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Abstract: This study proposes an optimization method for temperature modulation in chemiresistor-
type gas sensors based on Bayesian optimization (BO), and its applicability was investigated. As
voltage for a sensor heater, our previously proposed waveform was employed, and the parameters
determining the voltage range were optimized. Employing the Bouldin–Davies index (DBI) as an
objective function (OBJ), BO was utilized to minimize the DBI calculated from a feature matrix built
from the collected data followed by pre-processing. The sensor responses were measured using
five test gases with five concentrations, amounting to 2500 data points per parameter set. After
seven trials with four initial parameter sets (ten parameter sets were tested in total), the DBI was
successfully reduced from 2.1 to 1.5. The classification accuracy for the test gases based on the support
vector machine tends to increase with decreasing the DBI, indicating that the DBI acts as a good OBJ.
Additionally, the accuracy itself increased from 85.4% to 93.2% through optimization. The deviation
from the tendency that the accuracy increases with decreasing the DBI for some parameter sets was
also discussed. Consequently, it was demonstrated that the proposed optimization method based on
BO is promising for temperature modulation.

Keywords: gas sensors; temperature modulation; electronic nose; gas classification; Bayesian
optimization

1. Introduction

The information on smells has the potential to be utilized in various fields including
quality assessment in the food industry, environmental monitoring, and healthcare [1–3].
An electronic nose (e-nose), generally composed of a sensor array, a signal processing unit,
and a pattern recognition unit, has been applied to these fields, e.g., the classification of
food quality/origin [4–8], hazardous gas detection [9], and breath analysis [10–12]. Due
to its features of a compact and low-cost system compared with conventional analysis
systems [9,13], e-nose can open up new applications like fast screening in the industry and
daily use at home for such fields as listed above.

For this purpose, an e-nose is required to achieve high classification accuracy. Classifi-
cation is usually carried out on feature vectors extracted from the responses followed by
pattern recognition. Steady-state responses from the elements of a sensor array are the most
straightforward and common way to build a feature vector. In contrast, transient responses,
originating from the dynamics of the physical/chemical interaction between gas molecules
and a sensor material, are favorable in terms of containing helpful information about smells
compared to those in the steady state. As transients, responses at the onset of exposure to
a target smell [14,15], the onset of ventilation [16], and during the changes in sensor tem-
perature [17] are most frequently employed. Among these, intentional sensor temperature
changes known as temperature modulation in chemiresistor sensors are most frequently
used. The temperature is the most critical parameter in the interaction between a gas and a
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sensor material. Additionally, it is easily controlled by an electrical signal (e.g., voltage)
applied to the heater, which allows for choosing an appropriate temperature profile. Based
on the temperature modulation, a feature vector is constructed from the time-dependent
response of sensors, which allows gas classification using a single sensor. Needless to say,
temperature modulation is also applicable to a sensor array, for which it is seen as a way to
increase the data dimension [18]. As the voltage waveform for the temperature modulation,
periodical wave (sinusoidal, rectangular, etc.) [19–23], stepwise [24–26], pulse width mod-
ulation [27], and multi-sinusoidal waves [28,29] were employed, and their applicability has
been proven thorough gas classification. Experimentally, it has been shown that the am-
plitude and frequency significantly affect the gas selectivity and that the hysteresis effects
also include plentiful information for gas classification [22,30–32]. The authors proposed
the waveform whose amplitude and frequency periodically change and demonstrated its
promising properties in fast data acquisition and precise gas classification [33,34].

On the other hand, such high flexibility for the temperature profile makes its ap-
propriate choice for classification a standing problem. For gas classification, collecting a
calibration dataset is necessary to examine the goodness of a parameter set, which is a
time-consuming process. Thus, it is difficult to carry out exhaustive tests for all the possible
parameter sets to find the most appropriate one. To date, several approaches have been pro-
posed to determine systematically the suitable temperature profile. Vergara et al. employed
multi-level pseudo-random sequences as heater voltage to estimate the impulse response
of the sensor [28,29]. The so-called resolution power was calculated on the spectral compo-
nents of the impulse response, from which optimal frequencies to form a multi-frequency
sinusoidal wave were selected. Approaches that inversely control the temperature using
the feedback from the sensor output have also been proposed. Martinelli et al. employed
pulses as the heater voltage, where the pulse width was determined adaptively by a feed-
back signal from the sensor resistance [35,36]. Under a steady state, the widths of a train of
pulses, which varies with time, were used as a feature vector. Herrero-Carrón et al. adopted
the temperature profile as a feature vector, where a PID-based temperature control was
introduced to bring the sensor output close to a reference value [37]. Gosangi and Gutierrez-
Osuna proposed active temperature modulation where the operating temperature was
actively modulated so that the belief, which assigned a probability to a gas concentration
profile, was maximized based on a probabilistic basis [38,39]. Although it has been shown
that these techniques are successful, they are only applicable to specific waveforms and/or
modulation schemes. A general method to determine the temperature profile has not yet
been established, and in many cases, the optimization was still done empirically with the
consideration of, e.g., the responses to target gases under static measurements [21,23,25,26].
However, it is impractical to empirically search an appropriate parameter set for complex
waveforms with a lot of parameters, like the one the authors proposed, which has nearly
ten parameters as shown later.

Then, the authors propose to employ Bayesian optimization (BO) to determine an
appropriate parameter set in the temperature modulation with a reduced number of
examinations of parameter sets. BO is an optimization method based on Gaussian process
regression (GPR) and applied in many fields, including machine learning (ML) [40] and
materials informatics [41]. In particular, BO is successful in materials synthesis, which is a
time-consuming process, and the number of synthesis trials is practically limited [42,43]. In
this study, BO was applied to determine the appropriate parameter set for the temperature
modulation. Through the choice of the objective function and evaluation of classification
accuracy by the ML model, the applicability of BO to the parameter optimization for the
temperature modulation is investigated.
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2. Experimental Methods
2.1. Heater Waveform and Optimized Parameters

The heater voltage (VH) used in this study is expressed by the following equation [33]:

VH(t) = V0{1 + cos(2π f1t) + ϕ1} cos
{

2π f0t +
∆ f
f2

sin(2π f2t + ϕ2) + ϕ3

}
+ VOffset, (1)

where V0 and VOffset determine the amplitude and offset. f0 and f1 correspond to the base
and envelop frequencies, respectively, while f2 and ∆ f determine the time-dependent
frequencies. ϕ1 − ϕ3 are the initial phases. All of these can be parameters. VH has nine
parameters in total; on the other hand, we used a manual gas exposure system, which
will be explained later. As a result, it is still difficult to optimize all the parameters at the
same time, even though BO is used. Then, taking into account that this study aims to
prove the applicability of BO to VH optimization, we employed V0 and VOut as optimized
parameters, whereas the rest of the parameters were fixed to the value employed in the
previous study [34]. The VH waveform employed in this study, which has a 5 s duration, is
shown in Figure 1. As described above, V0 and VOffset determine the amplitude and the
offset of VH, respectively, and hence, determine the voltage range. Although the response
under the temperature modulation is influenced by the change rate in temperature and
even hysteresis effects [33], the temperature range determined by V0 and VOffset is the
most influential on the response. For this reason, we selected them as the parameters to
be optimized.

0 1 2 3 4 5
Time (s)

2V0+VOffset

−2V0+VOffset

Figure 1. VH waveform employed in this study. V0 and VOffset determine the peak and bottom of the
wave, and hence, the range of VH.

2.2. Optimization Sequence

As the schematic concept of BO is shown in Figure 2, BO is a method for finding inputs
that maximize (or minimize) the output, the objective function (OBJ), based on GPR. From
the observations, the OBJ, usually a black-box function, is predicted by GPR, based on
which an acquisition function is calculated. Then, the parameter set that maximizes the
acquisition function is chosen for the next trial. In this study, the optimization utilizing
BO is conducted as follows, where the schematic sequence of the optimization is shown
in Figure 3. First, sufficient data were acquired using VH with a certain parameter set,
followed by preprocessing. Based on the preprocessed data, the OBJ was calculated. After
that, the parameter set for the next trial was determined by the procedure described above.
Data were again acquired after updating the parameter set. The optimization procedure
was repeated until the parameter set for the next trial became the same one that had already
been tested before. Although the optimization procedure shown in Figure 3 comprises
the acquisition of calibration data and preprocessing including feature vector construction,
which are also the parts of an e-nose, they may be engineered depending on the design
concept of the e-nose. Namely, what kind of calibration data are acquired and/or how
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feature vectors are constructed should be appropriately decided considering the target
of an e-nose, which is also an important topic. On the other hand, the main purpose of
this study is the optimization of the temperature modulation. Hence, instead of setting a
particular target, the conditions of data acquisition and preprocessing were employed to be
typical ones at a laboratory, while referring to previous studies [33,34]. The details of data
acquisition, analysis including preprocessing and classification, and BO conditions will be
described in the following sections. All the analyses were carried out by MATLAB.

Predicting OBJ based on
Gaussian process regression

Determining a parameter set
for the next trial

O
B

J

Gaussian Process Regression Calculating Acquisition Function

A
cq

ui
si

ti
on

 
fu

nc
ti
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xnextx x

Next input: 
Maximizing
acquisition
function

Data acquisition

Input: x  (Parameter)

Output: 
Objective function (OBJ)

Figure 2. Schematic illustration of the concept of Bayesian optimization.

Start

End

Data acquisition

Data preprocessing

Calculate the objective function

Gaussian process regression followed by
calculating the acquisition function

Determine the parameter set
for the next trial

Already tested parameter set?

Initial parameter sets

Update 
the parameter set

Y

N

Figure 3. Schematic illustration of the optimization procedure based on Bayesian optimization.

2.3. Data Acquisition Procedure

Sensor responses were measured during VH application under exposure to test gases.
In this study, micro-electromechanical systems (MEMS)-based semiconductor gas sensors
(TGS8100, Figaro Eng. Inc., Osaka, Japan) [44] were used. Unfortunately, they have been
discontinued; however, the method we propose is applicable to all types of chemiresistor
sensors as long as they can be operated with temperature modulation, taking into account
the following. As described later, BO just uses the OBJ value, which may be calculated in
any way from the sensor output; although, we employed frequency spectra of conductance
followed by principal component analysis (PCA). In a similar manner, no limitation is
imposed on sensor characteristics except for the capability of temperature modulation.
Hence, the conclusion will hold for the other sensors.

To expose the sensors to test gases, a custom-made flow-control system was used as
schematically shown in Figure 4. The test gases were introduced into a test chamber as
headspace gases, for which the liquid gas sources were evaporated. Aside from the test gas



Sensors 2024, 24, 2941 5 of 15

line, the system has a background (BKG) gas line to dilute the test gases, and it consists of
a dry line and a wet line, allowing the control of chamber humidity. Synthesized air (N2
79% + O2 21%) was used for BKG gas as well as the carrier gas of the headspace gases. Five
kinds of test gases, which were used as calibration gases for a commercial e-nose system
(FF-2020, Shimadzu Corp., Kyoto, Japan), were used in this study, as shown in Table 1. The
responses were obtained for five concentrations by changing the flow rate of the headspace
gas, while the flow rate and relative humidity of BKG gas were maintained at 2 L/min and
approximately 50%, respectively.

FC

FC

Air

Background air

Test gases

Chamber
FC

Wet air

Dry air

10 sensors

Air

Air

Exhaust

FC: Flow controller

Figure 4. Schematic illustration of the flow-control system.

Table 1. Gas species employed in this study. The flow rates for headspace gas and the estimate of
corresponding concentrations are also displayed.

Gas Species Source Purity (wt%) Flow Rates of Headspace
Gas (sccm)

Concentration
Estimate (ppm)

Butyl acetate 99.0 0.5, 1.0, 1.5, 2.0, 2.5 4–19
Toluene 99.8 0.5, 1.0, 1.5, 2.0, 2.5 9–47
Heptane 99.0 0.5, 1.0, 1.5, 2.0, 2.5 15–76
Butyraldehyde 98.0 0.5, 0.9, 1.3, 1.6, 2.0 37–150
Ammonia (aq.) 28.0–30.0 * 0.5, 1.0, 1.5, 2.0, 2.5 37–180

* The concentration of ammonia.

The concentrations were roughly estimated assuming that the partial pressure of test
gases in the headspace gases reached their vapor pressures [45]. Although the estimated
gas concentration ranges are different among the gases, we did not aim to quantify con-
centrations and thus did not try to equalize the concentrations. On the contrary, taking
into consideration that the sensor response itself significantly differs between gases, the
same concentration is not always an appropriate choice. Additionally, the responses having
significantly different magnitudes may affect the classification rate, making classification
problems easier, even though they are normalized. Instead, in this study, we tried to control
the concentrations (or flow rates) so that the magnitudes of overall responses became
similar among the gases to evaluate the classification rates in a fair manner. Note that the
source of ammonia we used is an aqueous solution, and therefore, the concentration of
ammonia in the solution could change during the measurements. However, it is difficult
to accurately measure the gas concentration during the measurements at this stage. In
that sense, we showed the gas concentration as a “rough estimate”. On the other hand,
the obtained data were normalized to suppress the concentration information, aiming to
classify the gas species. Taking normalization into account, the accurate control of gas
concentration is not necessary, and therefore, the concentration inaccuracy may not affect
the analysis results.

The ambient temperature in the chamber is also an important factor influencing the
sensor response. Although we did not measure the ambient temperature in the chamber
directly, we employed a flow-through system as shown in Figure 4, and therefore, it is
reasonable to consider that the ambient temperature is almost the same as that of the
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inlet gas (approximately 24 ◦C). At least, the variation in the temperature among the
measurements may be negligible, given that the flow rate of the BKG gas was kept constant
(2 L/min).

Since the test chamber is allowed to install ten sensors, ten data were able to be
obtained simultaneously. As shown in Figure 5, each sensor was connected to an electrical
circuit, which supplied the heater current and output the sensor response. VH was input
into a voltage follower, which amplified the current to be supplied to the heater resistor
(RH), while the voltage gain was almost in unity. We employed the sensor conductance
(GS = 1/RS) under a constant bias voltage (VS) of 1.0 V as the response. GS was converted
to the output voltage (VOut) by an inverting amplifier as follows:

VOut = −GSRFVS, (2)

where RF is a feedback resistor, which determines the voltage gain. We prepared four levels
of RF in the range of 10 kΩ–100 kΩ taking account of the range of the sensor resistance
(approx. 10 kΩ–300 kΩ). During the measurements, VH was generated synchronously,
and VOut was acquired at a sample rate of 10 kHz, where NI-9264 and NI-9201 (Emerson
Electric Co., St. Louis, MO, USA) were used for the VH generation and the data acquisition,
respectively. RF was appropriately chosen so that a good signal-to-noise ratio was achieved
as much as possible. The electrical measurements were carried out by a program written
by LabVIEW. As described above, five concentrations were employed for each of the gases,
and ten duplicate measurements with ten sensors were carried out for each condition.
As a result, 2500 data were acquired (5 gases × 5 concentrations × 10 measurements ×
10 sensors) for each parameter set.

VS

VH

RH

RS

RF: 10 k – 100 kΩ

Sensor
1 kΩ

1 kΩ

VOut

Figure 5. Schematic electrical circuit for the measurements. The current for heater resistor (RH) was
amplified by a voltage follower, while the sensor conductance (GS = 1/RS) was converted to the
output voltage (VOut) by an inverting amplifier.

2.4. Analysis Procedures
2.4.1. Data Preprocessing

GS was first calculated from the measured VOut according to Equation (2) and then
normalized to suppress the differences in the magnitude among the data originating from
the gas concentration/sensitivity and sensor variation by the following equation:

GS,n =
GS − GS,min

GS,max − GS,min
. (3)

GS,max and GS,min indicate maximum and minimum conductance in the corresponding data.
The frequency spectrum of GS,n was derived by fast Fourier transform (FFT). A data vector
was built from the amplitude of the spectrum by taking the data points in an appropriate
range at an interval of 0.2 Hz, the minimum frequency step. After applying the procedure
for building a data vector to all the collected data, the data vectors were combined into a
matrix. A dimensionality reduction was carried out by PCA. The first principal component
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(PC1) to PC4 was employed as a feature vector, and then, the OBJ for BO was calculated
from the feature matrix as described later.

2.4.2. Machine Learning Algorithm for Classification

ML-based gas classification was also conducted on the data for each of the parameter
sets. The applicability of the proposed method to parameter optimization was investigated
by evaluating the classification accuracy through optimization. For this purpose, the
support vector machine (SVM) with a linear kernel, which is frequently used for gas
classification [46,47], was employed to build a classification model. Although the linear
SVM is common as a gas classification algorithm, nonlinear models like the k-nearest
neighbor and the SVM with radial basis function (RBF) can output high accuracy compared
with linear models, particularly in the case where a large amount of data are collected as in
this study. On the other hand, the study aims to examine whether the optimization method
is effective or not, that is, how the accuracy improved through the optimization. Hence, the
models that always output high accuracy are not suitable for investigating the applicability
of the optimization. Additionally, linear models usually show superior generalization
performance to nonlinear models, which easily result in overfitting. Then, we employed
the linear SVM to achieve a high classification accuracy through optimization even with
a linear model. To apply the SVM, which is a binary learning algorithm, to multi-class
classification, the error correcting output codes (ECOCs) algorithm was employed [48].
The details of the algorithm are described in Appendix A. The algorithm is provided as a
MATLAB function [49].

The classification accuracy was evaluated based on 5-fold cross-validation with the
following procedure. First, the data vectors (2500 data) were randomly separated into
5 partitions (500 each), where one partition was used as test data, while the rest of the
data as training data. Then, PCA was carried out on the training data. Employing four-
dimensional data from PC1 to PC4, a classification model was constructed. Then, test data
were projected into the PC space by multiplying the coefficient matrix of the PCA obtained
on the training data. The model accuracy for classification was evaluated using the test
data. The procedure was repeated 5 times while changing the partition used as test data.
Finally, average, maximum, and minimum accuracies were calculated.

3. Bayesian Optimization Conditions
3.1. Objective Function

As BO is a method to maximize (or minimize) an OBJ, usually a black-box function,
the choice of an OBJ has a decisive effect on the optimization result. For gas classification,
classification accuracy is seemingly the most suitable and straightforward quantity as an
OBJ. However, the accuracy greatly depends on ML algorithms; particularly, high accuracy
is easily obtained when a nonlinear classification algorithm and high-dimensional feature
vectors are used to build the classification model. On the other hand, such a model can
fall into overfitting and lose generalization. Additionally, complex models such as one
based on neural networks need large training costs. Taking account of these concerns, we
eschewed the use of accuracy as an OBJ. Instead, the Bouldin–Davies index (DBI) [50] was
employed. In this study, the similarity measure between clusters (test gases in this study) i
and j is defined as

Dij =
σi + σj

d(ci, cj)
. (4)

σi is the mean distance of all elements from the centroid in the cluster i, ci, while d(ci, cj) is
the distance between the centroids of cluster i and j. With Dij, DBI is then defined as
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DBI =
1
n

n

∑
i=1

max
i ̸=j

Dij, (5)

where n is the number of clusters. Equation (4) indicates that Dij becomes smaller as the
variation within a cluster decreases and the distance between the clusters increases. Given
averaging the maximum Dij with respect to the clusters, the DBI can be a good measure
of the separation of clusters [51]. The DBI was calculated using the PC scores from PC1
to PC4, and the subsequent optimization procedure aimed to minimize the DBI. PCA for
calculating the DBI was conducted using all the data for each of the parameter sets.

3.2. GPR and Acquisition Function

After calculating the DBI, a GPR model was built using the DBI and the parameter
values (V0 and VOffset). Then, an acquisition function was calculated to determine the next
parameter set, where expected improvement [40] was employed as an acquisition function.
The parameter set that maximizes the acquisition function was chosen for the next trial. The
range of the parameter set was restricted to 0.5 V ≤ 2V0 + VOffset ≤ 1.8 V with a 0.05 V
step. The upper limit was decided according to the sensor ratings (VH = 1.8 V), while the
lower bound was decided to be the value above which a significant response was obtained
according to the measurement data. Under the constraint, the number of candidates was
approximately 500.

4. Results and Discussion
4.1. Sensor Response and Data Preprocessing

Figure 6b–d shows one of the measurement and preprocessing results under the
application of Figure 6a VH, where 0.35 and 0.70 V were employed for V0 and VOffset,
respectively. The results for the flow rate of 0.5 sccm for all the gases in the fifth cycle
are displayed. GS (Figure 6b) varies in response to VH due to the change in the sensor
temperature according to the Arrhenius law:

GS = G0 exp
(
− Ea

kBT

)
, (6)

where Ea, kB, T denote the activation energy of conductance, Boltzmann constant, and
temperature, respectively. Under gas exposure, the factor G0 changes according to gas
species and concentrations. Additionally, their influences are modulated by the operating
temperature and even its hysteresis [32,33]. As a result, the different GS depending on the
gases as shown in Figure 6b. Then, GS,n was derived according to Equation (3) to suppress
the differences in the magnitude of GS (Figure 6c). The frequency spectra of GS,n calculated
by FFT are shown in Figure 6d, where the vertical axis is displayed in a logarithmic scale.
The spectra have non-negligible amplitude from 0 Hz to about 35 Hz, and hence, the
data points were collected in the frequency range of 0.2–35 Hz to build a data vector with
175 dimensions for each of the measurement results. Then, the data vectors were combined
into a matrix with a dimension of 2500 × 175. PCA was carried out on the data matrix to
obtain the feature matrix as described in Section 2.4.1.

The results of PCA conducted on the dataset for VH shown in Figure 6a is plotted
in Figure 7. The distribution of most of the gas species are overlapped with each other;
although, the distribution of ammonia was relatively well separated. The mean classifica-
tion accuracy on the dataset was 85.4%, which is not high enough compared with that in
the previous study [33], and hence, we confirmed that it is necessary to find an optimal
parameter set.
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Figure 6. (a) Heater voltage with one of the initial parameter sets (V0: 0.35 V, VOffset: 0.75 V) and one
of the corresponding measurement results for each of the test gases: (b) GS, (c) GS,n, and (d) frequency
spectra of GS,n.

Figure 7. PC plot of the data obtained using the heater voltage shown in Figure 6a.

4.2. Minimizing Objective Function

Figure 8a–d show the results of GPR after several trials, where the z-axis shows the DBI
plotted as a function of V0 and VOffset. Blue circles and red crosses, respectively, represent
the predicted mean and the observations of DBI. At the first trial, four parameter sets,
which were properly chosen to distribute across the entire range of the parameter space,
were tested. As the number of observations increased, the regression result revealed the
existence of two minima, which approximately correspond to the parameter sets: (V0,
VOffset) = (0.3 V, 1.15 V) and (0.75 V, 0.3 V). The observation showed that the latter set
resulted in a smaller DBI. The GPR predicted mean indicates that the DBI tends to become
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smaller as 2V0 + VOffset becomes larger. After seven trials (ten parameter sets tested), the
predicted next (eighth) parameter set was the same as the previous (seventh) one, and then,
the trial was stopped. As a result, the DBI was decreased from 2.1 to 1.5 through seven
trials as shown in Figure 9, where the minimum DBI observed through the trials is plotted
as a function of the number of trials. The result demonstrates the successful reduction in
the DBI based on BO.

(a) 1st trial (4 parameters) (b) 3rd trial (6 parameters)

(c) 5th trial (8 parameters) (d) 7th trial (10 parameters)

Figure 8. GPR results after (a) first, (b) third, (c), fifth, and (d) seventh trials. The blue circles indicate
the predicted mean obtained by the regression, while the red crosses the experimental results.
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Figure 9. The observed minimum DBI plotted as a function of the number of trials.
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4.3. Gas Classification and Validation of the Proposed Method

Although it was demonstrated in the previous section that the DBI, the OBJ, was
minimized by BO, the link between the DBI and the classification accuracy is not shown
yet. Then, in this section, the validity of BO for optimizing the parameters in temperature
modulation was discussed in terms of the ML-based gas classification.

Figure 10 shows the accuracy of gas classification plotted as a function of the DBI. The
markers and error bars indicate the mean and maximum/minimum values, respectively.
The overall accuracy increases with the decrease in the DBI, which indicates that the
DBI acts as a good OBJ. The accuracy itself also improved from 85.4%, obtained for the
parameter set first tested, to 93.2% for the optimal parameter set. These results demonstrate
the validity of the proposed optimization method. Although it was indicated that the DBI
can be a good OBJ for optimization, parameter sets that exhibited relatively high and low
accuracy were observed for a comparable DBI in the range of less than 2.5. The parameter
sets that showed high and low accuracy correspond to the two minima observed in the
GPR regression result shown in Figure 8.

2 4 6

DBI

0.4

0.5

0.6

0.7

0.8

0.9

1

A
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ur
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y

Figure 10. Classification accuracy plotted as a function of the DBI. The markers and the error bars
indicate mean and max./min. accuracies, respectively.

In order to gain an insight into the link between the accuracy and the DBI, the elements
of the similarity measure Dij were examined, and a clear difference in the variance of Dij
was found:

Var
[
Dij

]
for i > j. (7)

Table 2 summarizes the classification accuracy, the DBI, and the variance in Dij associated
with the values of the parameters V0 and VOut. The rows are aligned in order of increasing
DBI. It is observed that higher accuracies were obtained for the parameter sets exhibiting
the larger variance in Dij when the DBI are comparable with each other, e.g., the parameter
sets of #1, 2, and 3. With these three parameter sets, a clear difference in the accuracy
was observed: 92–93% for #2 and 3, whereas it was 83% for #1, despite the similar DBI
in the range of 1.5–1.7. In contrast, the variances in Dij are 0.090, 0.211, and 0.276 for #1,
2, and 3, respectively, demonstrating the parameter sets that exhibited higher variances
(#2 and 3) exhibited higher accuracies than those with smaller variances (#1). The tendency
was similar for parameter sets #4, 5, and 6, which exhibited the DBI in the range of 2.0–2.2.
Although the accuracy does not increase monotonically with increasing the variance in
Dij for the similar DBI, the tendency indicates that the variance in Dij may be also a good
measure of the separability of clusters, when the obtained DBIs are similar to each other.
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Table 2. The DBI, the variance of Dij, and the mean accuracy for each of the parameter sets.

Label V0 (V) VOffset (V) DBI Var [Dij] Accuracy (Mean)

#1 0.75 0.3 1.5 0.090 0.834
#2 0.3 1.2 1.6 0.211 0.932
#3 0.35 1.05 1.7 0.276 0.924

#4 0.575 0.65 2.0 0.208 0.850
#5 0.1 1.2 2.1 0.794 0.919
#6 0.7 0.2 2.2 0.323 0.810

#7 0.35 0.7 2.5 0.269 0.854
#8 0.9 0 3.0 1.776 0.722
#9 0.025 1.75 5.8 11.33 0.808

#10 0.3 0.1 6.9 7.382 0.483

As described in Equation (A1), the label of the test data is determined so that the total
loss calculated on each of the learners, which was constructed for all pairs, is minimized.
Accordingly, the accuracy, evaluated with the labels, depends on the separability between
clusters of all pairs. It is expected that a pair of least separable clusters results in a compara-
ble loss for each class and thus affects the accuracy most. Given that the DBI is calculated by
averaging the largest Dij, namely, the least separable clusters, with respect to each cluster, i,
then, it is reasonable to consider the DBI as a measure of separation of the clusters. On the
other hand, when the parameter sets exhibit comparable DBI with each other, not only the
least separable pair but also the other pairs are influential in causing the difference in the
accuracy. The large variance indicates that there are more Dij with relatively small values.
A small Dij indicates a good separability between the clusters i and j. Since a coding matrix
by all pairs was employed in this study, it is expected that the model outputs become more
accurate as more cluster pairs have small Dij. This leads to a larger variance in Dij under
the assumption of similar DBI among the parameter sets. Therefore, both the DBI and
the variance in Dij should be taken into account to further refine the OBJ for optimization,
which would be addressed in future work.

5. Conclusions

In order to facilitate the determination process of the heater waveform in the tem-
perature modulation with a reduced number of calibration tests, BO was employed. Its
applicability was investigated by optimizing the parameters, which determine the range
of heater voltage. The optimization was carried out to minimize the DBI, which was em-
ployed as the OBJ. After seven trials with 10 parameter sets tested, the OBJ was successfully
reduced from 2.1 to 1.5. Additionally, the classification accuracy roughly increased with
decreasing the DBI, indicating that the DBI is a suitable OBJ. On the other hand, it was also
revealed that there is still room for improvement in the OBJ in terms of incorporating the
variance of the similarity measure. After the optimization process, the accuracy increased
from 85.4% to 93.2%, demonstrating that BO is promising for the optimization of temper-
ature modulation. Furthermore, the method we introduced defined only the OBJ, which
is easily calculated from the feature vectors and generally applied to gas classification
problems. As a consequence, this study paves the way for BO-based optimization as a
general method for the temperature modulation. Then, as a next step toward a compact
and low-cost e-nose with high classification accuracy, model construction must be ad-
dressed, which requires comprehensive investigation including data acquisition, feature
vector construction, and engineering a classification algorithm. Besides the accuracy, the
robustness of a model is also an important factor, which has been mainly addressed in
terms of post-processing; on the other hand, it is known that the quality of calibration
data also affects the robustness [52]. However, studies on the robustness are still limited
concerning the data under temperature modulation, in particular, using such a complex
heater waveform as in this study. Hence, in addition to the improvement in the objective
function as discussed above, comprehensive studies are necessary for future work.
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Appendix A. ECOC Algorithm

In the algorithm of ECOC, a cording matrix M ∈ {−1, 0, 1}k×l based on all-pairs design,
where k and l indicate the number of classes and binary learners (here, l = k(k − 1)/2),
respectively, was used. Prediction was carried out using loss-based decoding according to
the following equation:

ŷ = min
i

∑l
j=1|mij|L(mij, f j(x))

∑l
j=1|mij|

, (A1)

where ŷ is the predicted class for the input x (here the scores of PC), mij is the element (i, j)
of M, and f j(x) = w · x + b is the predictor on j-th learner. The loss function L(s, t) is the
“hinge” function expressed as L(s, t) = max[0, 1 − st]/2.
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