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Abstract: Low-cost ambient sensors have been identified as a promising technology for monitoring
air pollution at a high spatio-temporal resolution. However, the pollutant data captured by these cost-
effective sensors are less accurate than their conventional counterparts and require careful calibration
to improve their accuracy and reliability. In this paper, we propose to leverage temporal information,
such as the duration of time a sensor has been deployed and the time of day the reading was taken,
in order to improve the calibration of low-cost sensors. This information is readily available and
has so far not been utilized in the reported literature for the calibration of cost-effective ambient gas
pollutant sensors. We make use of three data sets collected by research groups around the world,
who gathered the data from field-deployed low-cost CO and NO2 sensors co-located with accurate
reference sensors. Our investigation shows that using the temporal information as a co-variate can
significantly improve the accuracy of common machine learning-based calibration techniques, such
as Random Forest and Long Short-Term Memory.

Keywords: air quality monitoring; calibration; low-cost sensor; machine learning

1. Introduction

Air pollution adversely affects public health and quality of life [1]. Therefore, re-
searchers from a diverse range of disciplines are working on mitigating the impact of air
pollution [2,3]. Monitoring outdoor air pollution is one of the means to ensure public health
and safety, raise public awareness and build a sustainable urban environment [4]. The con-
ventional sensors used for monitoring air pollutants are typically expensive and large [5].
As a result, deploying a large number of monitoring stations is not affordable, leading to
a poor spatial resolution of urban pollution data. Low-Cost Sensor (LCS) technologies
aim to address this challenge and make air quality monitoring with high spatio-temporal
resolution feasible [6]. Many cities are adopting this approach to improve their pollutant
measurement capacity [7–10].

The pollutant data captured by the LCSs are less accurate than their conventional (and
expensive) counterparts [11,12]. Many innovative methods have been proposed to improve
the accuracy and the operability of the LCSs [12,13]. It should be noted that the detection
limits of the LCSs depend on the sensors’ hardware and how the sensors were assembled
rather than the calibration techniques working on a sensor’s output. Therefore, while the
accuracy of LCSs can be improved with calibration, the detection limits of such sensors
cannot be increased.

A popular method for calibration is to co-locate an LCS with a high-quality sensor
(reference sensor) and use the data from the reference sensor as the ground truth to derive a
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calibration model [7–10] for the LCS to improve its accuracy. Many regression-based calibra-
tion methods have been proposed to improve the accuracy and reliability of LCSs [13,14].
Multiple Linear Regression (MLR) [7–9,15–19], Support Vector Regression (SVR) [20–25],
Random Forest Regression (RFR) [20,22,26–30], Neural Networks (NN) (like Multilayer
Perceptron (MLP)) [8–10,23–25,29] and Recurrent Neural Networks (RNN) [23–25,31] are
among the most common techniques reported in the literature. In this study, we selected
Random Forest Regression (RFR) from the ensemble Machine Learning (ML) techniques
and Long Short-Term Memory (LSTM) from the RNN-based technique as representative
examples from the two most popular ML-based calibration techniques. We show how
readily available and previously unexploited co-variate data can significantly improve
calibration accuracy.

Random Forest Regression constructs a set of decision trees from the training dataset to
infer predictions. Each level of the decision tree splits the training data into smaller subsets
to predict the target value (reference reading for gas sensor calibration). This splitting
process ends when the model performance does not improve further or a terminal node is
reached [26]. RFR-based calibration techniques have performed well for LCSs measuring
ambient gas pollutants. Examples of RFR improving the calibration of field-deployed LCSs
measuring ambient gas pollutants can be found in the works of Borrego et al. [30] (CO, NO2,
O3 and SO2), Cordero et al. [20] (NO2), Bigi et al. [22] (NO and NO2), Malings et al. [29]
(CO, NO, NO2 and O3) and Zimmerman et al. [26] (CO, CO2, NO2, O3). One of the
main reasons for RFR being utilized by many reported works is its ability to account for
cross-sensitivity [26], the influence of gases other than the target pollutant on the LCS.

Many researchers have used Neural Networks to calibrate LCS data [24,32]. Unlike
other NNs that mostly use current data, RNNs model the historical time series behavior
present in the dataset. They have been used by Sheik et al. [33], Wang et al. [34] and
Fonollosa et al. [31] for calibrating LCSs under laboratory conditions. Esposito et al. [24,25]
studied multiple calibration techniques, including RNN, on different LCSs and compared
their performances. It should be noted that RNN models face two issues during calibra-
tion: Firstly, the determination of time lag must be made in advance, which requires a
considerable number of experiments to identify. Secondly, these RNNs fail to capture long-
time dependencies in the training dataset. Therefore, Long Short-Term Memory network
(LSTM), a variant of RNNs, was introduced [35]. LSTM has been used for calibrating low-
cost ambient gas sensors by different research groups. Examples of such applications can
be found in the works of Han et al. (CO, NO2, O3 and SO2) [35] and Peng et al. (NO2) [36],
among others.

The response of the LCSs are highly susceptible to cross-sensitivity from other ambient
gases [7,24] and temperature and relative humidity [7,8]. Therefore, temperature, relative
humidity and cross pollutant data are traditionally used as the regressor co-variates to
correct the sensor output and make the pollutant readings more accurate [7–9,37]. These
data are usually available, as LCSs are often deployed as an array or a suite with multiple
pollutant sensors along with temperature and humidity sensors.

It is well known that LCS performance drifts and degrades over time. We hypothesize
that using the number of days an LCS has been deployed in operation can be used as a
co-variate to enable the ML algorithms to model and address the gradual degradation.
Many gas pollutants come from anthropogenic sources and are direct results of human
activities (e.g., CO, NOX resulting from automobile emissions) [23,38]. Therefore, it is
reasonable to assume that the time of the day that influences relevant human activities
will also impact the pollutant concentration and can potentially be used as a co-variate.
However, the literature does not show any evidence of utilizing these parameters, which are
readily available without any additional cost, for multi-variate calibration of LCSs. In this
article, we demonstrate that including these parameters as input features can significantly
improve the accuracy of the LCSs.
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2. Dataset Description

We have focused on the calibration of an LCS measuring two gas pollutants, CO and
NO2, for this work. Both pollutants are components of the Air Quality Index (AQI) [39].
We have utilized three datasets collected by researchers using LCSs deployed in different
parts of the world. Figure 1 shows the box plot of the target pollutant (CO and NO2)
concentrations recorded by the reference sensors for all three datasets.
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Figure 1. Box plots of the target pollutant concentrations as recorded by the reference sensors for
Dataset 1, 2 and 3 in (a–c), respectively. The median and standard deviation of the CO readings are
(1.66, 1.26), (0.49, 0.40) and (0.67, 0.25) in ppm, respectively, for the three datasets. The median and
standard deviation of the NO2 readings for the three datasets are (109, 47.23), (18.16, 12.68) and (20.33,
15.65) in ppb, respectively.
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The raw pollutant readings from the LCSs (unchanged electrode data) and ground
truth from co-located accurate reference-grade sensors are available for all three deploy-
ments. These datasets also include other pollutant data that have allowed us to address
cross-sensitivity. Temperature and relative humidity data from sensors onboard the LCSs,
available for all three setups, help mitigate their respective effects. Table 1 provides a
summary of the three datasets. For more details of the datasets, sensors, deployment setup,
and other relevant information, please refer to the works reported in [7,10,23], as well as
our previous work [40].

Table 1. Details of the utilized datasets. The multisensory LCSs and the reference sensors have
missing readings at some time instants for each dataset. If any reading from the LCSs or the reference
sensors were missing, all data for that time instant have been removed before training the models.
All three datasets have a sampling rate of 1 h. However, Dataset 3 is also available at a per-minute
sampling rate. For Datasets 2 and 3, both working and auxiliary electrode data were available from
the LCS.

Dataset Time Span Location Number of
Samples LCS Array Pollutant

Measured Reference Sensor

1 [23] 10/03/2004–
04/04/2005

Lombardy
Region, Italy

6941 (CO)
6743 (NO2) MOX CO, NO2, O3,

NMHC, NOX

Air pollution analyzer, operated
by the Regional Environmental

Protection Agency (ARPA)

2 [10] 04/05/2018–
24/11/2020 Naples, Italy 13,595 (CO)

12,123 (NO2) EC CO, NO2, O3

Teledyne 300 CO analyzer and
Teledyne T200 NO2

chemiluminescence analyzer

3 [7] 01/10/2018–
01/03/2019

Guangzhou,
China

3639 (CO)
3412 (NO2) EC CO, NO2, O3

CO data were collected by a gas
analyzer based on infrared
absorption (Model 48i-TLE,

Thermo Scientific, Waltham, MA,
USA). NO2 was measured by a

chemiluminescence analyzer
(Model 42i-TL, Thermo Scientific,

Waltham, MA, USA)

3. Methodology
3.1. Calibration Models

The calibration models are regressors so that,

Pcalibrated = Φ{Praw, X}. (1)

Here Pcalibrated is the calibrated CO or NO2 reading computed from the raw readings
( Praw) of the LCS (COraw or NO2raw, working electrode data and/or auxiliary electrode
data), as well as X, which comprises co-variates. Additionally, Φ is the regression model,
the parameters of which are derived from the training data in order to minimize the Mean
Square Error (MSE) between the calibrated output and the ground truth received from
the reference sensor. Four different scenarios have been considered for each of the ML
algorithms.

3.1.1. Scenario 1 (S1)

Here the co-variates are temperature, relative humidity and other pollutant readings
from the LCS sensor array so that,

PS1
calibrated = Φ S1 {Praw, T, RH, GASraw}. (2)

The regressor, ΦS1, is derived based on Praw, the raw pollutant sensor input (working
electrode data and/or auxiliary electrode data), along with temperature (T) and relative
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humidity (RH) readings and other pollutant readings (GASraw), to minimize the MSE
between PS1

calibrated and the ground truth.

3.1.2. Scenario 2 (S2)

For the second scenario, Nday, the number of days the LCS has been deployed in
the field is used as an additional co-variate for estimating the regressor model Φ S2. The
calibrated output is

PS2
calibrated = Φ S2

{
Praw, T, RH, GASraw, Nday

}
. (3)

3.1.3. Scenario 3 (S3)

In Scenario 3, Nday is replaced with Hour, the time of the day the readings were taken
at for estimating the regressor, Φ S3. The calibrated output can be expressed as

PS3
calibrated = Φ S3 {Praw, T, RH, GASraw, Hour}. (4)

3.1.4. Scenario 4 (S4)

Both Nday and Hour are now included as co-variates along with the raw target pollu-
tant readings (either CO or NO2), the temperature and relative humidity readings and other
pollutant readings from the LCS to estimate the regressor Φ S4. Therefore, the calibrated
output can be written as

PS4
calibrated = Φ S4

{
Praw, T, RH, GASraw, Nday, Hour

}
. (5)

3.2. Algorithm Training and Validation

As mentioned previously, we have used two machine learning algorithms, RFR and
LSTM, to investigate the effects of the temporal co-variates, Nday and Hour. A rigorous
training, validation and testing method has been followed during this work. The hyperpa-
rameters have been tuned on the relevant training datasets and tested on the corresponding
testing sets for the regressors. The list of the tuned hyperparameters is given in Table 2.

Table 2. List of hyperparameters that were tuned for RFR and LSTM.

Algorithm List of Hyperparameters

RFR Maximum depth of tree, maximum number of leaf nodes, number of trees in
the forest.

LSTM Number of LSTM layers, time steps, number of units in the LSTM layers, activation
function, dropout rate in dropout layers, learning rate of the optimizer, batch size.

A portion of each dataset (training data) is used to determine the parameter of the
calibration model by training and validating the regressor model. The performance of
the trained model is then evaluated on the remainder of the data (testing data) not used
for training. There are two common usage situations for an LCS. In one situation, a co-
located low-cost sensor can be used as a backup in case the reference grade monitor is
out of commission for a short period. To emulate this situation, we split each data set so
that 90% of the data were used for training/validation and 10% of the data were used
for evaluating the accuracy of the trained models. We term this as Train-Test Split 1 or
TTS1. The second usage situation is using the LCS after calibrating the sensors through
a relatively short co-location with a reference sensor. This is emulated by using 20% of
the data for training/validation and the remaining 80% for evaluating the accuracy of
the trained models. We term this as Train-Test Split 2 or TTS2. The train/validation/test
process has been illustrated as a diagram in Figure 2.
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Figure 2. Process diagram of the dataset training, validation and testing. A k-fold (k = 10) cross-
validation has been utilized to ensure that the parameters are more generalized.

For the LSTM models, an early stopping method has been used during the train/validation
stage. The validation sets’ MSEs are observed for each epoch. The training terminates when
the MSE does not decrease by a certain tolerance threshold for a set number of epochs
(patience). The weights which provide the minimum MSE within that patience are chosen
as the model’s final weight.

3.3. Performance Metrics

Several standard performance metrics have been used in this study to evaluate the
calibration models. These metrics in various ways measure the residuals or errors, i.e.,
difference between the calibrated output of the LCS (Pcalibrated) and the ground truth reading
(Pre f erence) for the “un-seen” test data.

Root Mean Square Error (RMSE), which is commonly used as a performance metric
for sensor calibration [7,41–44], was utilized as a metric. RMSE is the standard deviation of
the residuals and can be expressed as:

RMSE =

√
1
N ∑N−1

i=0

[
Pcalibrated − Pre f erence

]2
. (6)

Here, N is the number of samples in the relevant test dataset.
For a more detailed investigation, we have also plotted the Cumulative Distribution

Function (CDF) of absolute errors, abs
[

Pcalibrated − Pre f erence

]
.

Target diagrams [26,45] were constructed for visualizing the performance of the cal-
ibration models. The y axis in a target diagram represents the Mean Bias Error (MBE)
normalized by the standard deviation of the ground truth so that:

MBE = mean(Pcalibrated)− mean
(

Pre f erence

)
, (7)

Normalised MBE =
MBE

σre f erence
. (8)

Here, σre f erence is the standard deviation of the ground truth for the relevant test dataset.
The x axis of the Target Diagram represents the normalized unbiased estimate of the RMSE,
the Centered RMSE (CRMSE), where:

RMSE =

√
RMSE2 − MBE2, (9)

Normalised CRMSE =
CRMSE
σre f erence

. (10)
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Please note that the normalized CRMSE is multiplied by sign
{

σcalibrated − σre f erence

}
to

produce the target diagrams, with σcalibrated being the standard deviation of the calibrated
data for the relevant test dataset.

4. Results and Discussion
4.1. Model Evaluation for Different Scenarios

Table 3 shows the performance of the calibration algorithms (RFR and LSTM) in
different scenarios. We can make the following observations:

1. Overall, the use of Nday and Hour has improved the calibration accuracy noticeably for
both pollutants throughout all three datasets. The lowest RMSE (Table 3) is achieved
for S4 in all cases.

2. For CO, the gain is quite noticeable in S2 and S4 compared to S3 for both algorithms
in Datasets 2 and 3. Dataset 3 in particular showed a large improvement (around 20%
or more) when Nday was introduced as an input. For both algorithms with CO as the
target pollutant, RMSE improved slightly in S3 from that of S2 in Dataset 1, while they
were significantly lower (around 3% or less) in Datasets 2 and 3.

3. Overall, the improvements for NO2 are more modest compared to the RMSE improve-
ments in CO. For NO2, these improvements were mostly below 10% in all scenarios,
with the exception being RFR in S2 and S4 (more than 15%) for Dataset 1.

4. In all cases, both S2 and S4 have outperformed S3 noticeably (the only exception being
CO in Dataset 1). Thus, the impact of Nday as an input co-variate seems to be more
prominent than adding Hour. However, the opposite can be seen for CO in Dataset 1.

5. The empirical CDF plots of calibration error in Figures 3 and 4 show a clear improve-
ment in S4 from S1, further demonstrating the importance of using both Nday and
Hour data as input features.

6. The target diagrams for the calibration are presented in Figures 5 and 6. All the points
lie inside the unit circle, i.e., radius = 1, and therefore the variance of the residuals is
smaller than that of the reference measurements. Thus, the variability of the calibrated
output (dependent variable) is explained by the reference data (independent variable)
and not the residues. The distance of these points from the origin represents the
normalized RMSE (RMSE/σre f erence), which shows that calibrations achieved are more
accurate than the same for S1. This once again underlines the importance of adding
temporal data as input features. It is also observed that the standard deviation of the
calibrated data is mostly smaller than the standard deviation of the ground truth, as
the majority of the points lie on the left plane.

Sensors 2024, 24, 2930 8 of 18 
 

 

Table 3. Performance analysis of RFR and LSTM in different scenarios. RMSE is in ppm for CO and 
ppb for NO2. Improvement is the decrease in RMSE for a scenario compared to the RMSE of S1 
expressed in percentage. 

Pollutant Algorithm Dataset Parameter 
Scenario 

S1 S2 S3 S4 

CO 

RFR 

1 
RMSE 0.346 0.332 0.326 0.314 

Improvement 0 4.094 5.606 9.182 

2 
RMSE 0.129 0.110 0.125 0.104 

Improvement 0 15.037 3.753 19.772 

3 
RMSE 0.043 0.034 0.042 0.034 

Improvement 0 19.581 1.137 20.337 

LSTM 

1 
RMSE 0.344 0.335 0.326 0.322 

Improvement 0 2.63 5.17 6.44 

2 
RMSE 0.119 0.110 0.117 0.109 

Improvement 0 7.54 1.58 8.66 

3 
RMSE 0.039 0.029 0.038 0.027 

Improvement 0 24.91 2.97 30.89 

NO2 

RFR 

1 
RMSE 8.886 7.497 8.456 7.236 

Improvement 0 15.64 4.84 18.58 

2 
RMSE 6.193 5.930 6.088 5.836 

Improvement 0 4.25 1.70 5.77 

3 
RMSE 4.549 4.305 4.474 4.277 

Improvement 0 5.36 1.65 5.98 

LSTM 

1 
RMSE 8.968 8.560 8.836 8.476 

Improvement 0 4.55 1.47 5.49 

2 
RMSE 5.896 5.603 5.736 5.342 

Improvement 0 4.97 2.71 9.39 

3 
RMSE 8.886 7.497 8.456 7.236 

Improvement 0 15.64 4.84 18.58 
 

  

Figure 3. Cont.



Sensors 2024, 24, 2930 8 of 18

Sensors 2024, 24, 2930 9 of 18 
 

 

  

 

Figure 3. Empirical CDF plots of calibration error for CO. 

  

Figure 3. Empirical CDF plots of calibration error for CO.

Sensors 2024, 24, 2930 9 of 18 
 

 

  

 

Figure 3. Empirical CDF plots of calibration error for CO. 

  

Figure 4. Cont.



Sensors 2024, 24, 2930 9 of 18

Sensors 2024, 24, 2930 10 of 18 
 

 

  

  

Figure 4. Empirical CDF plots of calibration error for NO2. 

 
(a) 

Figure 4. Empirical CDF plots of calibration error for NO2.

Sensors 2024, 24, 2930 10 of 18 
 

 

  

  

Figure 4. Empirical CDF plots of calibration error for NO2. 

 
(a) 

Figure 5. Cont.



Sensors 2024, 24, 2930 10 of 18

Sensors 2024, 24, 2930 11 of 18 
 

 

 
(b) 

Figure 5. Target diagrams of (a) RFR and (b) LSTM for CO. 

 
(a) 

 
(b) 

Figure 6. Target diagrams of (a) RFR and (b) LSTM for NO2. 

  

Figure 5. Target diagrams of (a) RFR and (b) LSTM for CO.

Sensors 2024, 24, 2930 11 of 18 
 

 

 
(b) 

Figure 5. Target diagrams of (a) RFR and (b) LSTM for CO. 

 
(a) 

 
(b) 

Figure 6. Target diagrams of (a) RFR and (b) LSTM for NO2. 

  

Figure 6. Target diagrams of (a) RFR and (b) LSTM for NO2.



Sensors 2024, 24, 2930 11 of 18

Table 3. Performance analysis of RFR and LSTM in different scenarios. RMSE is in ppm for CO and
ppb for NO2. Improvement is the decrease in RMSE for a scenario compared to the RMSE of S1
expressed in percentage.

Pollutant Algorithm Dataset Parameter
Scenario

S1 S2 S3 S4

CO

RFR

1
RMSE 0.346 0.332 0.326 0.314

Improvement 0 4.094 5.606 9.182

2
RMSE 0.129 0.110 0.125 0.104

Improvement 0 15.037 3.753 19.772

3
RMSE 0.043 0.034 0.042 0.034

Improvement 0 19.581 1.137 20.337

LSTM

1
RMSE 0.344 0.335 0.326 0.322

Improvement 0 2.63 5.17 6.44

2
RMSE 0.119 0.110 0.117 0.109

Improvement 0 7.54 1.58 8.66

3
RMSE 0.039 0.029 0.038 0.027

Improvement 0 24.91 2.97 30.89

NO2

RFR

1
RMSE 8.886 7.497 8.456 7.236

Improvement 0 15.64 4.84 18.58

2
RMSE 6.193 5.930 6.088 5.836

Improvement 0 4.25 1.70 5.77

3
RMSE 4.549 4.305 4.474 4.277

Improvement 0 5.36 1.65 5.98

LSTM

1
RMSE 8.968 8.560 8.836 8.476

Improvement 0 4.55 1.47 5.49

2
RMSE 5.896 5.603 5.736 5.342

Improvement 0 4.97 2.71 9.39

3
RMSE 8.886 7.497 8.456 7.236

Improvement 0 15.64 4.84 18.58

In summary, using temporal parameters as co-variates for the regressors improved
the calibration accuracy for both pollutants for all three datasets. The performance gain
for NO2 is more modest compared to those achieved for CO. In general, the impact of the
duration of time a sensor has been deployed is more pronounced than the time of day the
reading was taken. Using both temporal co-variates (along with cross-pollutant data and
temperature and relative humidity) provides the most accurate calibration for both target
pollutants for all three datasets.

4.2. Impact of Train-Test Split

Table 4 shows the improvement in RMSE while using the temporal co-variates for
a 20/80 train/test split (TTS2). This represents the use case where the LCS is co-located
with a reference sensor for a set period for calibration and then afterwards deployed in
the field for monitoring pollutants at locations where no AQM station is available. We can
again observe noticeable improvements in S4 for both pollutants. However, the level of
improvement is more modest than its 90:10 counterparts.

Table 4. Performance improvement of RMSE in S4 from S1 for 20:80 split (TTS2).

Pollutant Algorithm
Improvement of RMSE in S4 from S1 (in %)

Dataset 1 Dataset 2 Dataset 3

CO
RFR 4.49 11.95 8.92

LSTM 6.34 4.13 19.24

NO2
RFR 13.19 3.93 2.73

LSTM 4.49 3.55 2.36
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4.3. Significance of Temporal Information

Traditionally, LCS are calibrated by utilizing cross-pollutant data as co-variates along-
side temperature and relative humidity data received from the LCS. However, cross-
pollutant data are only available if the LCS is constructed as an array consisting of a suite
of multiple pollutant sensors. Based on the efficacy of the temporal co-variates shown
in this study, we believe that utilizing the number of days deployed (Nday) and time of
day (Hour) data as input for the calibration algorithms may let us achieve a reasonably
accurate calibration model even when the cross-pollutant data are not available.

Let us consider a scenario (termed S0) where the LCS provides only the target gas
sensor data along with T and RH. We now include the two readily available co-variates
(scenario S0T). We will use a similar methodology to that outlined in Section 3.2 to train and
validate the algorithms for these two scenarios. RMSE improvement results for the 90:10
training and testing ratio for RFR and LSTM have been illustrated in Table 5. All the results
show a noticeable improvement in RMSE. It is obvious that the accuracy of the calibration
can be significantly improved even without deploying a sensor array of multiple pollutants,
and therefore without increasing the cost.

Table 5. Performance improvement of RMSE resulting from temporal co-variates only for the
90:10 split.

Pollutant Algorithm
Improvement of RMSE in S0T from S0 (in %)

Dataset 1 Dataset 2 Dataset 3

CO
RFR 15.75 0.76 10.86

LSTM 15.57 2.31 11.11

NO2
RFR 3.12 5.36 10.09

LSTM 1.85 5.21 20.91

The improvement of RMSE scores in S1 and S0T from S0 for the 90:10 training and
testing ratio are shown in Tables 6 and 7. This helps us compare the impact of temporal
co-variates against that of cross-pollutant data. Tables 8 and 9 show the comparative results
for 20:80 training and testing ratio. Overall, the improvements that can be achieved with
the temporal co-variates exclusively are substantial and not far behind the improvements
observed when cross-pollutant data were available (and temporal co-variates were not
used). The empirical CDF plots for S1 and S0T presented in Figures 7 and 8 show similar
encouraging patterns.

Table 6. Improvement of RMSE in S1 (raw + temperature + humidity + other gases) and S0T (raw
+ temperature + humidity + Nday + Hour) from S0 (raw + temperature + humidity) for CO in a
90:10 split.

Algorithm Scenario
Improvement of CO RMSE in S1 and S0T from S0 (in %)

Dataset 1 Dataset 2 Dataset 3

RFR
S1 31.89 1.83 6.78

S0T 15.75 0.76 10.86

LSTM
S1 31.41 8.58 14.48

S0T 15.57 2.31 11.11
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Table 7. Improvement of RMSE in S1 (raw + temperature + humidity + other gases) and S0T (raw
+ temperature + humidity + Nday + Hour) from S0 (raw + temperature + humidity) for NO2 in a
90:10 split.

Algorithm Scenario
Improvement of NO2 RMSE in S1 and S0T from S0 (in %)

Dataset 1 Dataset 2 Dataset 3

RFR
S1 15.38 12.63 6.18

S0T 3.12 5.36 10.09

LSTM
S1 13.49 16.73 29.59

S0T 1.85 5.21 20.91

Table 8. Improvement of RMSE in S1 (raw + temperature + humidity + other gases) and S0T (raw
+ temperature + humidity + Nday + Hour) from S0 (raw + temperature + humidity) for CO in 20:80
split.

Algorithm Scenario
Improvement of CO RMSE in S1 and S0T from S0 (in %)

Dataset 1 Dataset 2 Dataset 3

RFR
S1 31.99 2.72 6.25

S0T 17.34 0.38 21.88

LSTM
S1 29.19 8.84 14.52

S0T 16.26 −0.78 20.97

Table 9. Improvement of RMSE in S1 (raw + temperature + humidity + other gases) and S0T (raw +
temperature + humidity + Nday + Hour) from S0 (raw + temperature + humidity) for NO2 in 20:80
split.

Algorithm Scenario
Improvement of NO2 RMSE in S1 and S0T from S0 (in %)

Dataset 1 Dataset 2 Dataset 3

RFR
S1 12.13 15.04 4.92

S0T 3.30 4.52 7.53

LSTM
S1 7.52 13.93 18.51

S0T −0.46 4.72 15.28
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5. Conclusions and Future Work

In this article, we proposed to utilize temporal co-variates, namely the duration of
time a sensor has been deployed and the time of day the reading was taken, to improve
the calibration of low-cost sensors. For our study, we selected two common machine
learning-based algorithms, Random Forest, and LSTM, and three datasets of ambient gas
pollutant collected by researchers. The target pollutants of the study were CO and NO2.
Based on our investigation, it can be concluded that the temporal co-variates can improve
the calibration accuracy significantly. This is a significant outcome, as this can be achieved
with readily available information.

Continual progress in deep learning presents the opportunity to use new and advanced
ML algorithms. Our preliminary investigation shows that the temporal co-variates improve
the accuracy of a wide range of ML methods, e.g., Gradient Boost, One Dimensional
Convolutional Neural Network, Multilayer Perceptron or Artificial Neural Network, etc.
However, further investigation is necessary; therefore, future research can investigate the
impact of the temporal co-variates on other machine learning-based calibration algorithms.
Our work shows the efficacy of various co-variates. The extent of the impact varies,
potentially due to both the hardware used and the ambient conditions. We believe that the
gradual degradation of the sensor’s performance, in large part, depends on the hardware.
Therefore, the co-variates used in this study should improve the performance of LCSs in
general. However, the degree of the efficacy would be dependent on the hardware, among
other factors. A future study can investigate this issue with data collected from a diverse
group of LCS hardware.
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Our investigation showed that the time of deployment and time of the day have
a significant impact when used as input. However, there are other available temporal
parameters, such as month of the year, whether the day is a weekday or weekend, etc.
While these parameters were found to have no noticeable impact for the three datasets
in this work, a future study with other datasets may show them to be useful co-variates.
It is also not clear how the ML models behave if the trained model from one LCS is
used to calibrate another LCS with similar hardware and a similar configuration. It will
be worthwhile to investigate how a transfer calibration approach can be used in such
a scenario.
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