensity Metric effectively
mitigates interference from human activities, while AWMDC can adapt to the fluc-
tuations in appliance vibration frequencies, enhancing the precision of appliance
operating-status detection;

3. We implement our system using a commercial mmWave radar and conduct a thorough
evaluation of its performance in various environments. The experimental results
demonstrate the impressive accuracy of 95.58% achieved by HomeOSD for operating-
status detection in real-world scenarios.

The remainder of this paper is as follows. In Section 2, a review of related works is
provided. Section 3.1 presents an overview of the proposed system. The detailed design
of the system, including mmWave Signal Pre-Processing, Vibrating Object Detection, and
Operating-Status Identification, is presented in Section 3.2 through Section 3.4. Section 4
describes the implementation of the system and presents the results of the system evaluation.
In Section 5, the findings and limitations of the study are discussed, while Section 6 provides
a conclusion to the paper.

2. Related Works

This section reviews existing works on appliance operating-status detection and
vibration measurement.

2.1. Appliance Operating-Status Detection

According to different sensing methods, existing home-appliance operating-status
detection systems can be divided into two main categories: contact sensing-based and
contactless sensing-based.

Contact Sensing-Based: The smart socket is a commonly used device that can
record the power consumption of an appliance and transmit it to the smart-home network
for analysis of the appliance’s status [4–6]. However, installing a smart socket for each
appliance can be intrusive and expensive. In addition to the smart socket, NILM is a system
to detect the appliance operating status by leveraging a single power meter to record the
household’s consumption and extract the status change of each electrical appliance [7–10].
However, NILM can only capture the total consumption, making it difficult to detect the
status of multiple appliances changing simultaneously.

Contactless Sensing Based: Laser vibrometry is a non-contact sensing technology,
used to measure tiny displacements. By measuring the tiny vibrations of an appliance, it
can detect its operating status [11,12]. Vibrosight [11] uses a laser vibrometer to measure the
vibration of a tag attached to an appliance and identify its operating status. However, since
a laser vibrometer can only measure the vibration of a single point, it requires scanning an
entire room to detect all appliances. VibroSense [12] uses a laser vibrometer to measure the
vibration of the wall instead of directly measuring the vibration of appliances to detect their
status. However, when many appliances are running simultaneously, it can be difficult to
extract the vibrations of all electrical appliances through the vibration of a single point on the
wall. Additionally, laser vibrometers cannot be used for long periods, as they are harmful
to human eyes, making continuous monitoring challenging. Capricorn incorporates UWB
technology combined with visual sensing to monitor the status of electrical appliances [13].
However, UWB’s operation is constrained by its inherent wavelength limitations, ranging
from 28.3 mm to 96.8 mm, which preclude detection of minuscule vibrations such as those
generated by appliances like refrigerators. In addition, Capricorn neglects to consider the
influence of human activities on appliance operating-status detection.

To the best of our knowledge, in scenarios involving human activity interference,
there is currently no contactless system that can simultaneously detect the operating
status of multiple appliances based on tiny vibrations. Therefore, we aim to go a step
further and extend vibration detection of a single object to vibration detection of multiple
objects simultaneously.
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2.2. Vibration Measurement

Current vibration measurement technology can be divided into three main categories:
contact sensor-based, optical-based, and Ratio Frequency (RF)-based.

Contact Sensor-Based: Vibration can be detected by attaching contact sensors to
the target surface [18–20]. For example, piezoelectric sensors are a type of contact sensor
that measure vibration by sensing the force changes on the sensors caused by vibration.
The principle of vibration detection based on piezoelectric sensors is to mount the sensor
on a target surface. When the surface vibrates, the piezoelectric sensor senses the force
change caused by the vibration and converts it into an electrical signal output. This
signal’s amplitude and frequency can be used to analyze the target surface’s vibration state.
However, the use of contact sensors may increase the cost of deployment and maintenance.

Optical-Based: Laser vibrometers use the Doppler effect to detect tiny vibrations
[21–24]. They have high measurement accuracy due to the short wavelength of the laser.
However, high-precision laser vibrometers are expensive and can only measure the vibra-
tion of one point at a time. On the other hand, high-speed cameras are widely used for
vibration monitoring [25–28]. However, cameras are vulnerable to ambient light and cause
privacy issues, making them unsuitable for detecting appliance operating status.

RF-Based: In recent years, several solutions for detecting vibrations based on RFID
have been proposed [29–34]. By attaching a tag, the vibration of the target surface can
be detected. RFID has the advantage of being low-cost and not depending on lighting
conditions. However, due to the large wavelength of RFID, its accuracy in measuring
tiny vibrations is limited. Alternatively, the Impulse Radio Ultra-Wideband (IR-UWB) can
be used to detect vibrations. The frequency of IR-UWB ranges from 3.1 to 10.6 GHz [35],
which allows it to penetrate walls and measure vital signs [36–39] and the vibration of
speakers [40]. However, its ability to detect tiny vibrating objects such as a running fridge is
limited [13], similar to RFID. In comparison, mmWave radar has a shorter wavelength and
can detect tiny displacements. It can capture fine-grained vital signs [41,42]. Since sound
is usually produced by tiny vibrations, many works utilize mmWave radar to detect the
vibration caused by sound [15,43–46]. Meanwhile, utilizing the penetrative capability of
mmWave radar, many works use it to detect minor vibrations for eavesdropping [45,47–51].
In addition, mmWave radar is employed in detecting minute vibrations for mechanical
fault detection [16,17,52], emerging communications [14], and material identification [53].
Furthermore, common mmWave radar, such as Frequency-Modulated Continuous-Wave
(FMCW) radar, can effortlessly extract the minute displacements of multiple targets simul-
taneously [54–56].

Given the advantages of mmWave radar, such as high precision, contactless sensing,
multi-target detection, and the characteristic that it is unaffected by ambient light, mmWave
radar is more suitable for detecting vibrations of electrical appliances. Therefore, we utilize
the mmWave radar to implement our design.

3. HomeOSD System Design
3.1. System Overview

Our system, HomeOSD, consists of three primary modules: mmWave Signal Pre-
Processing, Vibrating-Object Detection, and Operating-Status Identification. As illustrated
in Figure 1, the beat frequency signal from the mmWave radar is input to the mmWave
Signal Pre-Processing module to calculate the IQ components and eliminate the noise. Then,
the high-quality signal is fed into the Vibrating-Object Detection module to conduct the
Vibration Intensity calculation and object distance estimation. After the object distance
estimation, the Operating-Status Identification module extracts features from the Vibration
Intensity spectrum and identifies the operating status of the detected objects.

mmWave Signal Pre-Processing: This module is designed to eliminate the noise in
the original signal. Since the vibration of electrical appliances is weak, noise in the signal
can significantly impact the accuracy of detection. To address this issue, we utilize several
Signal Pre-Processing techniques to eliminate noise and produce a high-quality signal.
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Vibrating-Object Detection: After pre-processing, the signal is input to this module
to detect the vibrating objects. The challenge lies in that the Doppler effect due to moving
objects can obscure the Doppler effect of appliance vibration, making it easy to misinterpret
vibration detection. To address this issue, we propose a novel Vibration Intensity Metric
based on periodicity. By calculating the Vibration Intensity of objects at various distances,
we can detect the distance of each vibrating object from the radar without interference from
other moving objects.

Operating-Status Identification: When the vibrating objects are detected, this module
extracts features from the Vibration Intensity spectrum. Due to the fluctuating frequency of
appliance vibrations resulting from electrical current instability and mechanical wear, we
develop an AWMDC. This classifier can dynamically adapt to these vibration frequencies
fluctuating, ensuring accurate classification of appliance operating status.
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radar

Vibrating Objection Detection

Vibration Intensity 

Calculation

Object Distance 

Estimation

Cooling

mmWave Signal Pre-processing

IQ Signal 

Calculation

Noise 
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√
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Figure 1. System overview of HomeOSD.

3.2. Signal Pre-Processing

This section describes the mmWave Signal Pre-Processing module in our system, which
aims to improve signal quality by removing noise from the raw mmWave radar signal.

3.2.1. IQ Signal Calculation

We use a Frequency-Modulated Continuous-Wave (FMCW) mmWave radar to detect
the slight vibrations of objects. The radar emits a continuous chirp signal that is linearly
modulated in frequency:

sTx(t) = exp[j(2π fct + πKt2)], t ∈ [0, T], (1)

where sTx is the radar’s Transmitted Signal (Tx), fc is the starting frequency, K is the slope
of the chirp signal, T is the period of the chirp, and time t ranges from 0 to T. Objects in the
vicinity reflect the transmitted signals, and the radar receives the sum of these reflected
signals. The Received Signal (Rx) can be expressed as follows:

sRx(t) = ∑
i

αisTx(t−
2di
c
), (2)

where αi represents the path loss of the signal reflected by the i-th object, di is the distance
of the i-th object, and c is the speed of the signal. The Rx signal is mixed with the Tx signal
and passed through a low-pass filter, and the output is the beat frequency signal s(t):

s(t) = sTx(t)s∗Rx(t)

≈∑
i

αi exp[j · 2π(K
2di
c

t +
2di
λ

)],
(3)

where λ is the wavelength of the signal. The frequency response of the time-domain signal
can be calculated using the Fourier Transform:
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S( f ) =
∫ T

0
s(t) · (−j · 2π f t)dt

= ∑
i

Ai exp (j · 2π
2di
λ

),
(4)

where f is the subcarrier of the frequency response, Ai is the amplitude of the component
of the i-th object, and Ai = αiT · sinc[( 2di

c K− f )T] · exp (j · π( 2di
c K− f )T). When di is close

to c f
2K , the Ai is close to 1; otherwise, it is close to 0. In practical scenarios, the surrounding

reflectors include both moving and stationary objects. The radar continuously transmits
sweeps of the chirp, and the distance di of the moving object is different in each sweep.
Therefore, we can rewrite Equation (4) as follows:

S(k, f ) = ∑
p

Ap exp (j · 2π
2dp(k)

λ
) + ∑

q
Aq exp (j · 2π

2dq(k)
λ

)

= ∑
p

Ap exp (j · 2π
2dp(k)

λ
) + A0 exp (j · 2π

2d0

λ
),

(5)

where k corresponds to the k-th sweep of the chirp, p corresponds to the p-th moving object,
and q corresponds to the q-th stationary object. A0 and d0 represent the virtual amplitude
and distance, respectively, of all stationary objects. By using Euler’s formula, we can obtain
the signal in the IQ domain:

I(k, f ) = real (S(k, f ))

= ∑
p

Ap cos (2π
2dp(k)

λ
) + A0 cos (2π

2d0

λ
),

(6)

Q(k, f ) = imag(S(k, f ))

= ∑
p

Ap sin (2π
2dp(k)

λ
) + A0 sin (2π

2d0

λ
).

(7)

Based on Equations (5)–(7), we define the stationary component of the vibrating object,
the moving component of the vibrating object, and the total signal s( f , k) in the IQ domain
as the static vector

−→
SS , the dynamic vector

−→
SD, and combined vector

−→
SC, respectively.

Ideally, when there is only one vibrating object in the vicinity, the length of the dynamic
vector

−→
SD remains constant, and the trajectory of

−→
SC in the IQ domain takes the shape of an

arc, as depicted in Figure 2a. To validate the model, we employ a vibration generator to
simulate the vibration and detect it in an environment without human activity. As shown
in Figure 2b, the signal in the IQ domain conforms to the model. However, in real scenarios
where appliance operating status detection is required, there may exist various vibrating
objects and people walking around. As a result, the length of the dynamic vector

−→
SD may

not be constant, and the trajectory of
−→
SC in the IQ domain may not be an arc. As shown in

Figure 2c, the signal
−→
SC from a real-world scenario where an air conditioner is running is

no longer an arc, but a more complex shape.
Above observation indicates that the effects of surrounding vibrating objects and

human activities cannot be ignored. However, previous works on vibration detection based
on mmWave radar have only considered the situation shown in Figure 2a. Therefore, we
aim to propose a system that can detect multiple vibrating objects in more complicated
real-world scenarios.
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Figure 2. Illustration of different vibrating objects in the IQ domain. (a) Ideal points and (b) vibration
generator show arc-shaped trajectories, while (c) the trajectory of the air conditioner is highly chaotic.

3.2.2. Noise Elimination

During the process of detecting the operating status of appliances, signal noise primar-
ily arises from random noise and baseline drift. Random noise refers to a signal that contains
random fluctuations and does not exhibit any discernible pattern or structure [57,58]. The
presence of random noise in many applications is often undesirable, as it can interfere with
the clarity and accuracy of desired signals or data. In radar systems used for detecting
vibrations, random noise can cause significant interference to the system, particularly as the
amplitude of the vibration of the object being measured is typically relatively small [16,17].
In addition, baseline drift can be caused by the radar itself or by the surroundings [59].
Human activities also produce periodic movements. Most of these are large in amplitude,
such as walking and hand-waving. In addition, there are some small amplitude movements
such as the chest movements caused by the heartbeat. But these small-amplitude periodic
motions are also much lower in frequency than the vibrations of electrical appliances, so
any signal changes caused by human activity are equivalent to drift noise. Therefore, our
noise elimination design comprises two parts: random-noise elimination and baseline-drift
elimination.

Random-noise elimination: Random noise is an inherent part of any system and
can be effectively eliminated through applying moving average filter to the signal in time
domain. Specifically, the moving average process replaces the value of each point with the
average value of its neighboring points:

S1(k, f ) =
1

M1

M1
2

∑
i=−M1

2

S(k + i, f ), (8)

where S1(k, f ) is the signal after the moving average process and M1 is the number of
points in the moving window. If the moving window is too small, its ability to reduce
random noise through moving averaging will be insufficient. Conversely, when the moving
window approaches or exceeds the period of a periodic signal, significant components of
that signal will be attenuated. Therefore, assuming our target vibration period to be Ta, we
use a moving window length equal to half the length of period Ta. The value assigned to
M1 corresponds to the number of sampling points associated with Ta/2.

Compared to other signals, periodic signals have a distinct characteristic: the points
on the ideal periodic signal return to the same value after an integer multiple of periods,
as exemplified by points A1 to A10 in Figure 3a. Therefore, random noise can be further
eliminated by averaging points whose time interval is the period, as shown in Figure 3b,c.
However, it is necessary to first assume various vibration periods and calculate the noise-
eliminated signal under each of these assumed periods. The process is expressed by the
following equation:

S2(k, f ) =
1

M2

M2
2

∑
i=−M2

2

S1(k + i · Ta, f ), (9)
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where S2(k, f ) represents the signal obtained by averaging M2 points with the assumed
vibration period Ta. Similar to M1 in Equation (8), an excessively small M2 can also hinder
the ability to suppress random noise effectively. Conversely, when the length of signal S2
is fixed, an overly large M2 would result in an output M2 of insufficient length following
Equation (9). Taking into account the sampling rate, length, and range of Ta for our signals,
we have chosen M2 to be 5 within our system.
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Figure 3. (a) Ideal periodic signal in the IQ domain; (b) Periodic signal with random noise in the IQ
domain; (c) Signal obtained by specific averaging of the signal in (b). From point A1 to point A10,
from point A

′
1 to point A

′
10, and from point A

′′
1 to point A

′′
10, the time interval is a period.

Baseline-drift elimination: In a noise-free periodic signal, the average value of each
period of a periodic signal remains constant, as shown from points B1 to B10 in Figure 4a.
However, when the periodic signal contains drift, the average value of each period can
reflect its component of drift, as shown by points B′1 to B′10 in Figure 4b. Therefore, an
approximate drift component can be obtained by using the moving average of a window
with the length of the period. Finally, we subtract this component from the original signal
to eliminate the drift, as shown in Figure 4c. The equation for this process is written as

S3(k, f ) = S2(k, f )− 1
Ta

Ta
2

∑
i=− Ta

2

S2(k + i, f ), (10)

where S3(k, f ) is the signal after baseline-drift elimination.
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Figure 4. (a) Ideal periodic signal and its mean value for each period in the IQ domain; (b) Periodic
signal with baseline drift and its mean value for each period in the IQ domain; (c) Signal obtained
after baseline-drift removal from the signal in (b).

To process the signal of an electrical appliance, it is necessary to assume all possible
frequencies, as the frequency of vibration is unknown beforehand.

Figure 5 illustrates the raw signals, signal after random noise elimination, signal after
random-noise elimination, and baseline-drift elimination for three appliances. We can
observe that the signals after the random-noise removal exhibit significantly improved
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signal-to-noise ratios compared to the raw signals, and the signals after both random-
noise removal and baseline-drift removal are much clearer. The results demonstrate the
effectiveness of our proposed approach.
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Figure 5. (a–c), (d–f), and (g–i) show the IQ domain signals of the air conditioner, fan, and refrigerator,
respectively. (a,d,g) represent the original signals. (b,e,h) represent the signals after the elimination of
random noise. Finally, (c,f,i) represent the signals after the elimination of both random noise and
baseline drift.

3.3. Vibrating-Object Detection
3.3.1. Vibration Intensity Calculation

Previous studies [16,17] have typically utilized the Doppler effect to detect vibrating
objects. However, in indoor environments, the Doppler effect from human motion is often
much larger than that from appliance vibration. Therefore, in real-world environments, the
Doppler effect from appliance vibration may be masked.

Figure 6a,b demonstrates the Doppler spectrum obtained from vibration detection
of a refrigerator with radar in the absence of any interference and in a scenario where
someone is walking around, respectively. It is obvious that the energy caused by the
walking person masks and drowns out the energy corresponding to the vibration of the
refrigerator. Consequently, a new metric that allows robust vibration detection against
interference needs to be proposed.

For the periodic signal, we observe that the distance between two points in the IQ
domain is related to the signal’s period. Specifically, the time interval between the farthest
points is half a period, and the time interval between the closest points is one period. We
also verify this characteristic of the periodic signal in practice, as shown in Figure 7. The
time interval between A and B is half a period, and the time interval between C and D is
one period. For points within a period, we can express the farthest distance D f and the
average nearest distance Dn using the following equations:

D f (k0, Ta) = max
k0<k<Ta+k0

{|(S3(k +
Ta

2
, f )− S3(k, f ))|}, (11)

Dn(k0, Ta) = avg
k0<k<Ta+k0

{|(S3(k + Ta, f )− S3(k, f ))|}, (12)
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where Ta is the assumed period of the vibration and k0 is the first point in current period
that is computed.
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Figure 6. Range-Doppler spectrum under scenarios where there is (a) no interference and (b) one per-
son walking around; Vibration Intensity spectrum under scenarios where there is (c) no interference
and (d) one person walking around.
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Figure 7. One period of a vibration signal in the IQ domain. A and B are two points with a time
interval of half a period and C and D are two points with a time interval of one period.

By substituting the assumed vibration frequency fa for Ta in Equations (11) and (12),
we can obtain D f (k0, fa) and Dn(k0, fa) as

D f (k0, fa) = max
k0<k< 1

fa
+k0

{|(S3(k +
1

2 fa
, f )− S3(k, f ))|}, (13)

Dn(k0, fa) = avg
k0<k< 1

fa
+k0

{|(S3(k +
1
fa

, f )− S3(k, f ))|}. (14)

Since each S3 signal usually contains multiple vibration periods, to fully utilize the
information of the entire signal, we can calculate the average values of D f ( fa) and Dn( fa)
over the entire signal:

D f ( fa) = avg
0<k0<kn−1/ fa

{D f (k0, fa)}, (15)

Dn( fa) = avg
0<k0<kn−1/ fa

{Dn(k0, fa)}, (16)
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where kn is the chirp number of the entire signal. We observe that, when 1/ fa is closer to
the real vibration period, the value of D f ( fa) increases while the value of Dn( fa) decreases.
Therefore, we can leverage the ratio of their values to reflect the intensity of vibration at
different frequencies:

VI( fa) =
D f ( fa)

Dn( fa)
, (17)

where we define VI( fa) as the Vibration Intensity Metric.
Figure 8 shows the Vibration Intensity of a 30 Hz vibrating object, as calculated from

the reflected radar signal. It exhibits a clear peak at 30 Hz, indicating the effectiveness of
the proposed metric in evaluating the IQ signal’s intensity at various vibration frequencies.
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Figure 8. Vibration Intensity of a 30 Hz vibration object at different frequencies.

We compare the Range–Doppler spectrum and Vibration Intensity spectrum of a fridge
in two different scenarios when nobody is around and when someone is walking around,
as shown in Figure 6. It can be observed that only the Vibration Intensity remains consistent
in both cases (Figure 6c,d), while the Doppler effect experiences significant changes due to
the influence of the person walking (Figure 6a,b).

3.3.2. Object-Distance Estimation

In this section, we utilize the Vibration Intensity Metric to estimate the distances of
all vibrating objects. Figure 9a illustrates the Vibration Intensity spectrum in distance
and frequency for three electrical appliances. Notably, each appliance exhibits distinctive
peaks at corresponding distances, which we can leverage to estimate the distances of all
appliances. The overall algorithm is depicted in Figure 9 and Algorithm 1.
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Figure 9. To estimate the range of appliances from (a) the Vibration Intensity spectrum, the process
involves three steps: (b) first, extract peaks from the spectrum; (c) then, cluster to identify different
appliances; and (d) finally, extract the range for each appliance.
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Algorithm 1: Object-distance estimation algorithm
Input: The matrix VI of Vibration Intensity spectrum, the threshold Thp for

extracting peaks, the threshold Thc for clustering
Output: Distance range matrix Rn×2 for n objects

1 dp ← The points extracted from VI whose peak value are greater than Thp
2 The elements in dp with distances less than Thc are grouped into one class (a total

of n classes)
3 for i← 1 to n do
4 R(i, 1)← the minimum distance of the i-th class
5 R(i, 2)← The maximum distance of the i-th class

6 return Rn×2

3.4. Operating-Status Identification

In particular, we firstly identify peaks across the entire Vibration Intensity spectrum,
retaining only those that exceed a pre-set threshold (Algorithm 1 line 1). Then, we group
the peaks within a specific distance range into the same appliance cluster (Algorithm 1
line 2). Finally, we consider the minimum and maximum distances of the peak points in
each cluster as the distance range for that appliance (Algorithm 1 line 3 to 5). The distance
range of each cluster will be input to the next module.

As shown in Figure 6, the Vibration Intensity spectrum is significantly more stable
than the Doppler spectrum in different environments. Therefore, we extract features that
are related to the Vibration Intensity. Then, we use these Vibration Intensity features to
classify the operating status of the appliance.

3.4.1. Feature Extraction

In this section, we describe the process of feature extraction for appliance operating-
status classification. As shown in Figure 6d, even in the presence of human-activity
interference, the frequencies detected using the Vibration Intensity Metric remain stable.
Therefore, we extract these frequencies and their Vibration Intensities as features for classifi-
cation. The feature extraction process consists of three steps, as illustrated in Figure 10. The
detailed process is also shown in Algorithm 2. Firstly, we extract the Vibration Intensity
spectrum of the target appliance within its distance range (Algorithm 2, line 1). Then, we
extract the maximum Vibration Intensity for each frequency within the distance range of
the respective appliance (Algorithm 2, line 2). Finally, we select the top k frequencies with
the maximum normalized Vibration Intensity (Algorithm 2, lines 3 to 8). These identified
top-k frequencies, along with their corresponding Vibration Intensities, are regarded as the
final extracted features for classification.
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Figure 10. The process of feature extraction: (a) extract the Vibration Intensity spectrum within the
range of each appliance; (b) extract the strongest Vibration Intensity at each frequency; (c) select the
top-k optimal vibration frequencies; and, finally, take the optimal top-k frequencies along with their
corresponding vibration intensities as the features for classification.
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Algorithm 2: Feature-extraction algorithm
Input: The matrix VI of Vibration Intensity spectrum, the i-th target distance

range Ri
1×2

Output: The feature matrix Fi
k×2 of i-th target

1 VItarget ← the Vibration Intensity spectrum of the target is extracted by VI and
Ri

1×2
2 VImax ← the maximum Vibration Intensity at each frequency in VItarget
3 fp ← the frequency vector of the peaks of the Vibration Intensity
4 Sorting fp in descending order based on VImax( fp)
5 for j← 1 to k do
6 Fi

k×2(j, 1)← fp(j)
7 Fi

k×2(j, 2)← VImax( fp(j))/VImax( fp(1))

8 return Fi
k×2

3.4.2. Operating-Status Classification

As the features extracted based on Vibration Intensity are stable, there is no need to
employ complex machine learning methods for classification. After comparing different
approaches, we decided to use a Weighted Minimum Distance Classifier (WMDC) [60] to
identify the status of appliances. The fundamental concept of WMDC involves comparing
the distances between test samples and training samples of different types and, subse-
quently, assigning the type of training sample with the smallest distance as the classification
for the test sample. Due to fluctuations caused by current variations or mechanical wear
and tear, the vibration frequency may change slightly, even within the same appliance’s
operating status, which can cause misjudgment. To tackle this, we devise an Adaptive
Weighted Minimum Distance Classifier (AWMDC) that can reduce the impact of vibration
frequency fluctuations.

Like traditional WMDC classifiers, our AWMDC method determines the class of a test
sample by calculating its proximity to the training sample:

î = min
1≤i≤n

di( ĵ, µ̂), (18)

where î represents the determined appliance operating status, di signifies the distance
between the training sample of the i-th class and the test sample, and n corresponds to
the total number of appliance operating statuses. In this section, we present two adaptive
strategies aimed at enhancing the classifier’s robustness:

• Adaptive Feature Selection: We dynamically choose a frequency combination to
ensure that the selected feature set effectively represents the distribution of the current
category for subsequent classification. Here, ĵ represents the chosen j-th frequency
combination;

• Relaxation Coefficient: We introduce a relaxation coefficient µ to accommodate varia-
tions in vibration frequencies. µ̂ denotes the selected relaxation coefficient, adapting
to the specific conditions.

The vibration of different surfaces of the same appliance is different. Therefore, it is
necessary to dynamically select representative frequency features for distance calculation.
Out of the total number of extracted features containing k frequencies, we choose to retain
only m frequencies. This yields potential combinations that total Cm

k . The criterion for
selecting j is to minimize the value of di(j, µ̂) to ensure that the set of selected features, i.e.,
the frequency combinations, are highly representative:

ĵ = min
1≤j≤Cm

k

di(j, µ̂). (19)
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The specific expression for di(j, µ̂) is

di(j, µ̂) = {
m

∑
p=1

[( f
′
j (p)− µ̂ f j(i, p))2 + ω0(VI

′
j(p)−VIj(i, p))2]}

1
2 , (20)

where f
′
j (p) and VI

′
j(p) correspond to the p-th frequency and Vibration Intensity, respec-

tively, within the j-th frequency combination among the features of the test sample. Like-
wise, f j(i, p) and VIj(i, p) denote the p-th frequency and Vibration Intensity, respectively,
within the j-th frequency combination among the average features of the training sample
of the i-th class. Additionally, ω0 represents a constant weighting coefficient.

The introduction of the relaxation coefficient µ aims to mitigate the impact of vibration
frequency fluctuations. Similar to the criterion for selecting j, we calculate µ by minimizing
di(j, µ) for the j-th frequency combination:

µ̂ = min
µ1≤µ≤µ2

{
m

∑
p=1

[( f
′
j (p)− µ f j(i, p))2 + ω0(VI

′
j(p)−VIj(i, p))2]}

1
2 , (21)

where µ1 and µ2 represent the lower and upper bounds of µ, respectively.
While the aforementioned design enhances classifier robustness, our system encoun-

ters a challenge when simultaneously testing multiple appliances: those with significant
vibration amplitudes may overshadow those with smaller amplitudes. Moreover, real-
world scenarios can involve human movements that obstruct the radar’s propagation path
to appliances. To tackle these issues, we employ a strategy where we aggregate results
from N data segments, each of length l seconds, and the sliding window stride for each
segment is s seconds (with l set to 2.4 s, s set to 1 s, and N fixed at 10 s). Therefore, each
segment evaluation requires 11.4 s of data, with a 1 s interval between each identification.
This approach effectively compensates for undetected appliances and their corresponding
operating statuses.

4. Evaluation
4.1. Experimental Setup

Hardware and Software: As shown in Figure 11a, our testbed is a commercial
mmWave radar, TI IWR1443 BoosterPack, with a bandwidth of 4 GHz (77∼81 GHz) and a
total of seven antennas (three Tx antennas and four Rx antennas). We use one Tx antenna to
send FMCW signals with a bandwidth of 2.5 GHz and all Rx antennas to receive reflected
signals. The raw signals are sampled at 35 MHz and the chirp signals are sampled at 8 kHz.
The raw signals of the radar are acquired by a TI DCA1000EVM data acquisition card. All
algorithms in our system are implemented in Matlab on a computer equipped with an
AMD Ryzen 7 3700X processor and 16 GB of RAM.

Data Collection: We test 5 appliances with their corresponding 10 appliance operating
statuses, as well as the scenario without any appliances, as shown in Table 1. We collect
data in an open area (Figure 11a) and evaluate our system concerning various aspects: ap-
pliances with different orientations (Figure 12b), appliances at different AoAs (Figure 12c),
appliances at different distances (Figure 12d), varying quantities of appliances, and the
presence of human interference. Furthermore, we gather data in a resting area (Figure 11b)
to simulate real-world testing conditions. Our training data are collected for each appliance
in a fixed position (Figure 12a), with 30 training samples per appliance operating status.
Similarly, we collect 30 test samples for each specific condition during testing.
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Figure 11. Hardware and experimental scenarios. (a) Office room; (b) Real-world scenario.
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Figure 12. Position relationship between radar and electrical appliance. (a) Facing each other;
(b) Different orientations; (c) Different AoAs; (d) Different distances.

It should be noted that our testing data and training data are collected in different
environments and on separate days. In both human-interference tests and real-world
scenarios, there is a significant portion where the positions of moving individuals coincide
with being at the same distance from electrical appliances.

Table 1. All appliances’ operating statuses.

Appliance None Air
Conditioner Fan Microwave Fridge Washing Machine

Operating status NA L 1 M 2 H 3 L M H On On Washing Drying
Label 0 1 2 3 4 5 6 7 8 9 10

1 Low speed. 2 Medium speed. 3 High speed.

Metric: We adopt accuracy as the detection metric, defined as the ratio of correctly
classified samples to the total number of samples. In scenarios involving the detection of
multiple objects, assuming that there are n data segments, that the i-th segment contains
mi

1 objects, and that, out of these, mi
2 objects are accurately detected, the overall accuracy is

calculated as follows:

Acc =
∑n

i=1 mi
2

∑n
i=1 mi

1
. (22)

4.2. Overall Performance

In this experiment, the tested electrical appliances remain in the same positions as
during the training phase. We conduct tests for the 11 conditions listed in Table 1. Figure 13
illustrates the overall performance results. The overall recognition accuracy reaches 98.48%,
demonstrating the effective capability of HomeOSD in detecting the operating status
of appliances.



Sensors 2024, 24, 2911 16 of 23

Accuracy: 98.48%
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Figure 13. Overall performance of HomeOSD.

Within the confusion matrix depicted in Figure 13, it is evident that the majority
of appliance operating statuses achieve a recognition accuracy of 100%. However, the
recognition accuracy for the washing machine’s washing status is notably lower, at 90.00%.
This is because, during the washing process, the motor of the washing machine operates in
a variable-speed state.

4.3. Effectiveness of the Proposed Design

In this section, we conduct tests to evaluate how the newly designed Vibration Intensity
Metric and the AWMDC classifier contribute to system performance improvement.

Benefits of Vibration Intensity Metric for Appliance Distance Estimation. In previ-
ous works, two common methods were used to estimate the distance of vibrating objects
with mmWave radar: the Doppler-based method and the symmetry-based method. The
Doppler-based method estimates distance based on intensity in the Doppler-FFT, while the
symmetry-based method leverages the back-and-forth motion of vibrations and considers
Doppler effects symmetrically in both the forward and reverse directions. However, these
methods often fail in real-world scenarios due to Doppler effects from human activities.
Therefore, we use the difference in distance estimation for the same vibrating appliance
with and without human presence as an error metric to evaluate and judge the effectiveness
of different methods for appliance distance estimation.

Figure 14 presents the results for different methods, with mean errors of 0.26 m for
the Doppler-based method, 0.35 m for the symmetry-based method, and −0.02 m for the
Vibration Intensity-based method. The standard deviations of errors are 0.43 m, 0.47 m,
and 0.19 m, respectively. The results indicate that the Vibration Intensity-based method
outperforms the others in terms of both precision and stability, highlighting its resilience to
the influence of human activity.
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Figure 14. Error for different distance estimation methods.

Benefits of Vibration Intensity-Based Feature. Short-Time Fourier Transform (STFT)
and Power Spectral Density (PSD) are common frequency features, and we compare these
two features with Vibration Intensity (VI). We feed these three types of features separately
into common classifiers and calculate classification accuracy. The classifiers used include
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Support Vector Machine (SVM), Random Forest (RF), Multi-Layer Perceptron (MLP), and
Residual Neural Network (ResNet). The classification results for different features are
shown in Figure 15, where the recognition accuracies using STFT and PSD as features are
below 70%, while the recognition accuracies using Vibration Intensity as a feature exceed
70%. This demonstrates that Vibration Intensity is more effective than other features.
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Figure 15. Recognition accuracy using different features.

Benefits of the AWMDC: We compare the recognition accuracy and training time
of our designed AWMDC with other classifiers. As shown in Figure 16, the recognition
accuracies for SVM, RF, MLP, ResNet, and AWMDC are 88.48%, 70.30%, 94.55%, 90.00%,
and 98.48%, respectively. Training times are provided in Table 2. It is evident that the
AWMDC classifier not only achieves the highest recognition accuracy, but also boasts a
very short training time.

Table 2. Training time for all classifiers.

Classifier SVM RF MLP ResNet AWMDC

Training time (s) 0.01 0.09 1386.32 3506.68 3.75

In practice, it is essential for classifiers to have short training times, as households
often introduce new appliances. While SVM and RF have shorter training times, their
classification accuracy is insufficient. MLP and ResNet offer classification accuracy similar
to AWMDC but come with significantly longer training times. Overall, AWMDC emerges
as the optimal classifier.

SVM RF MLP ReNet AWMDC

Classifier

0

0.5

1

A
c
c
u

ra
c
y

Figure 16. Recognition accuracy using different classifiers.

Benefits of Introducing Coefficients. To assess the influence of introducing coefficients
on detection performance, we provide a table demonstrating the system’s recognition accu-
racy under different values of relaxation and constant weighting coefficients, as depicted
in Table 3.
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Table 3. Performance of different introducing coefficients. Coefficient-free result is underlined. Best
results are bold.

Constant Weighting Coefficient
Relaxation Coefficient

|µ| ≤ 0 |µ| ≤ 1 |µ| ≤ 5 |µ| ≤ 10 |µ| ≤ 20

ω0 = 0.1 96.67% 97.27% 97.58% 97.58% 97.88%
ω0 = 1 96.67% 97.27% 97.58% 97.58% 97.88%
ω0 = 5 97.27% 97.27% 98.18% 98.18% 98.48%
ω0 = 10 97.27% 97.58% 98.18% 98.48% 98.18%
ω0 = 100 95.76% 93.94% 94.55% 98.48% 94.24%
ω0 = 1000 92.42% 92.12% 93.33% 72.73% 72.12%

It is crucial to clarify that, when the absolute maximum value of the relaxation co-
efficient is 0, this essentially indicates the absence of a relaxation coefficient. Similarly,
setting the constant weighting coefficient to 1 signifies the non-utilization of such a co-
efficient. Table 3 demonstrates that, without employing either the relaxation or constant
weighting coefficients, the recognition accuracy is 96.67%. However, upon integrating both
coefficients, the maximum achievable recognition accuracy increases to 98.48%. This table
effectively validates the effectiveness of these two coefficients in our system.

4.4. Different Micro-Benchmarks

We undertake a detailed exploration of a series of micro-benchmarks to provide a
comprehensive understanding of HomeOSD’s performance.

Performance with Different Orientations: We maintain the positions of the appliances
while altering their front-facing orientations, as illustrated in Figure 12b. The tested
orientations include 0 degrees, 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225 degrees,
270 degrees, and 315 degrees. The corresponding recognition accuracies are 97.88%, 88.48%,
96.76%, 95.76%, 88.79%, 88.48%, 99.09%, and 89.09%, as shown in Figure 17a. These results
indicate that, even with changes in the reflective surfaces of the appliances, our system
maintains a consistently high level of recognition accuracy.

Performance under Different AoAs: We position the appliances at different angles
of arrival (AoAs), as depicted in Figure 12c. The recognition accuracies for appliances at
AoAs of 0 degrees, 10 degrees, 20 degrees, 30 degrees, 40 degrees, and 50 degrees, as shown
in Figure 17b, are 97.88%, 95.76%, 96.36%, 96.97%, 90.61%, and 86.06%, respectively. We
observe a slight decrease in recognition accuracy as AoA increases, but it remains at a high
level within the radar’s Field of View (FOV).

Performance under Different Distances: We increase the distance of the appliances
from the radar from 2 m to 7 m, as depicted in Figure 12d. The recognition accuracies at
different distances, shown in Figure 17c, are 98.48%, 98.48%, 92.12%, 92.42%, 93.03%, and
89.70% for distances from 2 m to 7 m. Most room lengths do not exceed 7 m, so our system
is generally effective in typical scenarios.

Performance under Different Numbers of Apliances: We test the system’s perfor-
mance when multiple appliances are operating simultaneously. To mitigate interference
from appliances with larger vibration amplitudes on those with smaller amplitudes, we
implement a sliding window operation with a 10 s duration, as detailed in Section 3.4.2
of the field. The results, shown in Figure 17d, indicate recognition accuracies of 94.69%,
91.43%, and 96.73% for two, three, and four appliances, respectively. These experiments
demonstrate that HomeOSD can effectively detect the operating status of multiple appli-
ances simultaneously.

Performance under the Interference of Walking: To validate HomeOSD’s ability to
suppress interference caused by human activity, we test the system’s recognition accuracy
when people are walking around in the vicinity. The result, as shown in Figure 17e, yields
a recognition accuracy of 84.55% when there is human activity nearby. This indicates that
our system can effectively mitigate interference from surrounding human activity.
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Figure 17. Performance of different micro-benchmarks. (a) Performance with different orientations;
(b) Performance under different AoAs; (c) Performance under different distances; (d) Performance
under different numbers of appliances; (e) Performance under the interference of walking.

4.5. Performance in the Real World

To further assess the practical application of our system, we conduct experiments in a
real-world environment, as illustrated in the deployment setup shown in Figure 11b. We
test the recognition accuracy under three scenarios: no individuals present, individuals
seated, and individuals walking. It is worth noting that, to mitigate any potential blockage
of mmWave propagation between appliances and the radar during human movement, we
employ a 10 s sliding window during the recognition process, as described in Section 3.4.2
of the field.

The results, as depicted in Figure 18, indicate recognition accuracies of 98.98%, 98.98%,
and 88.78% for the three scenarios, with an average accuracy of 95.58%. These findings
highlight the robust performance of HomeOSD in real-world settings.
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Figure 18. Performance in real-world scenarios.

5. Discussion

Add New Appliances: As shown in Table 2, our classifier merely requires less than a
minute of data collection for a new appliance and just a few seconds for training. Moreover,
the number of appliance operating statues to be detected within a single room typically does
not exceed 10. Thus, our system is well-equipped to handle the addition of new appliances.

Transportability: Currently, mmWave radar technology finds diverse applications in
human-activity detection, including gesture recognition, trajectory tracking, gait detection,
skeleton detection, and so on. HomeOSD effectively categorizes appliance operating status
independently of human activities, utilizing only data processing while maintaining the
mmWave radar hardware. Consequently, the HomeOSD can seamlessly integrate with
existing indoor mmWave radar systems without modification.

Localization of Appliances in 2-D: HomeOSD possesses the capability to concurrently
detect the operating statuses of appliances situated at varying distances. Nevertheless,
under certain exceptional circumstances, multiple appliances may be equidistant from the
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radar, resulting in HomeOSD’s inability to differentiate them simultaneously. In research
based on FMCW radar, established methods exist for target-angle detection and acquiring
the 2-D position of targets. These algorithms can extract IQ domain signals at each 2-D
position, rendering HomeOSD’s solution directly applicable for 2-D localization.

Non-Line-of-Sight Detection: HomeOSD relies on capturing mmWave signals that
are directly reflected by appliances. When an appliance is obstructed by other objects,
HomeOSD cannot detect its status through Line of Sight (LOS). To address this limitation,
mmWave radar can be employed to detect appliance vibrations even in Non-Line-of-Sight
(NLOS) scenarios. Numerous prior studies explore the use of walls as reflective surfaces for
NLOS detection, including vibration sensing. Consequently, our forthcoming research will
investigate methods to enhance NLOS detection capabilities within the HomeOSD system.

Limitations: While we demonstrate that HomeOSD can effectively detect the oper-
ating status of multiple appliances in real-world scenarios, it still has limitations in the
following cases:

1. When appliances and the radar are situated in different rooms, mmWave signals may
struggle to penetrate all walls, hindering the measurement of appliance vibrations.
Therefore, a challenge remains in ensuring that a single radar can simultaneously
detect all appliances throughout an entire house;

2. In the home, there are many devices without constant vibration frequency, such as a
faucet. Utilizing HomeOSD to detect devices with irregular vibration periods poses a
significant challenge.

To address these limitations, our future work will explore methods to detect the
status of devices in other rooms by leveraging wall vibrations. For devices lacking specific
vibration frequencies, such as faucets, we may employ transfer learning techniques to
detect device status in diverse environmental conditions.

6. Conclusions

In this paper, we introduce HomeOSD, a contactless system built on mmWave radar
technology. HomeOSD excels at simultaneously detecting the operating status of multiple
appliances without interference from human activity. We propose an innovative metric
called Vibration Intensity that leverages the periodic characteristics of vibrations, demon-
strating resilience to interference from surrounding human activities. Additionally, we
design an AWMDC to identify appliance operating status, and it remains robust against
fluctuations in appliance vibrations. Remarkably, our system achieves an impressive de-
tection accuracy of 95.58% in real-world scenarios, even with a limited amount of training
data. We believe that HomeOSD can leverage mmWave radar technology to efficiently
detect the operating status of multiple appliances in smart-home environments. Impor-
tantly, it can seamlessly integrate with existing mmWave radar systems without requiring
hardware modifications.
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3. Cvitić, I.; Peraković, D.; Periša, M.; Gupta, B. Ensemble machine learning approach for classification of IoT devices in smart home.

Int. J. Mach. Learn. Cybern. 2021, 12, 3179–3202. [CrossRef]
4. Musleh, A.S.; Debouza, M.; Farook, M. Design and implementation of smart plug: An Internet of Things (IoT) approach. In

Proceedings of the International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al
Khaimah, United Arab Emirates, 21–23 November 2017; pp. 1–4.

5. Lee, Y.; Jiang, J.; Underwood, G.; Sanders, A.; Osborne, M. Smart power-strip: Home automation by bringing outlets into the IoT.
In Proceedings of the 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New
York, NY, USA, 19–21 October 2017; pp. 127–130.

6. Zhai, S.; Wang, Z.; Yan, X.; He, G. Appliance flexibility analysis considering user behavior in home energy management system
using smart plugs. IEEE Trans. Ind. Electron. 2018, 66, 1391–1401. [CrossRef]

7. Schirmer, P.A.; Mporas, I. Non-intrusive load monitoring: A review. IEEE Trans. Smart Grid 2022, 14, 769–784. [CrossRef]
8. Todic, T.; Stankovic, V.; Stankovic, L. An active learning framework for the low-frequency Non-Intrusive Load Monitoring

problem. Appl. Energy 2023, 341, 121078. [CrossRef]
9. Huber, P.; Calatroni, A.; Rumsch, A.; Paice, A. Review on deep neural networks applied to low-frequency nilm. Energies 2021,

14, 2390. [CrossRef]
10. Ciancetta, F.; Bucci, G.; Fiorucci, E.; Mari, S.; Fioravanti, A. A new convolutional neural network-based system for NILM

applications. IEEE Trans. Instrum. Meas. 2020, 70, 1–12. [CrossRef]
11. Zhang, Y.; Laput, G.; Harrison, C. Vibrosight: Long-range vibrometry for smart environment sensing. In Proceedings of the 31st

Annual ACM Symposium on User Interface Software and Technology, Berlin, Germany, 14–17 October 2018; pp. 225–236.
12. Sun, W.; Chen, T.; Zheng, J.; Lei, Z.; Wang, L.; Steeper, B.; He, P.; Dressa, M.; Tian, F.; Zhang, C. VibroSense: Recognizing

Home Activities by Deep Learning Subtle Vibrations on an Interior Surface of a House from a Single Point Using Laser Doppler
Vibrometry. Proc. Acm Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–28. [CrossRef]

13. Wang, Z.; Sarker, A.; Wu, J.; Hua, D.; Dong, G.; Singh, A.D.; Srivastava, M. Capricorn: Towards Real-Time Rich Scene Analysis
Using RF-Vision Sensor Fusion. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston,
MA, USA, 6–9 November 2022; pp. 334–348.

14. Tonolini, F.; Adib, F. Networking across boundaries: Enabling wireless communication through the water-air interface. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25
August 2018; pp. 117–131.

15. Xu, C.; Li, Z.; Zhang, H.; Rathore, A.S.; Li, H.; Song, C.; Wang, K.; Xu, W. Waveear: Exploring a mmwave-based noise-resistant
speech sensing for voice-user interface. In Proceedings of the 17th ACM International Conference on Mobile Systems, Applications,
and Services, Seoul, Republic of Korea, 17–21 June 2019; pp. 14–26.

16. Jiang, C.; Guo, J.; He, Y.; Jin, M.; Li, S.; Liu, Y. mmVib: Micrometer-level vibration measurement with mmwave radar. In
Proceedings of the 18th ACM International Conference on Mobile Systems, Applications, and Services, Toronto, ON, Canada, 19
June 2020; pp. 1–13.

17. Guo, J.; Jin, M.; He, Y.; Wang, W.; Liu, Y. Dancing Waltz with Ghosts: Measuring Sub-mm-Level 2D Rotor Orbit with a Single
mmWave Radar. In Proceedings of the International Conference on Information Processing in Sensor Networks, Nashville, TN,
USA, 18–21 May 2021; pp. 77–92.

18. Chen, W.; Guan, M.; Huang, Y.; Wang, L.; Ruby, R.; Hu, W.; Wu, K. Vitype: A cost efficient on-body typing system through
vibration. In Proceedings of the 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON), Hong Kong, China, 11–13 June 2018; pp. 1–9.

19. Wang, Y.Q. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta
Astronaut. 2018, 143, 263–271. [CrossRef]

20. Liu, J.; Wang, C.; Chen, Y.; Saxena, N. Vibwrite: Towards finger-input authentication on ubiquitous surfaces via physical vibration.
In Proceedings of the ACM Conference on Computer and Communications Security (CCS), Dallas, TX, USA, 30 October–3
November 2017; pp. 73–87.

21. Peng, S.; Lv, T.; Han, X.; Wu, S.; Yan, C.; Zhang, H. Remote speaker recognition based on the enhanced LDV-captured speech.
Appl. Acoust. 2019, 143, 165–170. [CrossRef]

22. Sami, S.; Dai, Y.; Tan, S.R.X.; Roy, N.; Han, J. Spying with your robot vacuum cleaner: Eavesdropping via lidar sensors. In
Proceedings of the 18th ACM Conference on Embedded Networked Sensor Systems, Yokohama, Japan, 16–19 November 2020;
pp. 354–367.

23. Castellini, P.; Martarelli, M.; Tomasini, E.P. Laser Doppler Vibrometry: Development of advanced solutions answering to
technology’s needs. Mech. Syst. Signal Process. 2006, 20, 1265–1285. [CrossRef]

24. Scalise, L.; Yu, Y.; Giuliani, G.; Plantier, G.; Bosch, T. Self-mixing laser diode velocimetry: Application to vibration and velocity
measurement. IEEE Trans. Instrum. Meas. 2004, 53, 223–232. [CrossRef]

http://doi.org/10.1016/j.jnca.2017.08.017
http://dx.doi.org/10.1007/s13042-020-01241-0
http://dx.doi.org/10.1109/TIE.2018.2815949
http://dx.doi.org/10.1109/TSG.2022.3189598
http://dx.doi.org/10.1016/j.apenergy.2023.121078
http://dx.doi.org/10.3390/en14092390
http://dx.doi.org/10.1109/TIM.2020.3035193
http://dx.doi.org/10.1145/3411828
http://dx.doi.org/10.1016/j.actaastro.2017.12.004
http://dx.doi.org/10.1016/j.apacoust.2018.08.007
http://dx.doi.org/10.1016/j.ymssp.2005.11.015
http://dx.doi.org/10.1109/TIM.2003.822194


Sensors 2024, 24, 2911 22 of 23

25. Gorjup, D.; Slavič, J.; Boltežar, M. Frequency domain triangulation for full-field 3D operating-deflection-shape identification.
Mech. Syst. Signal Process. 2019, 133, 106287. [CrossRef]

26. SoleimaniBabakamali, M.; Moghadam, A.; Sarlo, R.; Hebdon, M.; Harvey, P. Mast arm monitoring via traffic camera footage: A
pixel-based modal analysis approach. Exp. Tech. 2021, 45, 329–343. [CrossRef]

27. Lee, J.; Lee, K.C.; Jeong, S.; Lee, Y.J.; Sim, S.H. Long-term displacement measurement of full-scale bridges using camera ego-motion
compensation. Mech. Syst. Signal Process. 2020, 140, 106651. [CrossRef]

28. Khadka, A.; Fick, B.; Afshar, A.; Tavakoli, M.; Baqersad, J. Non-contact vibration monitoring of rotating wind turbines using a
semi-autonomous UAV. Mech. Syst. Signal Process. 2020, 138, 106446. [CrossRef]

29. Yang, L.; Li, Y.; Lin, Q.; Jia, H.; Li, X.Y.; Liu, Y. Tagbeat: Sensing mechanical vibration period with cots rfid systems. IEEE/ACM
Trans. Netw. 2017, 25, 3823–3835. [CrossRef]

30. Duan, C.; Yang, L.; Lin, Q.; Liu, Y.; Xie, L. Robust spinning sensing with dual-rfid-tags in noisy settings. IEEE Trans. Mob. Comput.
2018, 18, 2647–2659. [CrossRef]

31. Li, P.; An, Z.; Yang, L.; Yang, P. Towards physical-layer vibration sensing with rfids. In Proceedings of the IEEE INFOCOM
2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 892–900.

32. Yang, P.; Feng, Y.; Xiong, J.; Chen, Z.; Li, X.Y. RF-Ear: Contactless Multi-device Vibration Sensing and Identification Using COTS
RFID. In Proceedings of the IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 297–306.

33. Xie, B.; Xiong, J.; Chen, X.; Fang, D. Exploring commodity RFID for contactless sub-millimeter vibration sensing. In Proceedings
of the 18th ACM Conference on Embedded Networked Sensor Systems, Yokohama, Japan, 16–19 November 2020; pp. 15–27.

34. Caldero, P.; Zoeke, D. Multi-channel real-time condition monitoring system based on wideband vibration analysis of motor shafts
using SAW RFID tags coupled with sensors. Sensors 2019, 19, 5398. [CrossRef]

35. Fernandes, J.R.; Wentzloff, D. Recent advances in IR-UWB transceivers: An overview. In Proceedings of the 2010 IEEE International
Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 3284–3287.

36. Lazaro, A.; Girbau, D.; Villarino, R. Analysis of vital signs monitoring using an IR-UWB radar. Prog. Electromagn. Res. 2010, 100,
265–284. [CrossRef]

37. Yang, D.; Zhu, Z.; Zhang, J.; Liang, B. The overview of human localization and vital sign signal measurement using handheld
IR-UWB through-wall radar. Sensors 2021, 21, 402. [CrossRef] [PubMed]

38. Choi, S.H.; Yoon, H. Convolutional neural networks for the real-time monitoring of vital signs based on impulse radio ultrawide-
band radar during sleep. Sensors 2023, 23, 3116. [CrossRef] [PubMed]

39. Zhang, J.; Qi, Q.; Cheng, H.; Sun, L.; Liu, S.; Wang, Y.; Jia, X. A multi-target localization and vital sign detection method using
ultra-wide band radar. Sensors 2023, 23, 5779. [CrossRef] [PubMed]

40. Wang, Z.; Chen, Z.; Singh, A.D.; Garcia, L.; Luo, J.; Srivastava, M.B. Uwhear: Through-wall extraction and separation of audio
vibrations using wireless signals. In Proceedings of the 18th ACM Conference on Embedded Networked Sensor Systems,
Yokohama, Japan, 16–19 November 2020; pp. 1–14.

41. Yuan, S.; Fan, S.; Deng, Z.; Pan, P. Heart Rate Variability Monitoring Based on Doppler Radar Using Deep Learning. Sensors 2024,
24, 2026. [CrossRef] [PubMed]

42. Fan, S.; Deng, Z. Chest Wall Motion Model of Cardiac Activity for Radar-Based Vital-Sign-Detection System. Sensors 2024, 24, 2058.
[CrossRef] [PubMed]

43. Li, H.; Xu, C.; Rathore, A.S.; Li, Z.; Zhang, H.; Song, C.; Wang, K.; Su, L.; Lin, F.; Ren, K.; et al. VocalPrint: Exploring a resilient
and secure voice authentication via mmWave biometric interrogation. In Proceedings of the 18th ACM Conference on Embedded
Networked Sensor Systems, Yokohama, Japan, 16–19 November 2020; pp. 312–325.

44. Liu, T.; Gao, M.; Lin, F.; Wang, C.; Ba, Z.; Han, J.; Xu, W.; Ren, K. Wavoice: A noise-resistant multi-modal speech recognition
system fusing mmwave and audio signals. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems,
Coimbra, Portugal, 15–17 November 2021; pp. 97–110.

45. Wang, C.; Lin, F.; Ba, Z.; Zhang, F.; Xu, W.; Ren, K. Wavesdropper: Through-wall Word Detection of Human Speech via
Commercial mmWave Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 77. [CrossRef]

46. Zhang, J.; Zhou, Y.; Xi, R.; Li, S.; Guo, J.; He, Y. Ambiear: Mmwave based voice recognition in nlos scenarios. Proc. Acm Interact.
Mob. Wearable Ubiquitous Technol. 2022, 6, 151. [CrossRef]

47. Basak, S.; Gowda, M. mmspy: Spying phone calls using mmwave radars. In Proceedings of the 2022 IEEE Symposium on Security
and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; pp. 1211–1228.

48. Hu, P.; Li, W.; Ma, Y.; Santhalingam, P.S.; Pathak, P.; Li, H.; Zhang, H.; Zhang, G.; Cheng, X.; Mohapatra, P. Towards Unconstrained
Vocabulary Eavesdropping With Mmwave Radar Using GAN. IEEE Trans. Mob. Comput. 2022, 23, 941–954 [CrossRef]

49. Hu, P.; Ma, Y.; Santhalingam, P.S.; Pathak, P.H.; Cheng, X. Milliear: Millimeter-wave acoustic eavesdropping with unconstrained
vocabulary. In Proceedings of the IEEE INFOCOM 2022—IEEE Conference on Computer Communications, London, UK, 2–5
May 2022; pp. 11–20.

50. Feng, Y.; Zhang, K.; Wang, C.; Xie, L.; Ning, J.; Chen, S. mmeavesdropper: Signal augmentation-based directional eavesdropping
with mmwave radar. In Proceedings of the IEEE INFOCOM 2023—IEEE Conference on Computer Communications, New York,
NY, USA, 17–20 May 2023; pp. 1–10.

51. Hu, P.; Li, W.; Spolaor, R.; Cheng, X. mmecho: A mmwave-based acoustic eavesdropping method. In Proceedings of the 2023
IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023; pp. 138–140.

http://dx.doi.org/10.1016/j.ymssp.2019.106287
http://dx.doi.org/10.1007/s40799-020-00422-4
http://dx.doi.org/10.1016/j.ymssp.2020.106651
http://dx.doi.org/10.1016/j.ymssp.2019.106446
http://dx.doi.org/10.1109/TNET.2017.2769138
http://dx.doi.org/10.1109/TMC.2018.2877985
http://dx.doi.org/10.3390/s19245398
http://dx.doi.org/10.2528/PIER09120302
http://dx.doi.org/10.3390/s21020402
http://www.ncbi.nlm.nih.gov/pubmed/33430061
http://dx.doi.org/10.3390/s23063116
http://www.ncbi.nlm.nih.gov/pubmed/36991833
http://dx.doi.org/10.3390/s23135779
http://www.ncbi.nlm.nih.gov/pubmed/37447629
http://dx.doi.org/10.3390/s24072026
http://www.ncbi.nlm.nih.gov/pubmed/38610238
http://dx.doi.org/10.3390/s24072058
http://www.ncbi.nlm.nih.gov/pubmed/38610269
http://dx.doi.org/10.1145/3534592
http://dx.doi.org/10.1145/3550320
http://dx.doi.org/10.1109/TMC.2022.3226690


Sensors 2024, 24, 2911 23 of 23

52. Ding, L.; Ali, M.; Patole, S.; Dabak, A. Vibration parameter estimation using FMCW radar. In Proceedings of the 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2224–2228.

53. Shanbhag, H.; Madani, S.; Isanaka, A.; Nair, D.; Gupta, S.; Hassanieh, H. Contactless Material Identification with Millimeter Wave
Vibrometry. In Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services, Helsinki,
Finland, 18–22 June 2023; pp. 475–488.

54. Li, S.; Xiong, Y.; Zhou, P.; Ren, Z.; Peng, Z. mmPhone: Sound Recovery Using Millimeter-Wave Radios With Adaptive Fusion
Enhanced Vibration Sensing. IEEE Trans. Microw. Theory Tech. 2022, 70, 4045–4055. [CrossRef]

55. Li, S.; Xiong, Y.; Shen, X.; Peng, Z. Multi-scale and full-field vibration measurement via millimetre-wave sensing. Mech. Syst.
Signal Process. 2022, 177, 109178. [CrossRef]

56. Yang, Y.; Xu, H.; Chen, Q.; Cao, J.; Wang, Y. Multi-Vib: Precise Multi-point Vibration Monitoring Using mmWave Radar. Proc.
Acm Interact. Mob. Wearable Ubiquitous Technol. 2023, 6, 192. [CrossRef]

57. Rice, S.O. Mathematical analysis of random noise. Bell Syst. Tech. J. 1944, 23, 282–332. [CrossRef]
58. Garmatyuk, D.S.; Narayanan, R.M. ECCM capabilities of an ultrawideband bandlimited random noise imaging radar. IEEE Trans.

Aerosp. Electron. Syst. 2002, 38, 1243–1255. [CrossRef]
59. Lee, I.S.; Park, J.H.; Yang, J.R. Detrending technique for denoising in CW radar. Sensors 2021, 21, 6376. [CrossRef] [PubMed]
60. Lin, H.; Venetsanopoulos, A. A weighted minimum distance classifier for pattern recognition. In Proceedings of the Canadian

Conference on Electrical and Computer Engineering, Vancouver, BC, Canada, 14–17 September 1993; pp. 904–907.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMTT.2022.3183575
http://dx.doi.org/10.1016/j.ymssp.2022.109178
http://dx.doi.org/10.1145/3569496
http://dx.doi.org/10.1002/j.1538-7305.1944.tb00874.x
http://dx.doi.org/10.1109/TAES.2002.1145747
http://dx.doi.org/10.3390/s21196376
http://www.ncbi.nlm.nih.gov/pubmed/34640697

	Introduction
	Related Works 
	Appliance Operating-Status Detection
	Vibration Measurement

	HomeOSD System Design
	System Overview
	Signal Pre-Processing
	IQ Signal Calculation
	Noise Elimination

	Vibrating-Object Detection
	Vibration Intensity Calculation
	Object-Distance Estimation

	Operating-Status Identification
	Feature Extraction
	Operating-Status Classification


	Evaluation
	Experimental Setup
	Overall Performance
	Effectiveness of the Proposed Design
	Different Micro-Benchmarks
	Performance in the Real World

	Discussion
	Conclusions
	References

