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Abstract: Motion capture technology plays a crucial role in optimizing athletes’ skills, techniques,
and strategies by providing detailed feedback on motion data. This article presents a comprehensive
survey aimed at guiding researchers in selecting the most suitable motion capture technology for
sports science investigations. By comparing and analyzing the characters and applications of different
motion capture technologies in sports scenarios, it is observed that cinematography motion capture
technology remains the gold standard in biomechanical analysis and continues to dominate sports re-
search applications. Wearable sensor-based motion capture technology has gained significant traction
in specialized areas such as winter sports, owing to its reliable system performance. Computer vision-
based motion capture technology has made significant advancements in recognition accuracy and
system reliability, enabling its application in various sports scenarios, from single-person technique
analysis to multi-person tactical analysis. Moreover, the emerging field of multimodal motion capture
technology, which harmonizes data from various sources with the integration of artificial intelligence,
has proven to be a robust research method for complex scenarios. A comprehensive review of the
literature from the past 10 years underscores the increasing significance of motion capture technology
in sports, with a notable shift from laboratory research to practical training applications on sports
fields. Future developments in this field should prioritize research and technological advancements
that cater to practical sports scenarios, addressing challenges such as occlusion, outdoor capture, and
real-time feedback.
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1. Introduction

In the realm of sports, the pursuit of optimal performance, injury prevention, and
effective training strategies has driven the continuous evolution of technology and scientific
research [1,2]. Among the various tools and methods employed in sports science, motion
capture technology has emerged as a crucial component in understanding, analyzing, and
enhancing athletic performance. Motion capture refers to the process of recording and
translating the movement of objects or people into digital data that can be analyzed and
manipulated [3]. Its origins can be traced back to the 19th century when pioneering work
by Eadweard Muybridge and H. C. Adam laid the foundation for capturing and studying
human and animal locomotion [4].

Over the past few decades, significant advancements in software and hardware tech-
nology have propelled motion capture to new heights, expanding its applications across
various fields, including rehabilitation, sports training, and human movement biomechan-
ics [5,6]. In particular, the field of sports biomechanics, which integrates principles and
methods from mechanics, anatomy, physiology, and other related disciplines to study the
structure and function of the human movement system, has greatly benefited from the
integration of motion capture technology [7]. By providing detailed kinematic and kinetic
data, motion capture enables researchers and practitioners to gain deeper insights into
the complex interplay of the nervous system, muscles, bone marrow, and joints during
athletic performance.
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One of the key areas where motion capture technology has made significant contri-
butions is in postural analysis and balance assessment. Postural control and balance are
essential factors that influence an athlete’s performance and susceptibility to injuries [8].
Traditional methods for assessing balance, such as force plates and laboratory-based motion
capture systems, often face limitations in terms of cost, portability, and ecological validity.
However, the advent of inertial sensors has revolutionized the field, offering a cost-effective
and versatile solution for collecting and processing large amounts of athlete balance data
in various settings [9].

The application of motion capture technology extends beyond postural analysis,
encompassing a wide range of sports scenarios and research questions. From analyzing the
biomechanics of swimming strokes [10] to investigating the kinematic factors influencing
soccer kicking performance [11,12], motion capture has become an indispensable tool in
sports science. Its ability to provide objective, quantifiable data has enabled researchers
and coaches to optimize training programs, prevent injuries, and enhance overall athletic
performance [2,13–15].

However, the rapid growth and diversification of motion capture technologies have
also presented challenges for researchers and practitioners in selecting the most appropriate
tools for their specific needs. Different motion capture systems, such as cinematography cap-
ture, electromagnetic capture, and computer vision capture, offer unique advantages and
limitations that must be carefully considered [16]. Furthermore, the increasing complexity
and volume of data generated by motion capture technologies necessitate the development
of advanced analysis techniques, such as machine learning and pattern recognition, to fully
harness their potential [17].

This review aims to provide a comprehensive overview of the various motion capture
technologies used in sports scenarios, bridging the gap between technological advance-
ments and practical implementation. By comparing and analyzing the characteristics,
advantages, and limitations of each technology, we seek to guide researchers and practi-
tioners in selecting the most suitable motion capture methods for their specific applications.
Moreover, we discuss the current state-of-the-art applications of motion capture technology
in sports, highlighting its potential to revolutionize athletic performance analysis, injury
prevention, and rehabilitation.

2. Classification of Motion Capture Technology

To provide a comprehensive overview of motion capture technologies in sports sce-
narios, we conducted a thorough literature search focusing on the development, validation,
and application of these technologies. The inclusion criteria for the selected articles were
as follows: (1) the study involved the use of motion capture technology in sports contexts;
(2) the article provided detailed information on the motion capture system, its validation,
or its application; and (3) the study presented original research findings or technical ad-
vancements. Conference abstracts and studies focusing solely on non-sports applications
of motion capture were excluded. The search results covered various motion capture sys-
tems, including traditional optical systems, wearable sensor-based systems, and computer
vision-based approaches.

Among these technologies, traditional motion capture methods have long been con-
sidered the gold standard, typically relying on optical image analysis with markers as the
benchmark. However, in recent years, the rapid development and application of deep
learning have paved the way for wearable sensor-based motion capture and computer
vision-based motion capture techniques [18]. Currently, motion capture technology can be
broadly classified into two major categories: traditional optical systems [19] and computer
vision-based motion capture technology, which has seen significant advancements in recent
years. Additionally, wearable sensor technology and other types of technologies are also
prominent in this field, as shown in Table 1.



Sensors 2024, 24, 2947 3 of 15

Table 1. Classification of motion capture technology.

Category Application Example

Cinematography
Capture

Active Marker Landing Technique [20]
Passive Marker Gait Analysis [21]

Electromagnetic
Capture Systems

GNSS Soccer Player Kinematic Data
Acquisition [22]

IMU Motion Data Validation [23]
UWB Tennis Player Positioning [24]
LPM Youth Soccer Performance [25]

Computer Vision
Capture

Single-Person 2D Gait Analysis [26]
3D Handball Action Analysis [27]

Multi-Person
Bottom-Up Baseball Swing Assessment [28]
Top-Down Gait Analysis [29]

Other

Audio Modality Activity Recognition [30]
Radar Modality Activity Recognition [31]
Wi-Fi Modality Cross-scene Action Recognition [32]

Fusion Modality Ski Racing Biomechanics [33]

2.1. Cinematography Capture Systems

Cinematography capture systems are generally considered the gold standard in the
field of motion capture [34]. They utilize optical markers to calibrate the spatial coordinate
system and accurately determine the real 3D coordinates of the subject being measured. The
accuracy of optical triangulation in motion capture depends on several factors, including
the relative positions of the cameras, the distance between the cameras and the object,
the number and quality of optical markers, and the movement of the markers within the
tracking space [35]. The trade-off between the sampling frequency and spatial resolution is
also an important factor that affects the overall performance of the system. Typical applica-
tion scenarios of modern optical motion capture technology are shown in Figure 1. The
pipeline of cinematography motion capture involves the following key steps: synchronized
multi-camera setup, marker placement on the subject, cameras capturing marker trajectory
data, data processing and gap-filling, and mapping marker data onto a digital character to
reconstruct high-fidelity 3D motion.
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Cinematography capture systems can be divided into two types: active marker systems
and passive marker systems. In passive marker systems, the markers used do not emit
light, and the sensors rely on receiving reflected light from the markers for data recording.
Representative products of passive marker systems include Vicon equipment. Compared to
passive markers, active marker systems such as Optotrak3020 (Northern Digital, Waterloo,
Canada) have stronger resistance to interference and greater stability [36]. However, the
additional power supply and cables in active marker systems can interfere with the subject’s
movement and actions [37]. Relying on fixed cameras for data collection, cinematography
capture systems suffer from limitations such as a relatively fixed sampling area and a
sampling range influenced by the number of cameras and their field of view. The maximum
working range of optical sampling systems documented so far does not exceed 1000 m2 [38].
To meet the recording requirements of large-scale scenes, researchers have deployed over
20 cameras, significantly increasing the difficulty and cost of sampling. Furthermore,
the calibration and synchronization efforts in post-processing also multiply. Another
major bottleneck that is hard to overcome in image-based motion capture systems is
occlusion. Some motion capture scenarios require restrictions on equipment placement,
and the complexity of the subject’s movements leads to many gaps and blind spots in the
collected data. This not only increases the workload of data processing but also reduces
the precision of system output [39]. To meet the demands of testing in larger areas, an
optical capture algorithm using a moving sampling camera has emerged. By mounting
the camera on a sliding base that moves parallel to the direction of motion and using fixed
markers on the ground for coordinate transformation, optical motion capture under linear
motion conditions has been successfully achieved [40]. Although it comes at the cost of
reduced accuracy and increased data processing time, this approach effectively reduces the
complexity of motion capture systems for long-distance scenes. It has certain application
value in motion capture scenarios such as short-distance sprints.

In addition, the iGPS system can achieve millimeter-level spatial positioning accuracy
in a relatively large spatial scale [41]. However, such devices have limited performance
in dynamic scenarios, as slightly higher speeds than walking can result in significantly
increased positioning errors [42]. To meet the requirements of larger testing areas, an
optical capture algorithm that uses moving cameras for tracking and sampling has been
developed. By mounting the cameras on a sliding base parallel to the direction of motion
and using fixed markers on the ground for coordinate transformation, optical motion
capture under linear motion conditions has been successfully achieved [40]. Although this
method sacrifices accuracy and increases the data processing time, it effectively reduces
the complexity of motion capture systems for action acquisition at longer distances. This
approach has potential applications in motion capture scenarios involving straight-line
events such as sprints.

2.2. Electromagnetic Capture Systems

In addition to image capture systems, electromagnetic tracking systems are also an
important component of motion capture technology. Wearable motion capture based on
electromagnetic systems utilizes the calculation of the time difference between the reflection
of electromagnetic waves from the base station to the target object to determine the target
distance [43]. The main advantage of electromagnetic-based motion capture systems lies
in their high tolerance for occlusion compared to optical motion capture systems. The
positioning method, which does not rely on visible light, makes the impact of occlusion on
such systems negligible [44]. A typical pipeline of wearable sensors in motion capture is
shown in Figure 2. The wearable sensor pose estimation pipeline starts with calibrating
the sensors to the body segments. Filtering is then applied to fuse the raw sensor data into
cleaner orientation estimates. Linear accelerations are calculated by removing gravity, and
double integrated to estimate segment position trajectories. Static periods are detected
to apply zero-velocity updates, mitigating integration drift. Finally, a kinematic model
combines the individual segment poses to reconstruct the full-body motion.
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There are IMU (Inertial Measurement Unit) wearable sensors, which typically inte-
grate accelerometers and gyroscopes, and some products also integrate magnetometers.
Wearable technologies based on IMU sensors have gained increasing prominence in the
field of motion analysis due to their simple and reliable communication protocols, compact
device size, and flexible application scenarios [45]. Additionally, there are UWB (Ultra-Wide
Band) wearable sensors. Commercial UWB systems have demonstrated stable performance
in tasks such as indoor motion tracking, system deployment, and sensor localization. They
can achieve dynamic tracking in indoor sports scenarios with measurement errors below
0.5% of the working range, and the positioning data accuracy can be improved by adjusting
the sampling frequency [46]. This technology holds greater potential in sports with larger
motion ranges and higher speeds, such as the comprehensive speed and posture tracking of
ski jumpers. In addition to IMU and UWB, the LPM (Local Position Measurement) system
is another typical electromagnetic positioning system, which utilizes radar wave reflec-
tions between base stations and reference points for positioning [47]. LPM offers notable
advantages in terms of the size of the positioning area, system deployment complexity, and
post-processing of data [48]. In addition to IMU, UWB, and LPM systems, GNSS (Global
Navigation Satellite System) wearable sensors utilize satellite signals for precise positioning
and motion data. They offer advantages in sports with larger motion ranges, providing
comprehensive speed and posture tracking. While they may face limitations in challenging
environments, combining GNSS with other sensor technologies enhances accuracy [49].

2.3. Computer Vision Capture Systems

In recent years, the advancement of hardware computing power in parallel computing
technology and the progress in deep learning have mutually benefited each other [50–53].
Deep learning-based computer vision techniques have been widely applied in specialized
fields such as medicine, sports, and industrial monitoring [54–56]. Motion capture based
on computer vision offers advantages such as higher accuracy, faster speed, and reduced
workload [57,58].

Human Pose Estimation (HPE) plays a crucial role in sports scenarios, which involves
analyzing motion action videos for single-person or multi-person to obtain two-dimensional
or three-dimensional coordinate information about body poses, based on the number of
synchronized input videos, and it can be categorized into monocular pose estimation
and multi-view pose estimation. As shown in Figure 3, typical human pose estimation
involves frame acquisition and preprocessing to prepare the input image, which is then
passed through a convolutional backbone network and upsampling network to predict
the locations of key body joints via heatmaps and silhouettes. The model architecture
is selected based on requirements, and the chosen model is trained on a dataset using
backpropagation. The trained model then undergoes inference, post-processing, evaluation,
and fine-tuning to optimize its performance on localizing body joints in new images.
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With the improved speed and reliability of algorithmic recognition, computer vision-
based motion capture has started to be used in various fields, including rehabilitation
training, sports performance enhancement, and biomechanical analysis [59,60]. Despite
the advantages of higher accuracy and stronger robustness, there are limitations in the
application of multi-view pose estimation algorithms, such as the inability to extract
information from regular motion broadcast videos. Currently, in the field of motion and
vision related to computer vision capture applications, most use pose estimation algorithms
based on single-view visual recognition for 2D or 3D athlete pose estimation.

Firstly, in practical application scenarios, the motion recognition algorithm is the core
of computer vision capture systems, and the dataset forms the foundation of algorithm
training. Various visual recognition models trained based on datasets can convert human
motion in video inputs into spatial coordinates or vectors. The subsequent analysis and
inference system work based on the output of the visual recognition system for training
and adjustment. In 2021, Xin Chen et al. released the SportsCap system, which achieved
real-time 3D motion capture for most sports scenes. It significantly improved the accuracy
of motion capture in similar task scenarios compared to traditional methods, and achieved
satisfactory levels of action classification capability [61].

Secondly, due to the rapid relative motion between the target individuals and the
fixed coordinate system in sports, severe motion blur is one of the obstacles hindering
the further application of computer vision capture. To address this, researchers like Hong
Guo developed PhyCoVIS, which combines motion capture technology and visualization
techniques to transform athlete motion data into easily understandable and analyzable
visual charts and images. Through the PhyCoVIS system, coaches and athletes can assess
the athlete’s body coordination, identify potential issues, formulate corresponding training
plans, and compare the coordination of different athletes and analyze the coordination of
specific motion sequences [62].

The bottleneck of computer vision capture in sports and sports-related fields lies in the
lack of specialized visual recognition datasets. In addition to the scarcity of datasets suitable
for outdoor scenes, most of the datasets are general datasets established by computer science
researchers for human daily actions, rather than specialized datasets for sports scenes [63].
Using general pose estimation datasets for computer vision capture training can lead to
problems such as decreased recognition accuracy and difficulties in recognition. To address
this, besides establishing specialized datasets for sports scenes, another possible solution is
to utilize few-shot learning techniques. Traditional machine learning algorithms require
large amounts of data to train models, but few-shot learning techniques can accomplish
learning tasks with very limited data available [64].
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Currently, computer vision capture has not yet produced widely recognized and
widely used pose estimation algorithms for high-precision capture scenarios. However,
in applications where there is a higher tolerance for motion localization errors, such as
football tactical analysis research, computer vision capture technology has irreplaceable
advantages such as non-interference, ease of deployment, and fewer limitations. Some
mature specialized applications already have considerable value.

2.4. Other Motion Capture Systems

In 2018, Dawei Liang et al. successfully extracted contextual information from the
audio portion of videos, surpassing the context information that can be obtained from
image-based methods [30]. Similar systems that utilize deep learning-based audio classifiers
provide a new dimension of information for distinguishing complex actions.

In addition to sound waves, motion capture techniques utilizing radar (Radar Modal-
ity) also hold significant practical value. Sevgi Z. Gurbuz et al. utilized continuous radar
RF data for action recognition and employed Generative Adversarial Networks (GANs)
for sample synthesis, achieving comparable accuracy to Vicon systems in terms of output
precision [31]. Compared to video-based motion capture systems, radar-based motion
capture not only offers the same advantages but also enables data collection while ensuring
privacy protection. This unique technological advantage makes radar-based motion capture
highly promising with great technical potential [65].

Beyond the range of motion capture methods that use specialized equipment, there
is the Wi-Fi Modality, which utilizes the echoes of Wi-Fi signals for motion capture. By
extracting spatial–temporal information from the Channel State Information (CSI), and
using Convolutional Neural Networks (CNNs) as the model classifier, it becomes possible
to achieve cross-scene motion capture and recognition [32]. The greatest advantage of this
technology is the freedom from the constraints of dedicated devices for motion capture
tasks. In an ideal scenario, it would be possible to estimate human motion within the
working range using Wi-Fi signals. This holds significant importance for low-cost and
lightweight research projects, as it provides an irreplaceable solution for motion capture
without the need for specialized equipment.

Fusion Motion Capture (FMC), which combines multiple data acquisition techniques,
is one feasible solution for motion recognition in sports scenarios. Timo Von Marcard et al.
integrated visual motion capture with wearable IMU sensors to improve and stabilize
whole-body motion capture techniques [66]. Brodie et al. used a similar multimodal
motion capture system to extract key performance indicators related to athletes’ body
and physiological limits, such as average drag coefficient and maximum tilt angle during
turns, which help optimize game strategies [33]. Hui-Min Shen et al. proposed a Magnetic
Measurement Unit (MMU) approach for multisensor fusion in motion capture, enhancing
system output accuracy and stability [67]. Additionally, Hasegawa et al. developed an
action-assisted monitoring system that utilizes sound wave information to monitor and
provide feedback on the skier’s center of gravity, assisting skiers in overcoming instinctive
reactions of leaning back [68]. This helps guide specific technical optimizations for athletes,
improving performance and reducing the risk of injury. The SmartSki system, designed by
Anton Kos et al., underwent functional testing and validation by several professional alpine
skiers during a year of snowfield testing [69]. However, its lack of portability hindered its
practical implementation, keeping the system mostly in the experimental phase.

The main advantage of multimodal motion capture technology lies in the use of dif-
ferent types of data acquisition methods to simultaneously measure the pose and motion
information of the moving target in different environments, achieving precision and relia-
bility beyond the reach of a single technology [70,71]. This also implies broader potential
application scenarios, faster data analysis capabilities, and better data visualization poten-
tial. At the same time, multimodal motion capture technology requires relatively more
complex system integration, larger data processing capabilities, more precise data monitor-
ing capabilities, and higher hardware costs. Overall, multimodal human motion capture
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technology has significant advantages in motion capture and analysis, but it needs to over-
come technical challenges such as high equipment costs, high complexity, and difficulty
in algorithm design. In the future, with the continuous development of technology, mul-
timodal techniques are expected to become important means for human motion analysis
and virtual reality, bringing more convenience and assurance to human life and health.

3. Application of Motion Capture in the Field of Sports

Motion capture technology exhibits different forms of expression and usage scenarios
depending on the research objectives and topics. Specific application areas include human
kinematics, biomechanics, motion technique analysis, athletic performance, and more [72].
In particular, motion capture technology can be used for topics such as technical analysis,
training, athletic assessment, and sports injury medicine for athletes. For example, ana-
lyzing a soccer player’s running routes, shooting angles, and power can provide coaches
and athletes with reliable quantitative metrics to improve team tactics and skills [73]. In
swimming competitions, motion capture technology can measure swimmers’ speed, an-
gular velocity, and other technical motion kinematics information, enabling the analysis
of swimming postures and fluid resistance effects to assist athletes in improving training
efficiency [74,75]. This article focuses on the typical research application scenarios of motion
capture technology in the field of sports; Figure 1 illustrates the priority indicators and
typical application scenarios of different motion capture techniques.

3.1. Construction of Athlete Performance Datasets

Xiong Zhao et al. utilized the Raptor-E motion capture system to collect and analyze
three-dimensional motion data from nearly 200 athletes, establishing a database of mo-
tion and performance [76]. This enables researchers and system users to utilize advanced
analysis methods such as pattern recognition and machine learning to study athletes’ move-
ment patterns and gain new insights into the potential correlations between movement
patterns and injury history, sport specificity, competition level, and demographics. Raptor-
E is a passive marker-based optical motion capture system that offers advantages such
as high accuracy, real-time performance, and strong outdoor interference resistance [77].
When combined with dedicated visualization systems designed for specific sports, the
management and application of athlete performance datasets become more reliable and
convenient [78].

Optical-based motion capture systems perform better in projects with simpler limb
movements. However, they have limitations in terms of a relatively fixed sampling domain,
where the sampling range is influenced by the number of cameras and their field of
view. The maximum working range typically does not exceed 1000 square meters [38].
Additionally, the systems face occlusion issues. The mainstream solution currently involves
using multiple cameras for video signal capture, but this increases the workload of post-
processing and reduces the accuracy of system output [39].

3.2. Real-Time Assistance for Athlete Training and Competition

Compared to optical-based methods, motion capture using wearable sensors imposes
less interference on athletes. To obtain more natural human gait kinematic information,
Julie Rekant et al. installed 24 wearable sensors on 10 healthy males while using the Vicon
system as a ground truth reference [79]. The study found significant differences between the
measurements obtained from the wearable sensors and the Vicon system across different
subjects, with the largest errors occurring in the sagittal plane, where the mean angular
error was close to 5◦. This error was considered relatively noticeable.

Although wearable motion capture solutions based on electromagnetic systems have
advantages such as strong interference resistance and simple device setup, the positioning
principles of such solutions limit their performance in terms of angular measurement
accuracy. Most of these solutions rely on time-of-flight methods for distance measurement
and positioning, resulting in significant cumulative errors during continuous positioning
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operations. Compared to optical-based motion capture solutions, commercially available
products currently achieve lower tracking and positioning accuracy. Therefore, in typical
motion capture tasks, electromagnetic-based motion capture solutions are not the preferred
choice. However, in some special scenarios, such as when the motion range is too large,
lighting conditions in the environment are not ideal, or occlusion issues cannot be resolved,
specific electromagnetic-based motion capture solutions can be considered, and the system’s
positioning accuracy needs to be validated to meet the research requirements.

3.3. Multi-Camera Motion Capture Technology for Training

In 2019, Eduard Pons et al. conducted a validation study on the effectiveness of a
multi-camera motion capture system. The research team tracked 38 official matches of
male athletes in the Spanish second division league and collected thousands of valid data
points. The team validated the statistical indicators of standardized mean deviation and
coefficient of variation for the system data, demonstrating that multi-camera motion capture
technology can meet the research and training requirements in sports scenarios, with high
repeatability and stability [80]. The bottleneck of computer vision-based motion capture
in sports and specific fields lies in the lack of dedicated visual recognition datasets [63,81].
Apart from establishing specialized datasets for sports scenarios [82,83], another possible
solution is to utilize few-shot learning techniques, which enable training with a small
amount of data [64].

Currently, there is no widely recognized and widely used pose estimation algorithm
in computer vision-based motion capture technology for scenarios with high accuracy
requirements. However, in applications where the tolerance for motion positioning errors is
higher, such as football tactical analysis and other research topics, vision-based motion cap-
ture technology offers irreplaceable advantages such as no interference, easy deployment,
and fewer limitations. Some mature specialized applications already have considerable
practical value.

4. Discussion

In the context of sports, the application of motion capture technology in sports scenar-
ios requires careful consideration of the following factors compared to technical develop-
ment environments:

(1) Indoor laboratory settings offer controlled environments with better control over
factors like lighting, temperature, and humidity, reducing noise and interference.
However, outdoor sports scenarios present complex and variable conditions, includ-
ing wind, sunlight, shadows, and different surfaces (e.g., plastic, grass, snow, ice,
water), which can impact the accuracy and stability of motion capture systems. Out-
door conditions also experience changes in temperature, humidity, and visibility,
while non-isolated environments introduce sound, lighting, and electromagnetic in-
terference, further affecting motion capture tasks. Overcoming these environmental
limitations is crucial for ensuring accurate and reliable motion capture in sports.

(2) System setup: Indoor laboratory settings offer easier installation and calibration of
motion capture systems due to the controlled environment. However, outdoor sports
scenarios present more complex conditions, requiring additional effort for system
setup and adjustment to achieve higher accuracy and precision. The precision of the
measurement method is inversely proportional to the effective working range of the
system. In sports scenarios, where large-scale motion scenes are common, capturing
human kinematic information requires additional software and hardware optimiza-
tion methods. These challenges necessitate careful system setup and optimization to
ensure accurate motion capture in outdoor sports environments [84].

(3) Motion characteristics: The movements in indoor laboratory settings are usually
simple and single, such as gait analysis or arm movements. For these types of
movements, indoor motion capture systems can provide high-quality data. In outdoor
sports scenarios, there may be more complex movements, such as aerial rotations or
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limb flips, which can be distorted or inaccurate due to environmental factors. Motion
capture for sports scenarios often requires capturing fast movements. In specific
research scenarios, such as ballistic analysis in shooting or instant analysis of baseball
swings, the sampling frequency may exceed 1000 Hz [16].

(4) Data processing: Data processing is relatively straightforward in indoor laboratory set-
tings because the data in controlled environments are usually stable and accurate [85].
In outdoor sports scenarios, data processing needs to consider more factors, such as
lighting and environmental noise issues, occlusion and penetration issues, motion
model establishment, data noise, and filtering issues [86].

When selecting the appropriate motion capture technology for specific sports applica-
tions, it is crucial to comprehensively consider factors such as the size of the capture space,
the complexity of the athlete’s movements, the real-time performance requirements of the
system, and the acceptability of the equipment’s impact on the athlete’s movements.

Cinematography capture systems offer high accuracy and are considered the gold
standard in motion capture. However, they face limitations in terms of fixed capture areas,
occlusion issues, and the impact of markers on natural movements. These systems are
more suitable for biomechanical analysis in controlled environments.

Electromagnetic capture systems, including IMUs, UWB, and LPM, provide advan-
tages in terms of occlusion resistance, flexible scenarios, and real-time performance. IMU-
based wearable sensors are compact and widely used in motion analysis, while UWB
systems enable high-precision indoor tracking, and LPM offers benefits in positioning area
and deployment complexity. However, electromagnetic systems may face limitations in
accuracy compared to optical systems and require careful sensor placement.

Computer vision capture systems have made significant advancements with deep
learning techniques. Pose estimation algorithms enable markerless motion capture from
video inputs, offering high accuracy, fast speed, and reduced interference with natural
movements. These systems have been applied in rehabilitation, sports performance analy-
sis, and biomechanical research. However, computer vision systems currently lack large-
scale sport-specific datasets, which limits their performance in complex sports scenarios.
Few-shot learning techniques are a potential solution to address this limitation.

Multimodal motion capture systems, which fuse data from multiple sensors, provide
a promising approach for complex sports scenarios. By combining the strengths of different
capture technologies, such as vision and wearable sensors, multimodal systems can achieve
high accuracy, robustness, and adaptability to various environments. However, multimodal
systems also face challenges in terms of system complexity, data synchronization, and
higher costs.

The application of motion capture technology in sports scenarios faces various chal-
lenges, including environmental limitations, system setup, motion characteristics, and data
processing. In this paper, a comparison and evaluation of the application of motion capture
technology across different sports scenarios were conducted, with primary consideration
given to factors such as repeatability, robustness, accuracy, and reliability. Due to differ-
ences in application scenarios, testing standards, and testing conditions among various
motion capture systems, the assessment of reliability and repeatability may not be directly
comparable, even for the same motion capture method. To address this issue, this paper
employed a normalized evaluation approach by analyzing the relevant literature covered.
The performance metrics from different studies were converted into a unified evaluation
criteria by comparing the reported values within each specific metric and assigning them to
a normalized scale. In cases where explicit performance metrics were not provided in the re-
viewed literature, this paper made qualitative assessments based on the overall conclusions
and discussions presented in those studies, aligning them with the normalized scale.

The normalization process involved identifying the best-performing motion capture
technology within each performance metric category and assigning it a score of 100%.
The scores for the remaining technologies were then calculated as a percentage of the
best-performing technology’s score within that category. This approach allowed for a
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standardized comparison of performance metrics across different motion capture systems,
despite variations in testing conditions and reporting methods. The normalized scale was
then divided into four ranges: 0–40%, 40–60%, 60–80%, and 80–100%, corresponding to
the terms “low”, “medium”, “medium to high”, and “high”, respectively. By comparing
the normalized performance metrics of each motion capture technology against these per-
centage ranges, this paper was able to assign the appropriate qualitative descriptor to each
technology’s performance in terms of repeatability, robustness, accuracy, and reliability. Ta-
ble 2 summarizes the performance metrics of various motion capture technologies, offering
preliminary references for technology selection in subsequent research and applications.

Table 2. Comparative analysis of characteristic indicators of different motion capture methods.

Motion Capture
Technology Accuracy Advantages Constraints Robustness Repeatability Reliability Sports

Scenarios
Sports

Applications

Cinematography High

High accuracy,
suitable for

complex
movements

Limited
capture
volume,
marker

occlusion

Medium High High

Lab-based
analysis,

technique
evaluation

Biomechanical
analysis,

technique
optimization,

injury
prevention

Wearable Sensors Medium

No marker
occlusion,

large capture
volume,
real-time
tracking

Prone to elec-
tromagnetic
interference,

lower accuracy
than optical

systems

High High Medium to
High

Indoor and
outdoor
training,

competition
monitoring

Real-time
performance
tracking, load
monitoring,

tactical
analysis

Computer Vision Medium to
High

Markerless
tracking,

flexible setup

Line of sight,
lighting, com-
putationally

intensive,
sensitive to

lighting
conditions

Medium to
High High Medium

Lab-based
analysis,

technique
evaluation

Biomechanical
analysis,

technique
optimization,

movement
pattern

recognition

Others (e.g.,
Fusion Modality) High

Integrating the
advantages of

multiple
sensors

Sensor syn-
chronization High High High

Comprehensive
performance

analysis

Multifaceted
performance
assessment,
injury risk
prediction

In summary, the choice of motion capture technology depends on the specific require-
ments and constraints of the sports application. Researchers and practitioners should
carefully evaluate factors such as capture space, motion complexity, and equipment impact
on athletes to select the most suitable motion capture technology for their sports analy-
sis tasks. As motion capture technology continues to evolve, addressing the challenges
posed by outdoor sports scenarios and leveraging advancements in deep learning and
multimodal systems will be crucial for advancing the field of sports biomechanics and
performance analysis.

5. Conclusions

Motion capture technology offers numerous advantages and applications in the field
of sports, enabling the analysis of athletes’ technical performance, training effectiveness,
competitive assessment, and sports medicine-related information. Computer vision-based
motion capture technology exhibits high recognition accuracy and wide applicability in
various sports scenarios, particularly in large-scale scenes like football matches. Wearable
sensor-based motion capture technology has made significant advancements in accuracy
and multifunctional monitoring, proving particularly effective in small-scale scenarios such
as swimming competitions. Imaging-based motion recognition remains dominant, offering
unparalleled accuracy advantages across most scenarios. As artificial intelligence continues
to develop, motion capture technology in sports will become more extensive and profound,
supporting healthier, more scientific, and efficient training methods.

The research outlook in this field focuses on the future development of motion cap-
ture technology in sports. With ongoing advancements in technology, motion capture
will provide even more accurate and objective data analysis and optimization solutions
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for athletes and coaches. Computer vision-based motion capture will see broader appli-
cations as improvements in capture accuracy, real-time performance, and stability are
achieved through the further development and optimization of computer vision technology.
Wearable sensor-based motion capture will grow in areas such as health monitoring and
sports training. Multimodal motion capture technology will become more accurate and
comprehensive, serving as a reliable solution for capturing complex scene motions. Addi-
tionally, the integration of emerging technologies like artificial intelligence will optimize
motion capture algorithms and models, enhancing the efficiency and accuracy of sports
performance analysis. In conclusion, motion capture technology brings opportunities and
challenges to the sports field, supporting the pursuit of healthier, more scientific, and
efficient training methods.
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