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Abstract: Detection and characterization of hidden defects, impurities, and damages in homogeneous
materials like aluminum die casting materials, as well as composite materials like Fiber–Metal
Laminates (FML), is still a challenge. This work discusses methods and challenges in data-driven
modeling of automated damage and defect detectors using measured X-ray single- and multi-
projection images. Three main issues are identified: Data and feature variance, data feature labeling
(for supervised machine learning), and the missing ground truth. It will be shown that simulation of
synthetic measuring data can deliver a ground truth dataset and accurate labeling for data-driven
modeling, but it cannot be used directly to predict defects in manufacturing processes. Noise has
a significant impact on the feature detection and will be discussed. Data-driven feature detectors
are implemented with semantic pixel Convolutional Neural Networks. Experimental data are
measured with different devices: A low-quality and low-cost (Low-Q) X-ray radiography, a typical
industrial mid-quality X-ray radiography and Computed Tomography (CT) system, and a state-of-
the-art high-quality µ-CT device. The goals of this work are the training of robust and generalized
data-driven ML feature detectors with synthetic data only and the transition from CT to single-
projection radiography imaging and analysis. Although, as the title implies, the primary task is pore
characterization in aluminum high-pressure die-cast materials, but the methods and results are not
limited to this use case.

Keywords: simulation; machine learning; synthetic data augmentation; X-ray; porosity analysis

1. Introduction

High-Pressure Die Casting (HPDC) is an established manufacturing process for large-
scale series production affording the highest productivity. The main materials for which
it is employed are aluminum alloys, followed by magnesium and zinc. Until recently,
typical HPDC machine sizes did not exceed 4.5 k tons. Nowadays, since the automotive
OEM Tesla initiated Gigacasting using 6 k tons equipment supplied by Italian manufacturer
IDRA, 12 k tons machines have been realized to produce battery housings, and 18–20 k tons
systems are under development for single-shot production of the combined front and
rear underbody plus battery housing of passenger vehicles. This, on the other hand,
raises questions about defect-related variability of properties: In a typical HPDC process,
mold filling happens at extremely high melt velocities within tens of milliseconds and
is thus extremely turbulent. Additionally, feeding is limited, as it can only be realized
via the plunger and thus becomes ineffective as soon as the in-gates are solidified. As a
consequence, porosity caused by shrinkage of an isolated melt volume or by entrapped
gas is likely to occur, weakening the material properties. For this reason, for safety-
relevant components, the industry has preferred low-pressure die casting (LPDC) in the
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past [1,2]. However, with the advent of Gigacasting, the contribution of HPDC parts to
crashworthiness gains further importance, while producing castings of the sizes mentioned
above is an extremely challenging task anyway, and may afford compromises in terms of
lightweighting for processability alone, notwithstanding the potential need to raise safety
factors if defects can neither be avoid nor detected with sufficient accuracy [3]. Despite this,
development of Gigacasting technology is now being extended to magnesium alloys, too, in
search of additional automotive lightweighting potentials [4]. This situation motivates the
current study, which is aimed at improving detection and classification of casting defects
via non-destructive approaches.

In general, such defects can be identified in two ways: On the one hand, relevant
aggregative material and defect characteristics can be measured using destructive methods
like tensile tests and micrograph slicing but only giving some sample results. On the
other hand, Non-destructive Testing (NDT) encompasses a broad range of methods to
detect and characterize material properties, defects, impurities, and damages in a wide
range of materials and structural composites, e.g., laminates and composite materials.
However, NDT based on imaging methods can only deliver geometrical properties. The
majority of NDT methods are based on wave propagation and interaction, i.e., from
electromagnetic fields, light fields (visible and invisible), sound and vibration fields, and
X-ray radiation fields. In this work, we only focus on X-ray radiation-based methods,
basically radiography (producing single-projection images) and Computed Tomography
(CT), based on multiple radial image projections, finally deriving volume slices by means
of reconstruction methods [5]. We thus concentrate on image processing algorithms and
feature detection in images (i.e., features representing damage and defects) using pure
data-driven models.

Therefore, physics-based simulation should be used to retrieve relevant information
about critical process conditions resulting in defects and their characteristics. Because any
simulation is based on simplified models, the simulation results should be compared with
experimentally measured material properties and defect characterizations.

Feature detection and marking of defects in measuring images can occur on different levels:

• Region-of-Interest Search (marking, there is something somewhere maybe);
• Feature Maps (marking, localized features);
• Damage and defect classification;
• Damage and defect localization;
• Global statistical aggregates (e.g., pore density, distributions, etc.).

Either classical numerical and model-based algorithms (e.g., based on edge detec-
tion using a Soebel filter or Canny detector) or data-driven models are used for feature
marking (Machine Learning models), e.g., based on shape and object classifiers like Con-
volutional Neural Networks (CNN) or more advanced models like region-proposal net-
works (ResNet [6], YOLO [7], SAM [8]). Any data-driven model can be considered as a
parametrized function F(P,X): X → Y that maps an input data space X commonly derived
from measuring data or already computed features on an output data space Y, commonly
defect or damage features. The parameter set P must be approximated using training data.

The primary goal of this work is automated damage, defect, and impurity detection
in materials including composites using single-projection X-ray images and data-driven
feature marking models (e.g., deploying Convolutional Neural Networks). Detection of
hidden damages, defects, and impurities like gas pores is still a challenge using X-ray
radiography. X-ray images typically pose a low contrast if the density of defects is close
to the host material or if they are very small compared to the resolution of the measuring
device. It can be shown that classical image processing algorithms are not suitable for
accurate pore characterization in X-ray radiography images. Instead, we are proposing and
evaluating data-driven trained predictor Machine Learning (ML) models.

Data-driven models require data with a sufficient statistical variance and distribution
of features to be detected. That is the first issue with most engineering data lacking variance
and posing a low degree of representation (weak database). Additionally, supervised train-
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ing of high-dimensional and parametrized models requires accurately labeled (annotated)
strong feature examples, commonly not available. This is the second issue and downfall in
data-driven modeling. Both aspects can be summarized as the missing ground truth issue.
The combination of simulated (synthetic) and real-world data is commonly required. For
example, Mery et al. [9] addressed aluminum die casting inspection using complex deep
learning models and simulation of simplified ellipsoidal effects. Their approach relied on
the superposition technique, overlaying real X-ray images with simulated parts of defects.

The novelties and topics of the present study are (see also Figure 1) a fusion of multiple
methods:

1. Physics-based simulation delivering basic information about defects in die casting
processes used for the qualitative validation of defect recognition results.

2. Material- and structural model-based simulation and synthetic sensor data (SD) generation;
3. Filling the ground truth gap in real sensor data (RD) by using accurately annotated

data provided by CAD modeling;
4. Training of data-driven ML models only using SD, but prediction (inference) on RD;
5. Predictor models with low complexity and divide-and-conquer approaches for feature

class marking in images;
6. Point/pixel clustering methods for object reconstruction and shape fitting, finally

performing defect characterization and statistical analysis.

Figure 1. (Top) Methodologies used in this work. (Bottom) Data and model architecture.

Considering small defects and damages in homogeneous or composite materials, there
is no experimental ground truth method to characterize such defects like gas pores with
high accuracy and trust. Micrograph slicing is a common technique to characterize pores,
but this method is limited to 2D views, and the slicing process alters the material and the
defects, e.g., due to polishing or etching processes. High-resolution µ-CT techniques are
suitable to characterize small defects, but the mathematical functions and algorithms used
to reconstruct 3D volume slices from radial projections introduce artifacts and limitations
that require pre- and post-filtering, finally reducing the accuracy and trust of CT images.
Besides, high resolution in the typical size range of gas porosity in castings is only available
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for extremely small volumes. In conclusion, there is no experimental ground truth training
dataset for the supervised training of data-driven feature (defect) marking models. We
propose a unified simulation flow to generate synthetic data used exclusively for training
of predictor models. We will show that these models can be applied to real measurement
images. We will also show that a model-based physical simulation of a die-casting process
is not sufficient to predict certain aspects of porosity as observed by experiments but can be
used to obtain basic knowledge and information for the structural modeling of materials
with defects.

In [7], a similar approach of X-ray data augmentation and feature marking was con-
sidered, also using the superposition technique for the generation of synthetic image data,
i.e., creating a superposition of real images (without defect) with “simulated” defect image
fragments. In doing so, ref. [7] uses an established, but very complex, detector model
(YOLO) for defect feature marking in X-ray images. In contrast, we use very simple models
(semantic pixel classifier with flat CNNs) and a divide-and-conquer approach. Further-
more, the types of defects studied by [7] appear to be geometrically simple, while our own
approach can in principle be transferred to any host material and defect geometry. While
in the present study, we primarily focus on pore classification—a rather simple geometric
task—in the outlook, we will present the deployment of our approach for (impact) damage
detection in and characterization of multi-layered Fiber–Metal Laminate (FML) plates. Even
though there are more problems than solutions regarding FML impact damage modeling,
this use case serves to underpin the power of our simulation approach.

Via this technique, we analyze pores commonly created during the high-pressure die-
casting process. There are different classes of pores, summarized, e.g., as gas or shrinkage
porosity, showing different geometries and size ranges. We will provide a methodology to
generate synthetic measurement data covering the aforementioned classes relying entirely
on simulation. These synthetic data are used to train data-driven feature marking models,
finally providing a statistical analysis of pores by using point clustering and geometrical
shape fitting.

Synthetic data generation is detailed in section Section 3, which introduces the syn-
thetic data generation by simulation, followed by 3D Computed Tomography (CT) analysis
providing reference data for simulation, and finally the feature marking models, being
the main major contributions of this work. High-Pressure Die Casting (HPDC) and its
manufacturing defects is the main use case we will consider in this work. The HPDC
process simulation provides some insights into porosity. To understand the challenges and
issues with defect detection in this use case, the following Section 2 introduces the basics of
HPDC manufacturing.

2. High-Pressure Die Casting

The typical part weights realized range from grams up to several 10 kg. The primary
customer specifically for aluminum HPDC parts is the automotive industry, with typical
components found in powertrains based on internal combustion engines. The current tran-
sition from ICE to battery electric vehicles (BEV) has eliminated components like cylinder
blocks or gear boxes, forcing suppliers of castings to focus on structural applications. A
recent development in this respect is Giga- or Megacasting, which has further extended shot
weights to beyond 100 kg: Tesla has initiated this trend by producing the rear underbody of
their Model Y as single-piece casting, claiming cost advantages based on the replacement
of several sheet metal components, plus associated joining operations. By now, several
automotive OEMs such as Volvo, Nio, XPeng, and others are taking up this technology,
while equipment manufacturers like Bühler or Haitian are following IDRA and LK Machin-
ery in offering ever-larger HPDC machines [10,11]: Tesla started their respective activities
using IDRA equipment offering locking forces of 6000 tons, exceeding the then-maximum
of roughly 4500 tons by a third.



Sensors 2024, 24, 2933 5 of 40

2.1. Porosity in HPDC

While HPDC excels in productivity, it is distinguished from other casting processes
by the fact that mold filling is extremely fast and turbulent—more of a spraying than a
flow-based process. Melt quality, turbulence, and solidification processes may all contribute
to the occurrence of porosity in an HPDC component. Casting simulation is capable of
providing insights into areas specifically prone to such defects but can typically not predict
the actual expression of porosity in terms of measures like average or maximum pore size,
much less pore size distribution [12,13]. Similarly, the effects of porosity on part properties
are not known in all possible detail: When it comes to guaranteeing mechanical properties,
automotive OEMs thus tend to rely on specifying maximum allowable pore sizes either on
a general level, or for critically loaded regions of the respective component.

Pore sizes and shapes tend to differ depending on the origin of the pores. Gas poros-
ity is typically rounded and small in size, while shrinkage pores are larger and tend to
be of irregular shape, as their inner surface reflects the formation of crystallites during
solidification. Given the aforementioned geometric features, and provided the respective
data are available, a distinction is possible via criteria like surface-to-volume ratio and
similar characteristics relating the actual pore volume to that of an enclosing sphere or
ellipsoid [14].

In general, gas pores tend to be less critical in terms of property deterioration than, e.g.,
shrinkage porosity: Their smaller size and spherical shape have been shown to produce less
of an adverse effect, e.g., on part strength and elongation than larger shrinkage porosity,
the irregular inner surface of which may further kerf effects. Contrary to this general
observation, gas porosity may become critical in HPDC components if it is formed at
the high levels of intensification pressure (up to and above 1000 bar) which constitute an
integral part of the HPDC process, and which serve to ensure feeding as well as pore size
reduction. In practice, the conflict between the design engineer focusing on functionality
and foundry engineer aiming at castability is often resolved, not by eliminating porosity
but by limiting it as far as possible, while at the same time shifting it to low stress regions
within the part. The handles to achieve this include processing conditions and mold layout,
as well as, the designer permitting, part geometry. The tool with which these measures may
be tested is casting simulation, i.e., the numerical prediction of where to expect which types
and expressions of defects, accompanied by additional information on the characteristics
of the undisturbed matrix. Summing up, based on the nature of the process, economic
production, especially of large HPDC components (the Gigacasting approach) without any
defects, is next to impossible. Companies engaging in this thus have to make sure they can
(a) reliably detect defects and (b) accurately judge their effect on part performance. The
current study addresses the first part of these issues, focusing on porosity.

Currently, while X-ray scans are widespread in industry, X-ray-based CT defines the
gold standard. Depending on requirements, the frequency of scans ranges from a per-shift
to an individual part basis. Furthermore, scans of full parts, usually with reduced resolution,
and detailed scans of critical areas can be distinguished. Similarly, different practices exist
in terms of the actual identification of defects, as well as their classification as critical or not.
Typically, the sorting of parts into acceptable and reject categories is carried out manually
with the help of reference images, or pore size measurements relying on human recognition.
In many OEM specifications, pore size limits are thus the primary decision criteria, with
all the consequences of this method, which does not account for other characteristics of
a specific porosity distribution. Alternatives, which rely on specifying maximum levels
of porosity in highly loaded regions of the casting, also fail in this respect, neglecting
aspects like kerf effects, pore size distribution, or spatial arrangement of pores. Automated
Defect Recognition (ADR) could provide just this by deriving further defect characteristics
beyond the fundamental: It would even allow storage of metadata on each individual part,
for documentation, or for clarification of any in-service failure, should that occur—and
thus also for adjustments in evaluation procedures. Furthermore, understanding of the
effects of defects could benefit from unambiguous, in-depth characterization of pore size
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distributions: Applied to samples for mechanical testing, the method could provide a
basis for new insights in this respect as well as correlations between process parameters
and part properties. Finally, e.g., via stochastic simulation approaches as discussed by
Andrieux et al. [15,16], this could help solve the problem of properly dimensioning HPDC
components expressed by Blondheim and Monroe: “The general region where macro
porosity forms is predictable with simulation, but its actual size and distribution of the
voids are random” [13].

2.2. Influence of Porosity on Part Properties

Porosity is well known to have a detrimental influence on part performance, lowering
yield strength, ultimate tensile strength, and elongation at failure, i.e., ductility. Studies
on these subjects are numerous and have, e.g., been published by several authors both for
HPDC, as well as for LPDC, and considering various types of loads, i.e., static, dynamic,
or cyclic (see e.g., [17,18]). Zhang et al. compared HPDC and gravity die-cast samples of
an AlSi7MnMg alloy, concluding that shrinkage porosity is dominant when it comes to
property reduction in comparison with entrapped gas. Furthermore, they demonstrate
the influence of maximum pore size by contrasting samples with 0.3 mm and 1.3 pores, of
which the former reach 9–13.5% elongation at failure, while the latter fail at 6.4% elongation,
and claim an inverse proportionality between both parameters. In addition, they introduce
a limit value of sphericity at 0.4 in order to distinguish between gas and shrinkage porosity,
with the latter associated with sphericity values at or below this limit [19]. Another group
of researchers extends the aforementioned studies to magnesium alloys, which are typically
less ductile due to their hcp lattice structure vs. the fcc of aluminum alloys, using X-ray
CT to non-destructively characterize the samples prior to mechanical testing. Zhang et al.,
in their work, distinguish between a pore fraction of smaller size (equivalent diameter at
or below 90 µm), which dominates in number, but contributes only 50 vol.%, and larger
size pores above 425 µm equivalent diameter, associated with 5 vol.% of overall porosity.
In order to include, to a limited degree, the spatial distribution of porosity, they divide
their samples into several slices, with the (virtual) cutting plane oriented perpendicular to
the direction of the load in tensile testing. By this means, they can in principle establish
an improved correlation between porosity and mechanical properties, especially Ultimate
Tensile Strength (UTS), provided the samples fail in the assumed region. Their experimental
data confirm good correlation mainly between critical section porosity and elongation at
failure [20]. Yu et al., who also work on magnesium HPDC, go beyond the former study by
focusing even more on aspects of defect morphology and microstructure, including, e.g.,
local variation of the latter in terms of externally solidified crystals. Interestingly, they find
that the mechanical properties depend on the defect band width rather than the overall
level of porosity. Defect bands are defined as local areas of increased defect, i.e., in this case,
porosity, level, which may constitute the weakest link within the sample [21].

2.3. Detecting Porosity and Deriving Measures to Counter It

For an envisaged in-line process monitoring and control, the HPDC process offers
certain parameters which can be adjusted to counter an observed negative trend in porosity
characteristics. These could include, e.g., shifting the thermal state of the die either via
adaptation of the spraying process or by adjusting volume flow and/or temperature of the
cooling/tempering fluids. A further option could be modifying the shot curve, including
variation of the intensification pressure. More sophisticated solutions might build on heat
pipes for local cooling or squeezers for local feeding, both of which could also be varied in
terms of their operational parameters, or on vacuum-assisted or vacuum processes [22–24].
A major prerequisite for effectively employing such approaches is the detection of porosity
and thus the main topic of the present study. In their study, Nourian-Avval and Fatemi have
shown that major differences may be observed when comparing defect data derived from
different methods like X-ray CT and µ-CT, radiography and metallographic sections—while
the latter appears to be more accurate, it is hampered by its effort and the fact that it is
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necessarily a destructive technique, whereas the others leave the part under scrutiny intact.
The message to be taken from this is that there is an urgent need for improvement in defect
recognition based on non-destructive (NDT) solutions [25]. Automated Defect Recognition
(ADR) has thus developed into a widely studied topic in this respect, though it does face
obstacles. To overcome these, Ji et al. use a two-stage approach employing a filtered
selective search algorithm to identify potential defect sites, while categorizing them by
means of an Evenly Distributed Convolutional Neural Network (ED-CNN) [26]. Fuchs et al.
discuss such concepts, stating that though Convolutional Neural Networks (CNN) and
other deep learning methods have successfully been employed to identify defects, they
suffer from the drawback of requiring vast amounts of tediously labeled training data.
Their suggestion is thus to produce synthetic training data via simulating the tomography
process—their claim is that by following this approach, they can provide ground truth
data for training on the level of individual voxels. In addition, they compare high- and
low-quality CT data, using the latter as an additional basis to verify detection results
gained on low-quality data [27]. Mery also proposes the use of synthetic training data to
overcome the training dataset issue, and the efforts of labeling, with respect to the analysis
of conventional X-ray or radiography data. In two related studies, he compares several deep
object identification methods using a hybrid approach which includes generating training
data via superimposing real, but defect-free, X-ray with simulated defect data [9,28]. Finally,
Hena et al. use synthetic training data generated by distribution modeling of X-ray intensity
as training data input for ADR in an approach similar to the one suggested in this study.
The difference, however, compared to our own approach, lies [7].

2.4. Sample Production

Samples for evaluating advanced ADR techniques were cast from aluminum alloy
AlSi9Cu3(Fe) or 226D (see Table 1 below for the composition according to the supplier’s—MMG
Aluminum AG, Mayen, Germany—specification) at a temperature of 680 ◦C using a Frech
DAK 250-34 (Schorndorf, Germany) high-pressure die-casting machine with a locking force
of 290 tons.

Table 1. Material composition of alloys.

Element Al Si Fe Cu Mn Mg Cr Ni Zn Pb Sn Ti

content [wt.%] bal. 8.6 1 2.1 0.2 0.22 0.04 0.04 0.6 0.03 0.02 0.04

2.5. Summary of HPDC Simulation

From the simulation results shown in Section 8.1, the following conclusions can be
drawn with respect to the usability and qualitative assessment, as shown in Table 2.

Table 2. Summary of HPDC process simulation.

Casting Simulation
Output Description and Interpretation of Simulation Outcome Conclusion

Tracer Particles
Primary melt flow reflects the width of the in-gates, which
falls short of the total width of the sample. Eddies and
turbulent flow possible in the lateral parts of the sample. Increased probability of gas porosity,

characterized by high sphericity values, at both
sides of the casting. Superimposed slight
increase at either end also possible in central
cross sections.

Melt Velocity
Absolute velocity at later stages of mold filling reflects
findings based on tracer particles, showing reduced
velocity at the sides of the sample.

Entrapped Air Prediction of mass of air entrapped within the casting per
unit volume, based on simulation of flow patterns.
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Table 2. Cont.

Casting Simulation
Output Description and Interpretation of Simulation Outcome Conclusion

Porosity
Probability of the occurrence of shrinkage porosity
throughout the casting. Probability above zero limited to
the overflows. No information about the actual casting.

No information on porosity distribution within
the casting.

Hot Spot FS Time
Hot spots predicted within the core of the casting.
Decreasing cross-sectional area with increasing distance
from in-gates and biscuit.

Increased likelihood of shrinkage porosity,
characterized by low sphericity values, within
the central area of the plate. Potential decrease
in the respective porosity values with increasing
distance from the in-gates. No quantitative
estimate of porosity levels is available.

There is no quantitative measurement of porosity that can be derived directly from
this simulation, but there are relevant qualitative information and features for the structural
CAD-based model design. The qualitative analysis results from the die casting process
simulation are mainly used to create coarse pore size distribution splits and spatial weight
distributions, discussed in Section 8.1.

3. Synthetic Data Generation by Simulation

In this work, data-driven predictor models are applied to X-ray images. These models
are trained and supervised by examples. The goal of the predictor model is to mark defects
or damages, finally creating feature map images suitable for further defect and damage
analysis. The main issue with supervised training is the ground truth of the training
examples, which cannot be satisfied in all use cases considered in this work. To overcome
the limitations of training data from real measurements with manually annotated labels,
we propose to generate synthetic training data with full ground truth by using a unified
simulation flow.

The simulation flow consists of the following parts, as summarized in Figure 2:

1. Acquisition and quantitative analysis of a base reference set of defects or damages
(here, pore characterization using 3D µ-CT data) and some qualitative results from
Section 2.3 (process simulation);

2. Creation of a CAD model consisting of a host material (here, homogeneous aluminum)
and defects using Constructive Solid Geometry (CSG) modeling combined with Monte
Carlo simulation;

3. Transformation of the CSG-CAD model to a multi-material convex hull mesh-grid
model (STL) using the OpenSCAD tool [29];

4. Simulation of X-ray radiography or CT projection images using a GPU-driven ray-
tracing simulation (based on the Beer–Lambert law and the gVirtualXray library [30]);

5. Overlaying of noise (additive Gaussian electronics noise, multiplicative Gaussian
noise, and Poisson- or binomial-distributed detection process noise).

The qualitative analysis results from the HPDC process simulation are mainly used
to create coarse pore size distribution splits and geometrical spatial weight distributions.
There are basically two classes of pores as derived from HPDC simulation and CT anal-
ysis: Small gas pores (diameter below 100 µm) and larger shrinkage pores (diameter
above 100 µm).

Monte Carlo simulation was used with a Gaussian random process to introduce vari-
ance of geometric and location parameters of defects applied to the measured parameter
reference set (from CT analysis and partially from HPDC simulation). The variance param-
eter σ of the random process was derived from observations and theoretical assumptions.
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Figure 2. Simulation flow for the generation of synthetic data.

3.1. CSG-CAD Modeling

A parametric mechanical CAD model is required to compute synthetic X-ray images.
The CAD model consists basically of two parts:

1. The base-line structure and host material without defects and damages;
2. Defects or damages.

To enable parametric modeling, the CAD model is computed by using Constructive
Solid Geometry (CSG) modeling. CSG provides Boolean union, difference, and intersection
operations as well as rotation, scaling, and translation operations to construct arbitrarily
structured and shaped materials. The complexity of the model and the generation process
depends on the host material and the class of defects. In this work, pores are approximated
by ellipsoid geometries. A CSG model of an ellipsoidal pore is shown in Algorithm 1.
A sphere is scaled to create an ellipsoid. Each pore is modeled independently using Monte
Carlo simulation (with statistical normal and uniform distributions) and a reference set of
pores computed by a 3D µ-CT analysis from real aluminum die-cast plates.

Algorithm 1. Parametrized ellipsoid pore model using CSG operations.

define pore (xc,. . .)):
translate([xc,yc,zc])
rotate ([xa,ya,za])
scale([xr,yr,zr])
sphere(r=0.5,$fn=nsegments);

A plate with pores is created by a subtractive (material difference) operation, as shown
in Algorithm 2. The only constraints that must be satisfied are given by position and
the surface boundary (pores may not exceed the surface creating holes). Overlapping of
pores is allowed, creating composed pore shapes, which can be expected in real physical
processes, too. The host material is homogeneous and created by a simple cube operation.
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Algorithm 2. Parametrized plate model with pores using CSG operations.

define plate (xp,yp,zp,. . .):
rotate ([90,90,90])
difference () {
rotate ([90,0,0])
cube([xp,yp,zp],center=true);
union () {
pore(. . .)
pore(. . .)
. . .
};
}

A triangular surface mesh-grid model is finally computed from the CSG model and
exported into STL format. OpenSCAD [29,31] is based on the OpenCSG and Computational
Geometry Algorithm (CGAL) libraries. Special algorithms that can simulate the presenta-
tion of Computational Solid Geometry operations (union, intersection, and subtraction)
on a two-dimensional screen provide the foundation of OpenCSG. SCS and Goldfeather
are its two primary algorithms. CGAL includes a vast array of geometric approaches and
algorithms that can be used to represent objects. It facilitates the output of 3D formats such
as STL by calculating the actual point sets of 3D objects. Details can be found in [31].

The ordinary Polyhedra and the Nef Polyhedra are the two primary CGAL features
that OpenSCAD takes advantage of. It also makes use of a number of additional features,
such as triangulation. However, the ordinary Polyhedra and the Nef are the primary
data structures.

Non-cubic or rectangular shapes must be approximated by a segmented mesh grid
(facets), e.g., for spheres and cylinders. The number of facets (segments) determines the
accuracy of computed surfaces. If this surface model is used for X-ray simulation, artifacts
and patterns can occur in the computed X-ray images, but practical experience showed no
significant impact as long as the surface discretization is below the geometrical resolution
limit of the X-ray imaging set-up.

Even complex materials, e.g., Fiber–Metal Laminates, can be modeled accurately,
e.g., by creating single fibers by cylinders. A test was performed with an example of a
synthetic FML plate with 10,000 glass fibers (embedded in resin) and simplified impact
damage deformation, which is shown in Figure 3. The physical size of the test plate was
50 × 50 mm. The impact damage defect can be parametrized with respect to the diameter
(about 5–20 mm in the x–y plane) and the depth (about 0.5–2 mm in the z-axis). Using the
simulation approach for X-ray images based on the CSG model as discussed in the next sec-
tion, it can be shown that the micro-scale structure of the fiber matrix is visible in the X-ray
images with typical Moiré patterns. The computational time for such a complex triangular
mesh-grid transformation performed by OpenSCAD is about 10 min (Dual core Intel Core
i5-7300 U—3 GHz max. clock frequency, 8 GB DRAM, embedded Intel HD620 GPU) with
10,000 fibers and depends on the triangular approximation settings (number of segments to
approximate circles and ellipses). The X-ray simulation for one image (1000 × 1000 pixels)
itself requires less than one second (CPU) or 50 ms (NVIDIA GPU, P4000).

However, from a practical perspective, it is nearly impossible to model fiber materials
in a realistic way. Neither the geometrical fiber characteristics nor a statistical model of the
placement distribution is known. An escape from this trap is the fusion of real and synthetic
data using X-ray images from typical fiber materials (without defects and damages), finally
performing a superposition with synthetic images only modeling damages.
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Figure 3. (Left) Complex FML model with single-fiber modeling and a simplified impact damage,
10,000 fibers with 150 µm diameter. Damage size and location can be changed. (Right) Com-
puted X-ray images: Frontal and 45◦ projections, detector pixel size 100 µm, with and without
impact damage.

To summarize:

1. Homogeneous host materials can be directly and easily modeled, even with complex
shapes using poly-line extrusion.

2. Composite materials (e.g., with fibers) are difficult to model and should be replaced
with a homogeneous approximation.

3. There are subtractive and additive defects. Additive defects are added on manufac-
turing, e.g., gas pores, subtractive defects are damages like cracks or delaminations,
requiring a constant host material mass and volume constraint (no mass is added
or removed).

4. Acquiring reference data for additive defects, especially pores, can be simply carried
out by CT analysis and ROI marking. Delaminations and cracks require a higher effort
and semi-automated polygon tracking.

3.2. X-ray Image Simulation

The X-ray simulation is used to create synthetic X-ray projection images from CAD
models. The input is a polygon mesh grid (STL, Stereo lithography file format) model.
An STL file describes raw, unstructured triangulated surface. A decomposition of multi-
material structures in single-density parts (finally merged in the simulator) is required for
composite materials since the STL file format does not support multi-material sections.

X-ray image computation commonly bases on the Beer–Lambert absorption law:

I(x, y) = ∑
i

R(Ei)D(EI)e
−∑

j
µj(Ei)dj(x,y)

(1)

The integrated energy that pixel (x,y) receives in eV is denoted by I(x,y). The beam
spectrum is discretized in one or many energy channels in the poly-chromatic scenario.
The energy of the i-th energy channel, expressed in eV, is denoted by Ei. The number of
photons that the source emits at that energy, Ei, is expressed as D(Ei). By substituting a
lower value for the incident energy Ei, the detector response R(Ei) resembles the operation
of a scintillator. Specifically, R(Ei) < Ei. The linear attenuation coefficient µj(Ei) is the one of
the j-th material at energy Ei, with respect to the path length, dj(x,y), as shown in Figure 4.
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Figure 4. Details of the X-ray simulation flow using GPU-based image computation (gVirtualXray).
The Filtered Back-Projection (FBP) is optional and only used for CT simulation.

Deterministic simulations based on the Beer–Lambert law generate noise-free im-
ages [32]. Depending on the application, they can provide a good compromise between
speed and accuracy and can be implemented on GPUs for a further increase in speed. But
data-driven algorithms are known to be noise-sensitive, sometimes with unpredictable
results. Noise must be added as a post-process, discussed in the next Section.

The gVirtualXray simulation library [30,33] assumes attenuation of X-ray radiation
along a straight path. Scattering, energy conversion, and reflection are neglected. On the one
hand, this simplification is valid since the major contribution to X-ray radiography images
is attenuation. On the other hand, metal materials pose elastic and inelastic scattering,
and X-ray scattering alters images even in medical applications. Radial multi-projection
measurements with following CT reconstruction are more sensitive to scattering than
single-projection radiography, which is only used in this work to obtain reference data for
synthetic data generation. Feature analysis is performed by only using radiography images.

3.3. Noise

There are multiple sources of noise in X-ray images (according to [34]):

1. X-ray (photon) generation with a statistical Poisson distribution;
2. X-ray attenuation (X-ray Matter Interaction) with a statistical binomial distribution;
3. X-ray detection with a statistical binomial distribution;
4. Additive electronic noise with a statistical Gaussian distribution.

There is additive, multiplicative, and “sampling” noise (e.g., Poisson). Poisson noise
is not additive and cannot simply be superimposed to the original data like Gaussian noise,
since it is signal-dependent. The Poisson distribution can only be defined for positive
integers. To add Poisson or binomial noise to noise-free images requires absolute photon
counting during X-ray generation and material interaction, which are not accessible in
the final computed X-ray image. To overcome this issue, a normalization factor for the
image intensity–photon count relation is used, simulating photon counting in the final
image. This is a significant simplification, and noise sources 1 to 3 are accumulated with
one statistical distribution.

For instance, the simulated X-ray images of the synthetic plates gave an interme-
diate output range [50, 80] with a given measuring set-up. The images were scaled to
a 16-bit range [0, 65,535] using an intermediate scaling range of [50, 80], i.e., I = 50 → 0,
I = 80 → 65,535. The photon conversion factor is therefore γ = (80–50)/65,535 = 4.6; 10−4
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with an offset correction of 50. The values in the range [0, 80] multiplied with a noise
strength factor ω are finally applied to a Poisson-distributed random generator to simulate
X-ray noise. Values of ω > 1 decrease the noise contribution (higher absolute values), values
ω < 1 increase the intensity variance:

ω =

{
< 1 higher noise

> 1 lower noise

Inoisy =
Poisson(λ = I · ω)

ω

(2)

Binomial random processes require another approach using a sampling probability p
in the range [0, 1]:

p = [0, 1]

Inoisy =
Binomial(size = I, prob = p)

p

(3)

Here, the Poisson and binomial functions are vector functions with iterative application
to input vector elements I. The impact of Poisson and binomial sampling noise on a linear
intensity distribution is illustrated in Figure 5 for a linear intensity range [0, 80]. Both
statistical distributions show different modification of the respective signal. The Signal-
to-Noise ratio (SNR) increases with higher signal values since the number of events, e.g.,
generated photons, reduces the uncertainty.

Figure 5. Post-adding of noise to X-ray images (normalized intensity [0, 80]) using Poisson and
binomial distributions showing an increasing Signal-to-Noise ratio (SNR) with respect to low absolute
signal values converging to a constant SNR for higher values.
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Finally, Gaussian noise is added additively (or multiplicatively), simulating basically
electronics noise, with some examples shown in Figure 6, showing a continuously increasing
Signal-to-Noise ratio:

Inoisy+ = I + Gaussian(1,−σ, σ)

Inoisy* = I · (1 + Gaussian(1,−σ, σ))
(4)

Figure 6. Post-adding of Gaussian noise to X-ray images (normalized intensity [0, 80]) showing a
continuously increasing Signal-to-Noise ratio (SNR) with higher signal values.

Additive noise is independent from the signal, but resulting in an increasing Signal-to-
Noise ratio with respect to the signal, in contrast to multiplicative noise with a constant
SNR. Additive noise is an extra signal source (similar to artifacts), whereas multiplicative
noise is a variance of the respective signal.

As a replacement for Poisson and binomial noise relying on unknown parameters
and scales, only Gaussian noise can be added to synthetic data. We used a combination
of additive and multiplicative Gaussian noise to enhance the synthetic X-ray image data,
which were only used to train the classifier models. In our experiments, we used σ = 0.5 for
multiplicative and σ = 200 for additive Gaussian noise augmentation, assuming a digital
intensity value range of the synthetic X-ray images of [0, 65,535]. In Section 8.2, examples
of noisy synthetic X-ray images are shown.

On one hand, the influence of noise on images can be reduced by an increase in the
exposure (detector sampling) time due to accumulation. But due to detector saturation, an
increased exposure time must be compensated by a decrease in the X-ray intensity, increas-
ing generation and material interaction variance. Averaging multiple images is a common
technique. Basically, only Gaussian noise can be reduced significantly by averaging.
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4. X-ray Measuring Methods and Devices

Compared with widely used Guided Ultrasonic Wave (GUW) measuring methods for
damage and defect analysis, X-ray imaging has advantages and disadvantages:

1. GUW signals offer lower spatial resolution (limited by wavelength and material
properties) than X-ray images, limiting the analysis to larger defects, especially for 3D
reconstruction [35];

2. GUW signals are complex, and signal features related to damage features represent
only a small fraction of the entire signal (on time and amplitude scale) and can be
ambiguous (indirect feature function), and the signals are composed of different
contributions (reflection, diffraction, attenuation, mode conversion);

3. GUW signals are difficult to simulate accurately with respect to real measured signals,
moreover in complex, inhomogeneous, and composite/layered materials with a lot of
reflections, diffraction, scattering, and mode conversion;

4. X-ray images pose higher spatial resolution limited mainly by the source and detector
and bases primarily on direct radiation attenuation;

5. X-ray images can be accurately simulated (i.e., numerically computed) as long as
there is an accurate material model and only attenuation along a straight path (ray)
is considered;

6. X-ray images directly show the structural distribution of the material based on density
variation;

7. X-ray images can are subject to low contrast if the damages or defects are small and/or
the density of the defects to be detected are close to the density of the host material.

In this work, three different X-ray measuring device classes are used, summarized
in Table 3:

1. Low-Q [36];
2. Mid-Q;
3. High-Q.

All devices can be used to perform single- and radial multi-projection transmission
imaging of specimens. X-ray radiography delivers only a two-dimensional integral (along
the depth axis) material attenuation map, whereas multi-projection measurements can
be used to compute and reconstruct 3D material density distributions (discussed in the
next Section 5). The High-Q µ-CT device is only used to create reference data used for the
synthetic data generation. The Low-Q and Mid-Q devices are used for capturing X-ray
radiography images from real specimens. It is important to point out that the Low-Q device
has a significantly more effective higher detector resolution (5 times) than the Mid-Q device.

Table 3. Different measuring device classes used in this work.

Feature/Device Class High-Q Mid-Q Low-Q

Single-Projection Yes Yes Yes
Multi-Projection (CT) Yes Yes Maybe
Focal Spot Diameter 5 µm 0.75 mm ∼0.8 mm
High Voltage/Current 80–160 kV/1 mA/50 W 40–180 kV/10 mA/500 W 40–65 kV/1 mA/30 W

Detector
2000 × 2000 CCD
0 µm
Scintillator Optics, Imaging Microscope

1000 × 1000 Flat Panel CMOS,
200 µm
Direct Scintillator Pixel Coupling

1920 × 1080 CMOS
3/40 µm
Screen + Imaging Optics

Digital Resolution [Bits] 16 16 12
Sampling Time 500 ms–10 s 100 ms–1 s 5–10 s
Distance Object/Source 5–10 cm 20–70 cm 10–30 cm
Signal–Noise Ratio (SNR) High Mid Low
Spatial Resolution High Low Mid (!)
Geometrical distortion Maybe No Yes (cushion, defocus)
Approximate Costs 1000 k€ (Zeiss) 500 k€ (Yxlon, IFAM) 1 k€ (Bosse)
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5. CT Analysis

The CT data were only measured and analyzed for reference purposes, i.e., to obtain
typical pore statistics and a reference pore set used for simulation.

The analysis process flow was as follow:

1. Independent auto-cropping of bounding box of material area in all slices using
gradient-based edge detection and background-level (black) suppressing.

2. Image intensity homogenization using a horizontal average intensity line profile
(integrating pixel intensity perpendicular to the line within a given intensity interval
to avoid adulteration by pores and material boundaries).

3. Binarization and feature marking of pores by using a Boolean union operation of
output images from a locally adaptive threshold operation (CLAHE) and a global bina-
rization using threshold calculated for each image using Otsu’s method. The adaptive
local size was chosen with 20 pixels, and an adaptive compensation parameter was
set to 10. The Otsu margin was set to 10.

4. A pixel coordinate set is created from all marked pixels contained in all slice images
(3D point cloud volume).

5. The pixel coordinate set is clustered by using DBSCAN with parameters ε = 2 and
minPoints = 20.

6. The convex 3D hull is computed for each cluster, which should contain points belong-
ing to one pore (or a melted cluster of pores).

7. An ellipsoid fit is applied to the convex hull points, finally delivering the center
position, the axis sizes of the ellipsoid, and the angles of the axis vectors with respect
to the unity coordinate system axis vectors.

The ellipsoid approximation (least square fit) is solved by an Eigenvalue problem and
matrix inversion. The core is a design matrix computed from the coordinates of the convex
hull points and the solution of the normal equation:

D =



x2 + y2 − 2z2

x2 + z2 − 2y2

2xy
2xz
2yz
2x
2y
2z
→
1


d2 = x2 + y2 + z2

solve
(
uD · DT = d2

)
→ u

(5)

with u as an intermediate result for the solution of an Eigenvalue problem with intermediate
matrix A and vector v delivering the ellipsoid axis sizes and axis angles (R is computed
from u):
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v =



u1 + u2 − 1

u1 − 2u2 − 1

u2 − 2u1 − 1

u3

. . .

u9



A =


v1 v4 v5 v7

v4 v2 v6 v8

v5 v6 v3 v9

v7 v8 v9 v10



solve

−Ac =

 v7

v8

v9


 → c

(6)

with c as the ellipsoid center vector.

T =


1 1 1 c1

1 1 1 c2

1 1 1 c3
1 1 1 1



R = T · A · TT =


l l l ·
l l l ·
l l l ·
· · · r


{

ê,
→
ev

}
= eigen

(
Rl
−Rr

)

(7)

The axis sizes of the ellipsoid are given by the square root of the absolute value of the
Eigenvalues ev.

The convex hull and ellipsoid approximation is an oversimplification of commonly
complex shapes of pores but necessary to create a parameterizable CAD model. A summary
of such an analysis from one sample specimen is shown in Table 4, and the average size and
volume distributions (for the first 500 pores sorted by size) are shown in Figure 7. Finally,
selected views created by ParaView of the entire µ-CT volume are shown in Figure 8, while
Figure 9 depicts examples of point clouds representing clustered pores and associated
convex hull point cloud approximations. The pores can be seen in the semitransparent
and density highlighted view. The contour filter shows a high density of pores, which is
not expected by experience and simulation of such a high-pressure die casting process.
Therefore, the pore analysis results must be considered with care, although they are used
as a reference set for the simulation. There is no alternative method to characterize pores
in volumes (micrograph slicing also modifies pores and only small number of slices can
be analyzed).
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Table 4. Statistics of the CT pore analysis from the first 500 largest pores (center positions c and
ellipsoid sizes s in mm units, angles a in degree, with respect to the x-, y-, and z-axis, area in mm2 and
volume in mm3).

stat\var xc yc zc xs ys zs xa ya za Area Volume

min 0.27 0.09 0.04 0.07 0.09 0.09 0.97 3.00 0.84 0.05 0.01
q1 13.18 0.74 7.92 0.14 0.16 0.20 34.93 63.59 58.95 - -

median 18.43 0.93 14.43 0.18 0.21 0.27 61.45 89.60 85.93 0.10 0.03
mean 18.73 0.93 14.51 0.22 0.26 0.34 86.14 89.59 84.30 0.12 0.03

q3 24.42 1.10 21.90 0.26 0.30 0.41 142.28 115.71 110.11 - -
max 36.89 1.77 28.14 1.18 1.62 2.41 178.22 175.81 179.36 2.16 0.71

Figure 7. Statistical distribution of the pore ellipsoid area (a) and volume (b) for the first 500 largest
pores shown with linear and logarithmic density axis.

Figure 8. µ-CT volume rendering with semitransparent view and contour fit (using ParaView).
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Figure 9. Different clustered pores (left and middle) and the computed convex hull point cloud (right).
From top to bottom decreasing pore sizes.

6. Image Pre-Processing
6.1. Auto-Cropping

Automatic content extraction in images is commonly performed by edge filtering. In
this work, the sub-part of an image containing the specimen must be extracted in X-ray
radiography and reconstructed CT slice images.

In our work, we used a simple absolute value intensity gradient computation to
intensify edges:

Gx,y =
∣∣Ix,y−1 + Ix−1,y + 4Ix,y + Ix,y+1 + Ix+1,y

∣∣ (8)
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We apply some pre- and post-thresholding intensity clippings:

Tb
(x,y) =

{
0 : Ix,y < tb
Ix,y : else

Tb¬
(x,y) =

{
0 : Ix,y > tb
Ix,y : else

T f
(x,y) =

{
0 : Ix,y < t f
1 : else

T f¬
(x,y) =

{
0 : Ix,y > t f
1 : else

Tr
(x,y) =

{
0 : Ix,y < t1 or Ix,y > t2
1 : else

(9)

The threshold operations Tb are applied to the input image, the threshold operations
Tf and Tr are applied to the gradient-filtered images G to create a binarized image. The
maximal or largest fitting rectangular bounding box is determined from the binary image
finally used for image cropping. There are positive and negative (¬) polarity threshold op-
erations. In radiography images (captured by intensity detectors), the background intensity
is higher than the intensity of the matter region, requiring the negative polarity operations;
in reconstructed CT slices images, it is vice versa, requiring the positive operations.

6.2. Histogram Normalization

Image normalization with respect to low-frequency intensity inhomogeneities is only
applied for the CT slice images for further pore feature marking using classical image
binarization algorithms. The radiography images as the input for the data-driven feature
marking models are used as is.

6.3. CLAHE

The Contrast-Limited Adaptive Histogram Equalization (CLAHE, Zuiderveld, 1994)
algorithm is a widely used algorithm to homogenize images with complex geometrical
intensity gradients aimed at automatically enhancing the contrast of images. A review
of CLAHE applications can be found in [37]. Homogenization maximizes the contrast to
amplify feature candidates. CLAHE uses histograms to compute over various tile sections
of the image. As a result, even in areas that are lighter or darker than the majority of the
image, local levels of detail can improve. CLAHE can improve images, overcoming low
contrast, noise, and poor structure edges. We use CLAHE as a pre-processing stage only in
the CT pore analysis to enhance CT slice images and for the deep learning SAM approach.

It operates iteratively through several key steps:

1. Histogram Computation: Initially, the histogram of pixel intensities within the image
is computed. This histogram represents the distribution of intensity values across
the image.

2. Adaptive Partitioning: The image is divided into small overlapping tiles or patches.
The size of each tile is typically chosen to be small enough to capture local variations
in intensity effectively.

3. Histogram Equalization within Tiles: Histogram equalization is independently ap-
plied to each tile. This process enhances the contrast within each tile by stretching the
intensity range, thereby improving local contrast.

4. Contrast Limiting: To prevent over-amplification of noise in regions with low local
contrast, contrast enhancement is limited. This is often achieved by clipping the
cumulative histogram within each tile.

5. Interpolation: Finally, the contrast-enhanced tiles are combined to reconstruct the
final enhanced image. This step may involve interpolating or blending neighboring
tiles to ensure smooth transitions between regions.



Sensors 2024, 24, 2933 21 of 40

6.4. Profile-Based Intensity Homogenization

X-ray images pose spatial low-frequency average intensity inhomogeneities due to
inhomogeneous X-ray beam illumination (radiography) and due to poly-chromatic beam
spectra (CT reconstruction, requiring beam hardening). For the computation of the reference
dataset, we used CT slice images and performed pore feature marking with classical
binarization techniques. These are sensitive to low-frequency intensity variations that must
be equalized before application.

Commonly, there is an intensity gradient parallel to the coordinate system axis system.
Therefore, an averaged profile line integral scan is sufficient to correct intensity gradients
along one (or two) axis (axes). Thus, if we want to correct an intensity gradient along the
x-axis, we have to calculate the average intensity in the y-direction, ultimately delivering a
correction vector.

Care must be taken when computing the integral due to specimen boundaries (only
averaging the specimen region) and the pores as features, which must be excluded from
the intensity averaging process. This is again performed with a conditional intensity
thresholding integral algorithm using only pixel with an intensity within a range [t0,t1].

Ax(x) =

∑
y∀y|Ix,y∈[t0,t1]

Ix,y

∑
y∀y|Ix,y∈[t0,t1]

1

Cx(x) =
max(Ax)

Ax

Ay(y) =

∑
x∀y|Ix,y∈[t0,t1]

Ix,y

∑
x∀y|Ix,y∈[t0,t1]

1

Cy(y) =
max

(
Ay

)
Ay

(10)

The X-ray images I are corrected by multiplication with matrix-expanded Cx/y vectors
in the x- and y-directions, respectively.

6.5. Thresholding

Thresholding is a fundamental technique in image processing used to separate objects
or features of interest from the background based on their pixel intensity values. It works
by setting a global or local threshold value, which is a predefined intensity level. Pixels
with intensity values above the threshold (or within an interval) are classified as foreground
(object), while those below are classified as background. Thresholding typically requires
image preprocessing prior to its application. This includes spatial intensity homogenization
as discussed before, denoising of the image (e.g., by using Gaussian filters), and application
of CLAHE.

Zack et al. [38] introduced the triangle thresholding method. It involves three pivotal steps:

1. Normalizing the intensity histogram’s height and dynamic range.
2. Identifying point A on the intensity axis that is a crossing point of a line perpendic-

ular to a line connecting the maximum and right-hand minimum of the intensity
distribution while the distance between the line and the histogram is maximized.

3. Integrating a fixed offset.
4. Finally, the optimal threshold (T) is determined, with a slight fixed offset relative to

the average brightness of the background within a six-pixel radius of the object [39].

Otsu’s thresholding [40] as well as adaptive thresholding [41] methods are alternative
candidates. Combining them by Boolean union operations can suppress noise and wrong
feature marking significantly, as shown in the next Section.
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6.6. Examples

In the following Figure 10, the different image processing algorithms are demonstrated
for a specific CT slice image (from µ-CT measurement of one of the AluDC specimens).
The intensity homogenization using the profile scan correction is superior compared to
histogram-based homogenization and a prerequisite for further binarization algorithms.
The Otsu algorithm computed an optimal global threshold, whereas the adaptive thresh-
olding algorithm operates locally. The Boolean union combination produces the most
accurate and stable pore binarization results. The CLAHE algorithm provides no suitable
enhancement of the CT slice image for binarization (over-amplification of contrast).

Figure 10. Different image processing algorithms applied to a raw (original) CT slice image (output
from CT reconstruction and filtering algorithms). The last image shows the binary combination of
the Otsu and adaptive threshold computations, finally used to extract pore features.
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7. Feature Marking Models

There are basically two classes of feature detectors:

1. Model-driven using geometrical, statistical, and numerical algorithms [42];
2. Data-driven detectors learning approximated mapping functions from annotated

training data, e.g., by using CNN.

Classical numerical algorithms using image binarization for feature marking typically
require a sufficient and distinct contrast of the features with respect to the background
(sufficient SNR). This work entails the defects producing intensity variations in radiogra-
phy images with a weak contrast. In doing so, it will be demonstrated that data-driven
approaches are better suited for low-contrast feature marking applications.

7.1. Semantic Pixel Classifier CNN

The main objective of this work is the deployment of an automated feature detector
applied to single-projection X-ray radiography images delivered by a Low-Q (low-cost)
and Mid-Q X-ray instrument to detect hidden defects in materials, here specifically pores
in high-pressure die-cast aluminum plates.

The input is an X-ray radiography image (inverse relation of intensity to material
density), the output is a feature map image that marks pores by using a binary classifier
with the classes N (background) and P (pore), as shown in Figure 11. Finally, a post-analysis
provides the geometric parameters and positions of the defects.

Figure 11. Architecture and data flow of the semantic pixel classifier using a flat CNN (FC-NN: Fully
connected neural network).

A pixel classifier is commonly implemented with a Convolutional Neural Network
(CNN), mostly with only one or two convolution–pooling layer pairs (CPL). The input of
the CNN is a sub-window masked out from the input image at a specific center position
(x,y). The output is a class (or a continuous score value in the range [0, 1] as an indicator
level for a class) related to the center pixel of the segment. The neighboring pixels determine
the classification result. The window (image segment) is moved over the entire input image,
producing the respective feature output image. Each output pixel computation requires
one application of the CNN to an image segment.

Typical architecture parameters of such a pixel classifier are shown in Table 5.
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Table 5. Typical layer architecture parameters of a pixel classifier.

Layer Type Parameter

1 Input input = [20,20], output = [20,20]
2.1 Convolution filters = 8, kernel.size = [5,5], padding = 2, stride = 1, output = [20,20,8]
2.2 Map(Relu) output = [20,20,8]
2.3 Pooling kernel.size = [2,2], filters = 8, stride = 2, output = [10,10,8]
3.1opt Convolution filters = 4, kernel.size = [5,5], padding = 2, stride = 1, output = [20,20,4]
3.2opt F(Relu) output = [20,20,4]
3.3opt Pooling kernel.size = [2,2], filters = 8, stride = 2, output = [10,10,4]
4 FC-NN input = [800/400], output = [2], activation = sigmoid
5 Softmax input = [2], output = [2]

The segment input size can vary. Smaller segments tend to false-classify pixel of larger
shapes (multiple times larger than the segment size), and larger segments tend to false-
classify background pixel. Note that N = ¬P means that the background class is anything
else (here, mostly X-ray image noise). The segment size must be adapted to the average
size of shapes to be detected. The number of filters per convolution layer can typically vary
between 4 and 8. A second convolution–pooling layer pair is optional and commonly does
not improve prediction accuracy. The pooling layer commonly uses a maximum pooling
function. The activation function applied after the convolution is commonly a linear or
cut-off linear function. Nonlinear functions like sigmoid do not improve classification
results and are harder to train.

The computational complexity of the entire feature marking process for one image
consisting of N pixels is Θ(N). A CNN with the above given parameters and one CPL pair
requires about 80,000 (Conv) + 3200 (Relu) + 1600 (Pool) + 1600 (FC) = 86,400 arithmetic
unit operations. Because all segment CNN operations are independent, the computation
can be massively parallelized using Cellular Automata (CA) or Graphics Processing Units
(GPU). In [43], we showed that such a CNN can be processed by a low-precision arithmetic
processor still preserving the accuracy. So, a direct hardware implementation of a pixel
classifier with very low overall computation times is possible.

7.2. Deep Learning Segmentation with SAM

In this work, we focus on lightweight and small models, which can be trained with a
rather small dataset. But we want to compare this model class with established and widely
used so-called “Deep Learning” (DL) models, which typically require a large set of data for
training, but which are suitable for transfer learning. In contrast to the simple semantic
pixel classifier model, the Segment Anything Model (SAM) is a highly complex model.
Details can be found, e.g., in [8,44].

Developed by Meta AI, SAM is an advanced image segmentation model trained on an
extensive dataset (SA-1B) featuring more than 1 billion segmentation masks spread across
11 million images. It is specifically designed to interpret human prompts, accepting points,
bounding boxes, or text descriptions for segmentation. It was developed to combine prompt
able segmentation having real-time performance capabilities by taking inspiration from
NLP. SAM’s design lets it adapt to new tasks and image types, thanks to something called
zero-shot transfer learning. It gives us high flexibility and adaptability in analyzing images.

Key Features of the Segment Anything Model (SAM) [44]:

• Zero-shot generalization: SAM can be used to segment objects that it has never seen
before, without the need for additional training.

• Promptable Segmentation: SAM is structured for the promptable segmentation tasks
at its core, enabling it to produce valid segmentation masks based on prompts such as
points, boxes, and text descriptions.

• Real-time mask computation: SAM can generate masks for objects in real time. This
makes SAM ideal for applications where it is necessary to segment objects quickly,
such as autonomous driving and robotics.
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• Zero-Shot Performance: SAM has exceptional zero-shot performance capabilities
which are suitable for various segmentation tasks, making it a versatile tool for diverse
applications with minimal requirement for prompt engineering.

• Ambiguity awareness: SAM is aware of the ambiguity of objects in images. This means
that SAM can generate masks for objects even when they are partially occluded or
overlapping with other objects.

SAM consists basically of three components: An image encoder, a flexible prompt
encoder, and a fast mask decoder. The architecture is summarized in Figure 12.

Figure 12. Basic architecture of SAM model (adapted from [44]).

The components process an input image as follows:

• Image Encoding:

◦ SAM initiates by encoding the input image into a high-dimensional vector using
a vision transformer (currently three models, namely ViT-H, ViT-L, and ViT-B,
are available) model.

◦ ViT-H, a large language model, is pre-trained on a massive dataset of images.

• Prompt Encoding:

◦ The input prompt undergoes separate encoding into a vector representation.
◦ A simple text encoder converts the prompt into a meaningful vector.

• Combining Representations:

◦ The vector representations from the image and prompt encoding are combined.
◦ These combined vectors encapsulate information about both image content and

specified prompts.

• Mask Decoding:

◦ The combined vector is then passed to a mask decoder, a lightweight transformer
model predicting the object mask.

• Output:

◦ The output of the mask decoder is the predicted mask for the object specified by
the input prompt.

The SAM training pipeline involves:

• Training image generation: Synthetic image creation through simulation software,
annotation, and mask generation;

• Image preprocessing: Denoising of the images, application of CLAHE (see Section 6),
and intensity homogenization;

• The training images and corresponding ground truth feature masks are divided into
patches of size 256 × 256 pixels, and bounding boxes around pores in ground truth
masks are created.



Sensors 2024, 24, 2933 26 of 40

For the pore segmentation task, the SAM was fine-tuned on the synthetic X-ray images
having annotated pores. The real-world images do not have any ground truth (marked
pores) as we are not sure where the pores are exactly located. These images are used for
inference and the performance is judged based on the visual inspection.

Due to the static input size of the SAM model, a static segmentation of large images
into smaller segments (non-overlapping) is commonly required. As shown in Section 8 that
follows, this can result in chess patterns, i.e., neighboring segments show totally different
marking results with respect to noise and artifacts.

8. Experiments and Results

In this section, the CNN-based pixel classifier and the SAM model are trained with
synthetic data derived from the CAD-based X-ray image simulation. The models are tested
with the synthetic data to determine the ground truth error, finally applying the models
to real image data measured by the Low-Q and Mid-Q X-ray radiography devices. In
Figure 13, an example of a training image and its mask annotation are shown.

Figure 13. (Left) Example of a synthetic X-ray training image. (Right) Rectangular ROI pore mask
annotations from CAD model.

The feature marking models are used for a pore analysis, eventually providing pore
statistics and pore size distributions. The CNN model and SAM are both trained and
applied to synthetic and real X-ray images. The SAM model used for the training is ViT-B
(sam-vit-base), which is a lighter and faster version as compared to the other two available
options (ViT-H, ViT-L). A total of 9 synthetic training images of 398 × 996 pixels resolution
were used with patch size of 256 × 256 pixels, step size of 32, and batch size of 2. The
optimizer used is an Adam optimizer with the learning rate of 10−5. The training time was
around 180 min.

Before we present results from the image-based pore analysis workflow, results from a
die casting simulation are presented. The aim is to show firstly the limits of widely used
die casting simulations to obtain porosity statistics and predictions of porosity, eventually
concluding that the experimental analysis using X-ray radiography is still needed to
evaluate a die casting manufacturing process in more detail, and optimize it based on this
analysis. Secondly, despite the limitations of the process simulation, we use some of its
qualitative results in the structural modeling of defects and their geometrical distribution,
which depends on the casting process parameters and specimen shape.

8.1. Die Casting Simulation

The complete virtual shot is visible in Figure 14. For the present experiments, only the
rectangular bending test samples with dimensions of 150 mm × 40 mm × 3 mm originating
from the cavity on the left-hand side were considered. The total shot weight was 600 g,
the plunger velocity 5 m/s, leading to a much higher velocity at the in-gates. The die
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temperature was set to a nominal value of 200 ◦C, which was cross-checked via contact
measurements on the die surface using thermocouples: These revealed a slight surface
temperature gradient, extending from 200 ◦C in the lower and 190 ◦C in the upper part of
the relevant cavity.

Figure 14. Die casting simulation: Geometry of the casting—die cavity including shot chamber,
runner, overflows, etc. during mold filling. For the experiments, the rectangular bending test sample
on the left was used. The color plot shows the temperature distribution at the beginning of the
filling process.

A parallel casting simulation reflecting the actual production parameters was per-
formed in order to gain insights about the local distribution of different types of porosity to
be expected. The simulation model was set up using MAGMASOFT® casting simulation
software version 6.0.0.2. The respective data can be matched with pore localization and
shape information gained via ADR approaches for verification and validation of the latter.

The geometry of the casting is shown in Figure 14, which depicts the die cavity
including the casting system halfway through the filling process. The experiments described
below were focused on the bending test sample, i.e., the rectangular plate geometry seen
on the left-hand side of the image.

Figure 15 depicts the sequence of die filling as visualized using the tracer particle
feature offered by MAGMASOFT®, which provides graphical information about direction
and velocity of the melt flow, while additionally representing melt age via color coding.
The simulation clearly shows that due to the fact that the in-gate does not extend over the
full width of the bending test specimen, an “eddy water”-like region forms along both
longitudinal edges of this part, while its center is characterized by a constant stream of melt
throughout the filling process. This already indicates some probability of entrapped air in
the former regions on both sides of the casting.
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Figure 15. Die casting simulation: Sequence of die filling. Color coding denotes the age of the
respective melt volume, while arrows indicate the direction and velocity of melt flow.

This understanding is basically confirmed by Figure 16, which illustrates the filling
process. Figure 16a on the left reflects the melt flow velocity shortly before the end of the
filling phase. Once again, the difference between central and outer regions of the part is
clearly visible. Figure 16b provides an indication of air entrapped within the casting and
the overflows, underlining once again that the flow pattern leads to a higher risk of gas
porosity close to the edges of the part.

In contrast, the general porosity criterion offered by the software, which is meant
to capture shrinkage porosity, finds the latter almost exclusively in overflows and thus
outside the actual casting (see Figure 17a), which predicts next to no porosity within the
part volume). However, the Hot Spot FS Time criterion, which highlights areas which are
cut off from feeding prior to complete solidification, indicates the expected possibility of
some levels of shrinkage porosity in the center of the plate (Figure 17b).
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Figure 16. Die casting simulation representing the filling process: (a) Melt velocity distribution
shortly before the end of the filling phase, (b) entrapped air mass prediction broadly reflecting the
flow pattern.

Figure 17. Die casting simulation depicting the general porosity prediction: (a) Prediction of porosity;
(b) Hot spot FS time criterion indicating risk of occurrence of shrinkage porosity.



Sensors 2024, 24, 2933 30 of 40

8.2. Feature Marking Using CNN Pixel Classifier
8.2.1. Training

The synthetic image set created by the previously introduced simulation workflow
consists of 10 X-ray radiography images with a resolution of 100 µm pixel size and about
400 × 1000 pixels (auto-cropped). Each synthetic image contains 100 randomly but para-
metrically constrained pores with ground truth labeling.

The pixel CNN classifier was initially trained with a class-balanced 50/50% training
set of 10,000 randomly selected segments (20 × 20 pixel size) and 10 epochs. Examples
are shown in Figure 18. A default “adadelta” error back-propagation algorithm with a
l2decay = 0.001 parameter setting was used. The segments were chosen from the pore ROI
list. For the pore class (p), a segment was created around a center point contained in a
pore ROI. For the background class (n), a segment was created around a center point from
the manually created background ROIs. The SAM model was trained using the synthetic
images and the ground truth ROI annotations (poly-lines), too. The SAM model does not
require a fine-grained segmentation, but a specific SAM model has a fixed image input size.
Therefore, the input image must be segmented with respect to the input size of the SAM
model and applying the model to each segment independently.

Figure 18. Two example segments (20 × 20 pixels) extracted from the synthetic X-ray images with
20% noise level: (a) With pore; (b) Without pore.

8.2.2. Synthetic Images

Some selected results of the feature marking using the CNN pixel classifier and applied
to synthetic images are shown in Figure 19. The images show the output score of the CNN
and the ground truth labels (poly-lines). The CNN was initially trained with a class-
balanced training set of 10,000 segments and 10 epochs. There are a lot of false-positive
predictions, as can be seen clearly in the feature map images. But by applying an increasing
threshold, this FP noise is significantly reduced. A post-training with a negative class
(background) biased dataset reduces noise, too.

Assuming a score threshold of 0.9, the false-positive (FP) rate is (for the initially trained
model) below 1% of all pixels, and the false-negative (FN) rate is below 1% of all pores.
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Figure 19. Feature map images (pore marking) computed by the CNN pixel classifier using the
synthetic X-ray radiography images as input for three different output thresholds (score of the
classifier [0, 1]). The ground truth ROI polygons are shown as an overlay, too.

8.2.3. Real Images

Some selected results of the feature marking using the CNN pixel classifier applied
to real radiography images from the Mid-Q device are shown in Figure 20. To test noise
sensitivity, X-ray radiography images from rolled aluminum plates (same thickness) were
measured, and the feature marking model was applied to the images, too. Selected results
are shown in Figure 21. With a score threshold of 0.9, the FP rate is 0.

The Mid-Q device provides a detector resolution of 200 µm pixel size with low noise
output (experimental set-up with magnification M = 1.6, i.e., resulting theoretical resolution
is 125 µm per pixel). The alternative Low-Q device suffers from much higher noise and
optical distortions but provides a higher effective resolution of about 45 µm pixel size (with
M = 1). Tests showed a real resolution limit of the Low-Q device of about 10 LP/mm. The
results of the feature marking are shown in Figure 22. It seems that the pixel classifier
is much more noise-sensitive (higher FP rate) if applied to the Low-Q images, but this
is just a subjective observation. The following statistical pore analysis gives some more
results and a comparison. Again, the noise reduces by increasing the score threshold. But a
post-training of the CNN model with a background class biased training dataset (again
10,000 segments randomly sampled from the input images) and 20 training epochs results
in a decrease in noise without any threshold comparable to a high threshold in the previous
model. But the increased background noise immunity results in a lower feature marking
rate in the low-noise Mid-Q radiography images.

The results from HPDC simulation predict a specific geometric distribution of pores
and different classes of pores with respect to the size distribution. The feature marking of
the real images is roughly in accordance with the simulation prediction.

To compare the simple CNN-based pixel classifier with a highly complex and deep
neural network model, the same input images were processed by the SAM model. The
SAM model was trained with the same synthetic X-ray images. Selected results of SAM
feature marking applied to Mid-Q X-ray images are shown in Figure 23. The results differ
strongly from the results of the CNN, as shown in Figure 20. The noise level is much higher,
dominant pores directly visible in the X-ray images are not well marked, and there are



Sensors 2024, 24, 2933 32 of 40

artificial patterns (artifacts). The patterns are characterized by missing pixel markings. This
is critical due to the following point clustering-based analysis (see Section 8.3). The gaps
can result in a split of sub-clusters and small fake pores.

Figure 20. Feature map images (pore marking) computed by the CNN pixel classifier and measured
X-ray radiography images (Mid-Q) as input (for three different plates).

Figure 21. Feature map images of rolled aluminum plates without pores computed by the CNN pixel
classifier for different score thresholds (Mid-Q). Expected result: Black without feature marking!
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Figure 22. Feature map images (pore marking) computed by the CNN pixel classifier and measured
X-ray radiography images (Low-Q) as input for different score thresholds (Left); CNN model trained
with balanced n/p set; (Right) Post-training with biased set n = 75%, p = 25%.

Figure 23. Pore segmentation results obtained from the SAM, triangle thresholding and the overlap-
ping results from both methods. The CLAHE image is obtained by first denoising, then removing
uneven illumination, and then applying CLAHE (applied to Mid-Q X-ray images).

8.3. Pore Analysis

A statistical pore analysis from real images marked with the CNN pixel classifier
and the deep SAM model is shown in Figure 24, finally clustered using DBSCAN and
fitted to a geometric ellipse model. The pore distributions differ significantly in images
from the Mid-Q (low noise, lower resolution) and the Low-Q devices (higher noise and
higher resolution). The device with the higher resolution (pixel size 45 µm compared
with 200 µm/125 µm) shows a shift towards smaller pores, in alignment to the pore area
distribution from the 3D µ-CT analysis (see Figure 7 for comparison). Feature marking
in images from the lower resolution Mid-Q device shows a much broader distribution.
Comparing feature marking in Mid-Q device images using the pixel classifier (PXL-CNN8,
one convolution layer with 8 filters) with the deep SAM model shows similar results, but
with respect to the SAM results shifted towards smaller pores. But SAM produces artificial
patterns that can be misclustered and result in smaller (dissected) pores.
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Figure 24. Comparison of pore area distribution analysis from Mid-Q and Low-Q devices (Low-Q
poses higher noise, longer exposure times, but higher resolution, too) using the pixel classifier
(PXL-CNN8) with one convolution layer and 8 filters, compared with the deep learning CLAHE–
SAM model.

9. Outlook: Detection of Hidden Complex Damages in Composites and Laminates

This section outlines the next level of synthetic data generation of complex structures
and defects. Since it is a work under progress, it is considered as an outlook. The previous
sections addressed porosity analysis in homogeneous materials by using a data-driven
predictor model trained with synthetic data basing on structural modeling. The generation
of synthetic CAD models containing the host material and the embedded pores is quite
easy. It is just a material-subtractive operation to create “holes” inside the material not
being constrained by a constant mass–volume. These defects are introduced at manufac-
turing time. In contrast, post-manufacturing defects (damages) are much harder to model
accurately, e.g., caused by an impact event. Any post-damaging must preserve the constant
mass–volume constraint, i.e., a deformation and cracking may not add or remove material.
Especially, cracks are difficult to model using CSG, although polygon line chain extrusion
can be used to create free-form shapes.

Considering Fiber–Metal Laminates (FML), which consist of metal and glass (or
carbon) fiber–resin layers (PREG), impact events are the most important damage cause. An
impact event can create:

1. Deformations;
2. Cracks;
3. Delaminations.
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All these material modifications must be geometrically modeled to generate realistic
X-ray radiography and CT projection images. Basically, three CSG modeling approaches
can be used, as shown in Figure 25:

1. Boolean union and difference computation of damaged parts with an undamaged
solid material cube (aluminum and PREG both!), 3D extrusion of half-boundary
profiles based on CT image analysis and hull boundary poly-lines → Modeling of
symmetric damages only;

2. 3D extrusion of half-convex hull of each layer + union extension of non-damaged
plate → symmetric damages only;

3. Point cloud convex hull solid creation (aluminum and PREG); no extrusion → Model-
ing of asymmetric damages possible.

Figure 25. CSG-CAD modeling of deformations: (a) Hybrid with cubes and extruded half-boundary
profiles; (b) Half-convex hull extrusion; (c) Point cloud convex hull extrusion.

The first experiment was performed using boundary layer poly-lines from real CT
slice images (µ-CT device) created by a semi-automatic boundary tracking algorithm.
The specimen under test was an aluminum–PREG multi-layer plate. Actually, only the
deformations of the aluminum and PREG layers were considered. The fiber PREG layer
was modeled as a solid material. Finally, a multi-material STL mesh-grid model was created
and used for X-ray radiography and multi-radial projections (for CT reconstruction). The
plate is shown in Figure 26.

Figure 26. Synthetic CAD model of an FML plate with deformations due to an impact damage.

Results of the CT reconstruction of simulated radial projections (800, full turn) using
a sine-wave filtered back-projection (FBP) algorithm are shown in Figure 27 for CAD
modeling A and B approaches. The CT reconstruction showed accurate agreement with real
CT data. To test the constant mass–volume constraint, horizontal intensity profiles were
computed from the X-ray radiography image. First, a radiography image of the aluminum
without PREG material was created and analyzed. Due to the deformation, a slight increase
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in the intensity in the center was expected and observed in both CAD modeling approaches
(and real radiography images). The boundaries of the deformed metal layers could be
accurately recorded from the real data. The analysis of radiography images with the PREG
layers only shows a significant decrease in the center intensity, which clearly identifies a
violation of the constant mass–volume constraint for the PREG layers. The boundaries of
the PREG layers are fuzzy and hard to discriminate in the real CT images.

Figure 27. One slice of the CT reconstruction using synthetic X-ray images and intensity profiles for
aluminum, PREG, and both layersB. Gray: Aluminum layer, Yellow: PREG layer.

10. Conclusions

Porosity characterization and analysis of die-cast parts and materials is of high rele-
vance, specifically in view of recent developments in the industry like Gigacasting. Our
study once more highlights the fact that widely used model-based physical simulation
of die casting processes neither provides sufficiently detailed quantitative nor qualitative
results of statistical and geometrical pore distributions inside the materials. Its capabilities
in terms of predicting local material properties must therefore be limited, and experimental
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analysis is mandatory. Nevertheless, results and fundamental analyses based on these
process simulations can be used for synthetic data generation, as introduced in this work.
Using high-resolution µ-CT scans for this purpose is expensive and time-consuming. X-ray
radiography could be an economic alternative, but the characteristically low contrast and
lowered Signal-to-Noise ratio of defect features is a major obstacle to its exclusive applica-
tion in this context, the more so since the classical image processing solutions often prove
unsuitable for sufficiently detailed pore characterization and classification. Therefore, data-
driven feature marking models are gaining interest. These models require a ground truth
dataset with sufficient parameter variance that is currently not available. As a working
alternative, synthetic data generation based on CAD modeling and X-ray simulation can be
employed. This approach has been demonstrated in the present study and qualitatively
validated against conventional casting simulation results.

The pixel classifier CNN model is a local image operator and is independent from the
size of the source image and can be applied to any image sizes. The application requires
a temporary dynamic and overlapping segmentation of the input image (mask window).
To speed up the feature marking process, a striding larger one can be chosen. The SAM
model is a global image operator with a static input size requiring static non-overlapping
image segmentation.

The CNN pixel classifier trained with synthetic images showed convincing results
with respect to false-positive and -negative prediction errors. The application of the trained
model to the original ground truth synthetic images showed an accuracy of 0.99 and
false-positive rate relative to all image pixels below 1%. The low-complexity CNN pixel
classifier as well as a highly complex deep learning segmentation model create binarized
images from X-ray radiography images. A point clustering of all marked pixels showed
different statistical pore analysis results. Using images from a Mid-Q device (mid-resolution,
low noise), the pore area distribution is skewed towards large pores compared with the
reference set from the µ-CT analysis. There is no significant difference between the pore
area distributions retrieved from CNN and SAM binarized images, but SAM binarized
images showed artificial patterns (artifacts) which resulted in the splitting of larger pores
into smaller clusters by the clustering algorithm. Using a Low-Q device (featuring higher
noise and optical distortions, but higher resolution), the pore distribution agrees better
with the one describing the reference set. The results from HPDC simulation predict a
specific geometric distribution of pores and different classes of pores with respect to the
size distribution. The feature marking of the real images and the following pore analysis is
roughly in accordance with the simulation prediction.

To conclude, the simple semantic pixel classifier is suitable for a statistical porosity
analysis of die-cast materials and outperforms a common deep learning model like SAM.
The missing ground truth and data annotations in experimental data were overcome using
a unified simulation workflow. The simulation includes CAD modeling of materials and
defects with CSG and Monte Carlo methods, and X-ray image computation based on the
CAD models using the Beer–Lambert law. The simulated synthetic data were used to train
the ML model, which was finally applied to experimental data showing satisfying results
by comparing the statistical pore size distributions with the reference set from µ-CT.

Author Contributions: Conceptualization, S.B. and D.L.; methodology, S.B. and D.L.; software, S.B.
and S.K.; validation, S.B., D.L. and S.K.; formal analysis, S.B.; investigation, S.B.; resources, S.B. and
D.L.; data curation, S.B.; writing—original draft preparation, S.B., D.L. and S.K.; writing—review and
editing, S.B.; visualization, S.B., D.L. and S.K.; supervision, S.B.; project administration, S.B.; funding
acquisition, S.B. All authors have read and agreed to the published version of the manuscript.

Funding: The authors expressly acknowledge the financial support of the research work on this
article within the Research Unit 3022 “Ultrasonic Monitoring of Fibre Metal Laminates Using In-
tegrated Sensors” (Project number: 418311604) by the German Research Foundation (Deutsche
Forschungsgemeinschaft (DFG)).

Institutional Review Board Statement: Not applicable.



Sensors 2024, 24, 2933 38 of 40

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

ADR Automated Defect Recognition
CAD Computer-Aided Design
CNN Convolutional neural Network
CLAHE Contrast-limited Adaptive Histogram Equalization
CSG Constructive Solid Geometry
CT Computed Tomography
ED-CNN Evenly Distributed Convolutional Neural Network
FBP Filtered Back-projection
FML Fiber–Metal Laminate (Composite material)
GUW Guided Ultrasonic Wave
High-Q High-Quality Device
HPDC High-Pressure Die Casting (Manufacturing Process)
Low-Q Low-Quality Device
LP Line Pairs (Optical quality)
LPDC Low-Pressure Die Casting (Manufacturing Process)
Mid-Q Mid-Quality Device
ML Machine Learning
NDT Non-destructive Testing
OEM Original equipment manufacturer
RD Real (Measuring) Data
ResNet Residual Neural Network
RO Region of Interest
SAM Segment Anything Model
SD Synthetic Data
SNR Signal-to-Noise Ratio
STL Stereo Lithography (File format)
YOLO You Only Look Once (ML Model architecture)
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