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Abstract: Multi-layer complex structures are widely used in large-scale engineering structures
because of their diverse combinations of properties and excellent overall performance. However,
multi-layer complex structures are prone to interlaminar debonding damage during use. Therefore,
it is necessary to monitor debonding damage in engineering applications to determine structural
integrity. In this paper, a damage information extraction method with ladder feature mining for Lamb
waves is proposed. The method is able to optimize and screen effective damage information through
ladder-type damage extraction. It is suitable for evaluating the severity of debonding damage in
aluminum-foamed silicone rubber, a novel multi-layer complex structure. The proposed method
contains ladder feature mining stages of damage information selection and damage feature fusion,
realizing a multi-level damage information extraction process from coarse to fine. The results show
that the accuracy of damage severity assessment by the damage information extraction method with
ladder feature mining is improved by more than 5% compared to other methods. The effectiveness
and accuracy of the method in assessing the damage severity of multi-layer complex structures
are demonstrated, providing a new perspective and solution for damage monitoring of multi-layer
complex structures.

Keywords: multi-layer complex structure; damage severity assessment; damage information extraction;
ladder feature mining

1. Introduction

Multi-layer complex structures consist of multiple layers of metallic, non-metallic
or composite laminates. They are components formed through the integration of special
processes such as structural coating, gluing and bonding [1]. The structures can overcome
the limitations of single material performance, with a variety of combination forms and
excellent comprehensive performance. In addition, the structures have the advantages
of high design efficiency, good corrosion and wear resistances, so they are increasingly
used in large equipment engineering structures [2]. For example, solid rocket engines [3],
aluminum-plastic composite pipes [4], steel-plastic composite pipes [5] and external sound-
absorbing tiles of submarines [6] all use multi-layer complex structures.

However, during service, multi-layer complex structures are prone to different forms
of damage because of static loads, external impacts, fatigue and other factors [7]. Among
different damages, debonding damage is difficult to detect due to its smallness, concealment
and complexity. However, debonding damage, as one of the most vulnerable types of
damage in multi-layer complex structures, not only affecting the strength and stability of
the structure but also leading to the loss of the overall function of the structure, resulting in
significant economic losses and accidents. Therefore, timely detection and assessment of
the debonding damage severity are of paramount significance in engineering to prevent
sudden damage and structural failure [8].
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Debonding damage in multi-layer complex structures is usually located in hidden
areas, making it difficult to detect by conventional non-destructive testing (NDT) methods.
In addition, long-term online monitoring of structures during service by NDT is very
difficult, especially for space-constrained or large-size multi-layer complex structures [9].
Therefore, structural health monitoring (SHM) technology is applied in this study as an
effective monitoring method for multi-layer complex structures. By deploying the network
of sensors on the structure, SHM can acquire the structural status in real time and realize
the intelligent monitoring of latent and extended structural damage [10].

There are many monitoring methods for SHM, such as the ultrasonic guided wave
method [11], the strain measurement method [12], the electromechanical impedance
method [13] and the self-sensing method [14]. Currently, the ultrasonic guided wave
(Lamb wave) monitoring method based on piezoelectric transducers (PZT) is one of the
most promising methods for damage monitoring [15]. It is capable of monitoring large areas
and has the advantages of fast response, sensitivity to small damages, high identification
accuracy and cost-effectiveness, which make it suitable for health monitoring of complex
plate structure [16].

In recent years, many researchers have started to focus on damage information ex-
traction methods, such as feature fusion, feature mapping or data fusion. The damage
information extraction methods can obtain more effective feature sets or datasets to charac-
terize the features, thereby improving the effectiveness of SHM. For instance, Tang et al.,
combined optimal path extraction with principal component analysis (PCA) techniques to
improve damage recognition accuracy through feature fusion [17]. Song et al., proposed
a feature fusion method based on multi-head attention mechanisms, which successfully
realized the cross-fertilization of local and global features [18]. Wang et al., proposed an
algorithm-centered domain-based adaptive feature mapping method for enhancing guided
wave information capable of characterizing damage [19]. Liao et al., introduced a method
for damage information enhancement and multi-path data fusion, which performed well
in damage localization and size quantification [20]. Furthermore, with the booming field of
machine learning, techniques such as Convolutional Neural Networks (CNN) [21], Support
Vector Machines (SVM) [22] and Random Forest (RF) [23] have been widely used in SHM.
However, all of the above damage information extraction methods have been used to assess
the damage of a single material or the same type of layup material. Some researchers have
also conducted studies on laminated structures made of different materials. Lugovtsova
et al., analyzed the propagation of guided waves in multi-layer complex plate of aluminum
and carbon fiber-reinforced composite (CFRP) by using the scaled-boundary finite-element
method (SBFEM) [24]. This study contributes to the understanding of wave propagation
laws in multi-layer structures. However, since multi-layer complex structures are usually
bonded by adhesives, it is difficult to realize high-fidelity simulations, and thus there is
a difference between the simulation results and experimental results. As a result, many
researchers have begun to focus on how to perform damage monitoring directly through
experimental signals and signal analysis. Yang et al., built an online monitoring system
for fully automatic detection using a coordinate transformation method and an ellipse
location algorithm in a hydrogen storage vessel (multi-layer complex structure) [25]. Lu-
govtsova et al., estimated the size, depth and location of impact damage in the delaminated
aluminum–CFRP composite plate by wavenumber mapping techniques [26]. Mehrabi et al.,
extracted important indices, such as the energy index (EI) and the amplitude index (AI),
from the experimental signals to calculate the length of debonding damage [27]. However,
it is difficult for independent features to strongly characterize the degree of damage. The
dispersion of damage features of multi-layer complex structures is strong because each layer
of material is different. There are few methods applicable to feature processing and damage
information extraction to assess the severity of damage in multi-layer complex structures.

The focus of this paper is on aluminum-foamed silicone rubber multi-layer complex
structures. The focus is on the assessment method of debonding damage severity applicable
to multi-layer complex structures. In this paper, the propagation law of Lamb waves in this
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structure is analyzed by experimental signals. A damage information extraction method
based on ladder feature mining is proposed. The method is able to optimize and screen
effective damage information through a ladder-type damage extraction method. It is
suitable for evaluating the severity of debonding damage in aluminum-foamed silicone
rubber, a novel multi-layer complex structure. This method contains ladder feature mining
stages of damage information selection and damage feature fusion. During the stage of
damage information selection, a dual localization method that operates in both the time and
frequency domains, changing from regional frequencies to precise frequencies, is proposed.
During the stage of damage feature fusion, a multi-dimensional dual feature fusion method,
transitioning from high-dimensional to low-dimensional, is proposed. Using the damage
information extraction method based on ladder feature mining, we can effectively locate
the monitoring frequency band that is most sensitive to damage, improve the recognition
accuracy of damage severity and optimize the monitoring effect.

The layout of this paper is as follows. Section 2 introduces the theory of Lamb wave
propagation in plate structures. Section 3 proposes a damage information extraction
method based on ladder feature mining. Section 4 describes the experimental setup and
arrangement. Section 5 presents the results and discussion. Finally, Section 6 summarizes
the conclusions.

2. Lamb Wave Propagation Theory in Plate Structures

The Lamb wave is an ultrasonic guided wave that propagates in thin plates with
similar thickness and wavelength. As ultrasonic waves propagate through a thin plate,
shear and longitudinal waves couple with each other to form a unique type of stress wave:
the Lamb wave [28]. The process of Lamb wave generation and propagation, shown in
Figure 1, involves multiple reflections between discontinuous interfaces of sound waves in
the medium, which interfere with each other to form complex waveforms and geometric
dispersion [29].
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Figure 1. Lamb wave propagation. (a) Schematic diagram of Lamb wave excitation–reception.
(b) Formation of Lamb in a free plate.

The Lamb wave has dispersive and multimodal properties. It can be categorized into
symmetric and antisymmetric Lamb waves, according to structural properties, as shown
in Figure 2. In the symmetric mode (symmetric wave, S mode), the vibration direction
of the plasmas is consistent with the propagation direction of the Lamb wave, which
is mainly affected by the radial displacement of the particles in the plane. In the anti-
symmetric mode (anti-symmetric wave, A mode), the vibration direction of the plasmas is
perpendicular to the propagation direction of the Lamb wave, which is mainly dominated
by the normal displacement of the particles out of the plane. Both modes contain multilevel
components that propagate independently in the plate and have different propagation
characteristics [30].
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The S and A modes are represented by Rayleigh–Lamb equations [30]:
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Equations (1) and (2) represent the S mode and the A mode, respectively, where k
is the wave number in the horizontal direction, h is the thickness of the plate, ω is the
angular frequency, CL and CT are the longitudinal and shear wave velocities, respectively.
The wave equation determines the multi-mode and frequency dispersion properties of the
Lamb wave.

In the quantitative monitoring of structural damage, the group velocity is usually used
to calculate the propagation time or propagation distance of the Lamb wave. The group
velocity refers to the lamb wave packet propagation velocity, which is the key to damage
monitoring. The group velocity, Cg, is usually defined as follows:

Cg =
∂ω

∂k
(4)

As the Lamb wave propagates through the structure to the damage site, one part of
the wave transmits and continues to propagate forward, while the other part generates a
reflected wave at the damage site. Since the damage may lead to changes in the medium’s
morphology, such as changes in the symmetry of the plate structure in the thickness
direction, it can exacerbate the dispersion phenomenon and lead to rapid attenuation of the
signal energy, among other things. Therefore, the amplitude, phase and other characteristic
parameters of the Lamb wave signal may change. The dispersion curve and characteristic
parameters of the Lamb wave can be used to obtain the wave propagation time or distance
to further determine the location or extent of damage.

3. Method

The flow of damage severity assessment of multi-layer complex structures based on a
damage information extraction method with ladder feature mining is shown in Figure 3. It
includes four parts: guided wave signal collection, damage information selection, damage
feature fusion and damage severity assessment.

The proposed damage information extraction method based on ladder feature mining
is mainly divided into a damage information selection stage and a damage feature fusion
stage. The methods of the two stages are highlighted below.
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3.1. Damage Information Selection Stage

In the damage information selection stage, a dual localization method from the regional
frequency to the precise frequency is proposed. The frequency information that best
characterizes the damage is jointly mined by the synergistic work of time domain and
frequency domain analyses. The specific steps are as follows.

1. According to the propagation law and propagation characteristics of the Lamb wave
in the multi-layer complex structure, a suitable monitoring frequency range A0–A1
is selected.

2. When the multi-layer complex structure is damaged to different degrees, we compare
the damage signals with the baseline signals under the monitoring frequency range
A0–A1. The time domain feature information is analyzed after extracting the time
domain features, such as the correlation coefficient, maximum value, variance and
root mean square. The frequency selection range is gradually narrowed down, and,
finally, a most sensitive frequency band B0–B1 is determined. In this experiment, the
selected optimal frequency band difference is 20 kHz.

3. Within the monitoring frequency of B0–B1, the frequency domain analysis based
on Fast Fourier Transform (FFT) is carried out on the scattered signals of different
degrees. Through the peak analysis of the spectrum, a common sensitive frequency
C0 is obtained, which is the optimal damage monitoring frequency.

The proposed dual information selecting method in both time and frequency domains
achieves the localization of excitation signals transitioning from regional frequencies to pre-
cise frequencies of the multi-layer complex structure. The most sensitive frequency bands
to damage are selected, laying a solid foundation for the subsequent feature fusion stage.
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3.2. Damage Feature Fusion Stage

In the damage feature fusion stage, a multi-dimensional dual feature fusion method,
transitioning from high-dimensional to low-dimensional, is proposed. Multidimensional
signal features that can characterize the damage of multi-layer complex structures are taken
as the research object. The feature dimensions are optimized by the cross-dimensional
dual feature fusion method. The mining of potential principal component information is
performed to achieve the purpose of feature approximate reduction and damage informa-
tion enhancement.

3.2.1. Multi-Dimensional Feature Extraction

Due to the strong dispersion of damage features in multi-layer complex structures,
multiple features that can characterize the damage information are first extracted from
different angles during the damage feature fusion stage. The features extracted based on
the time domain are shown in Table 1. The features include the correlation coefficient, the
maximum, the peak-to-peak, the root mean square and the variance of the signals. The
generation of damage is often accompanied by changes in waveform amplitude and phase.
Therefore, a Hilbert spectral envelope transform is performed on the sensing signals. The
peaks of the first and second wave packets and the corresponding time of flight are used
as features. The time domain energy ratio coefficients (SDT and SST) and the energy of
the Hilbert spectral envelope of the scattered signal are extracted as time domain features.
The above time domain features carry different damage information, respectively. The
core characteristics of the signal, such as similarity, peak, energy, phase and stability are
comprehensively portrayed in several aspects.

Table 1. Time domain feature parameters.

Feature Number Parameter Calculation Equation

1 Correlation coefficient Corr = Cov( f1(t), f2(t))
σf1(t)

σf2(t)
(5)

2 Maximum value Maximum = max( f1(t)− f2(t)) (6)
3 Peak-to-peak value Vpp = max( f1(t)− f2(t))− min( f1(t)− f2(t)) (7)
4 Root mean square RMS =

√
1
T
∫
( f1(t)− f2(t))

2dt (8)

5 Variance VAR = 1
T
∫
( f1(t)− f2(t)− 1

T
∫
( f1(t)− f2(t))dt)2dt (9)

6 Peak of the first wave P1 = max(H f2(t)
1 ) (10)

7 Flight time of the first wave FT1 =
N

max(H
f2(t)
1 )

N T (11)

8 Peak of the second wave P2 = max(H f2(t)
2 ) (12)

9 Flight time of the second wave FT2 =
N

max(H
f2(t)
2 )

N T (13)

10 SDT SDT =
∫
( f2(t))

2dt−
∫
( f1(t))

2dt∫
( f1(t))

2dt
(14)

11 SST SST =
∫
( f2(t)− f1(t))

2dt∫
( f2(t))

2dt
(15)

12 Envelope energy EnergyEnvelope =
∫

H f1(t)− f2(t)dt (16)

In Table 1, f 1(t) and f 2(t) are the baseline and damage signals, respectively. Hn
f(t) is the

nth wave packet of the Hilbert spectral transform of the f (t) signal. N is the total number of
samples. Nmax is the number of samples at which the peak point is located.

The features of the frequency domain based on the FFT are shown in Table 2. The
peak is a direct reflection of the intensity of a particular frequency component. The energy
reflects the distribution of the signal in the frequency domain. The frequency domain
energy ratio coefficients, SDS and SSS, are also important frequency domain features that
provide additional information for signal analysis. In Table 2, Ff(t) is the frequency domain
signal obtained after the FFT of the f (t) signal.
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Table 2. Frequency domain feature parameters.

Feature Number Parameter Calculation Equation

13 Maximum value MaximumF = max(F f1(t)− f2(t)) (17)
14 Energy EnergyF =

∫
F f1(t)− f2(t)dF (18)

15 SDS SDS =
∫
(F f2(t))

2
dF−

∫
(F f1(t))

2
dF∫

(F f1(t))
2
dF

(19)

16 SSS SSS =
∫
(F f2(t)− f1(t))

2
dF∫

(F f2(t))
2
dF

(20)

3.2.2. Dual Feature Fusion

In the dual damage feature fusion stage, in order to ensure that each feature has a
more balanced impact on the model, a normalization method is used in the preprocessing
stage. Normalization can solve the problem of features with different magnitudes and large
differences in the range of values. It makes the range of values between different features
consistent, thus optimizing the performance of the model. The formula for normalization
is the following [31]:

X(j)
NEW(i) =

Xi − Xmin

Xmax − Xmin
(21)

The feature dimension is fused for the first time by the RF algorithm. RF is an
integrated learning algorithm whose base unit is a decision tree model [32]. The RF
algorithm has the function of evaluating the importance of features by calculating the degree
of contribution of different features to each decision tree model [33]. This contribution can
be represented by calculating the mean square error (MSE) of out-of-bag (OOB) data.

The MSE is added as a performance measure to find the optimal value of the decision
tree. On the basis of this decision tree, the importance of each feature is measured by
calculating the average contribution of features. Then, feature selection is performed based
on feature importance to complete feature dimension optimization. The steps are as follows.

1. Obtain the value of the best decision tree. The feature matrix XNEW and the target
variable matrix y are separated. Different numbers of decision trees are iterated
by setting the seed of the random number generator. Each run evaluates the MSE
and selects the number of decision trees Nt that minimizes the MSE. The formula is
as follows:

meanResult =
1

numRuns

numRuns

∑
i=1

MSE(Model.pre(XNEW), y) (22)

Nt = argminnumRunsmeanResult (23)

Model.pre(XNEW) is the model predicting the input data XNEW, and y is the true target
variable. The purpose of Equation (22) is to calculate the MSE of the model in each run
(numRuns times) and then take the average. Equation (23) represents finding Nt that
minimizes the meanResult by traversing different Nt values.

2. Obtain feature importance. Construct the RF model using the optimal number of
decision trees. The feature importance scores are obtained by enabling the calculation
of feature importance for out-of-bag (OOB) sample prediction errors. The importance
of features φ can be expressed as follows:

φ(j) =
1

Nt

Nt

∑
i=1

(MSEOOB2i − MSEOOBi) (24)

MSEOOB2i is the mean square error of the prediction of the ith tree using the OOB data
after adding random noise. MSEOOBi is the mean square error of the prediction of the ith
tree using the original OOB data.
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3. Feature selection: The features are ranked according to their importance. The top
50% of features in terms of importance are filtered from highest to lowest to complete
the first damage feature fusion. The feature set obtained from this feature dimension
optimization process is XNEW’.

The feature dimension is fused for the second time by PCA. PCA is an information
fusion technique that preserves data information and performs dimensional fusion. For the
selected feature matrix XNEW’, the covariance matrix is obtained by calculating the transpose
matrix of the feature matrix. Then, principal components are obtained by eigenvalue
decomposition. The dataset after PCA fusion is X’. The equation is the following [34]:

X′ = XNEW
′ · V (25)

where V is the matrix containing the principal components. The fusion of data dimensions
is achieved by selecting the number of principal components to be retained.

In the damage feature fusion stage, a dual feature fusion method of feature dimen-
sion optimization and feature dimension fusion is proposed. The method realizes the
multi-dimensional fusion process from high to low dimensions. It is suitable for damage
monitoring of multi-layer complex structures with strong damage feature dispersion. The
RF feature dimension optimization method and the PCA feature dimension fusion method
are mentioned at this stage. The two methods have their respective advantages and lim-
itations. However, the dual feature fusion method, which combines the two methods,
is able to overcome their respective limitations and has the advantages of strong model
generalization, low risk of overfitting, applicability to small sample data and low time cost.
The comparison of these methods is shown in Table 3.

Table 3. Comparison of advantages and limitations of different methods.

Method Advantages Limitations

RF feature
dimension

optimization

Robustness
Ability to handle non-linear

relationships

Easily overfitted
Large time cost

PCA feature
dimension fusion

Computationally efficient
Highly interpretable

Easy to lose information
Difficulty in capturing
nonlinear relationships

RF + PCA dual
feature fusion

Strong model generalization ability
Low risk of overfitting

Applicable to small sample data
Low time cost

Some information
may be lost

4. Experimental Program
4.1. Multi-Layer Complex Structure Preparation

The multi-layer complex structure in this experiment consists of a 350 mm × 150 mm
× 2 mm 6061 aluminum plate and a 350 mm × 150 mm × 1 mm foamed silicone rubber
plate. The bonding material for the laminated structure is GXA120 toughened epoxy film.
It offers excellent stability in joining multi-layer laminated structures to the core material.
The preparation process of the experimental material is shown in Figure 4.

First, the surface of the plates was cleaned and dried to remove impurities and mois-
ture. Then, the treated sheets and films were stacked on the bottom mold in the specified
order and covered with the top mold. The mold was sealed with a vacuum bag to achieve
a uniform force on the material during the curing process. It was placed in a high tempera-
ture oven and cured at 105 ◦C for 180 min. Finally, the cured multi-layer complex structure
was annealed and removed. The prepared aluminum-foamed silicone rubber multi-layer
complex structure was obtained.
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4.2. Sensor Signal Test

The damage monitoring system is shown in Figure 5. The monitoring system com-
prises a 128-channel switch control system, a host system, a software system and associated
accessories. The dimensions of the switch control system are 223 mm × 201 mm × 49 mm,
and the host system measures 300 mm × 226 mm × 50 mm. The monitoring system was
developed by Dalian Junsheng Technology Co. It allows signal collection by providing
a five-cycle Hanning window sinusoidal waveform on the transmitter while obtaining
measurements on the receiver. The main technical indicators of the equipment are shown
in Table 4.
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Figure 5. Multi-channel damage monitoring system.

Table 4. Monitoring equipment technical indicators.

Technical Parameter Value

Excitation frequency range 10–1000 kHz
Conversion rates 48 MHz

Output voltage range Min: ±10 V; Max: ±60 V
Memory 32,000 Samples

Sampling rates 6, 12, 24, 48 MHz/s
Resolution 12-bit
ADC range ±1 V

Adjustment range 10–40 dB, step: 1 dB

A five-cycle sine wave was used as the excitation signal in the experiment. PZT sensors
of 8 mm diameter and 0.33 mm thickness were used as both the activator and the receiver.
An epoxy adhesive (Hysol EA 9394) was used to firmly adhere the PZT sensors to the
structure. This adhesive can be cured at room temperature and has a high bond strength.
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Before the damage monitoring experiments were conducted, the multi-layer complex
structure was tested for optimal sensing distance. As shown in Figure 6, six PZT sensors
were linearly adhered to the surface of the aluminum plate at 5 cm intervals. This produced
sensing signals at distances of 5 cm, 10 cm, 15 cm, 20 cm and 25 cm. After analyzing
and comparing the sensing signals at different distances, the optimal sensing distance can
be determined.
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Repeatability tests were also performed on the sensing signals of the multi-layer
complex structure. The repeatability test was performed at the optimal sensing distance.
Baseline signals were captured in the frequency range of 20–300 kHz. Subsequently,
experimental signals were recaptured after 1, 3, 5, 10 and 15 days. The acquired signals
were analyzed for correlation with the initial baseline signal. The correlation index (Ci) is
expressed in Equation (26). Ci represents the correlation between the signals on the ith day
and signals on the 0th day; f 0(t) denotes the sensing signal in the initial state (on the 0th
day) under the excitation signal frequency of m kHz; fi(t) represents the sensing signal on
the ith day under the excitation signal frequency of m kHz.

Ci =

300
∑

m=20
corr( f 0(t), f i(t))

281
(26)

4.3. Verification of Damage Monitoring Ability

The debonding of the structure can occur due to stress concentrations or adhesive
failure. The damage may also cause partial damage to the bonding interface material
during damage extension. Therefore, we continuously used a knife to remove the epoxy
resin film to simulate the debonding extension process without using Teflon or other paper
materials to simulate the damage. The width of the damage for the experiment was set at
4 cm. Damage length was increased from 0 to 15 cm at 1 cm intervals, as shown in Figure 7.
In the assessment of damage severity, the damage length of 1–5 cm is classified as damage
severity 1, the damage length of 6–10 cm is classified as damage severity 2 and the damage
length of 11–15 cm is classified as damage severity 3.

During damage monitoring, two PZT sensors were fixed on the material surface at a
distance of 15 cm (the optimal monitoring distance). One of them was used to transmit the
signal and the other was used to receive the signal. The excitation signal was a 5-period
tone burst signal (modulated by a Hanning window). The signal gain was 25 dB, the
amplitude of the excitation signal was 100 V, and the sampling rate was 12 MHz/s. The
excitation frequency range was set to 20–300 kHz by analyzing the Lamb wave signals in
the structure.
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5. Results and Discussion
5.1. Guided Wave Signal Analysis of Multi-Layer Complex Structure
5.1.1. Structural Signal Testing and Analysis

The distance test results of the multi-layer complex structure are shown in Figure 8.
When the sensing distance is 5 cm or 10 cm, the five-wave peak signal received for the
first time is easily mixed with other modal signals and crosstalk signals, which makes
subsequent signal analysis difficult. At a sensing distance of 25 cm, the signal amplitude
is relatively small. The proximity of the sensor to the edge of the structure produces a
boundary reflection signal that may affect the accuracy of the direct signal. In contrast, at
sensing distances of 15 cm and 20 cm, the signal quality is better, especially at 15 cm, where
the first five-wave peak signal is more complete, facilitating signal processing and analysis.
Therefore, the sensing distance of 15 cm is the optimal monitoring distance.

The results of the repeatability experiments of the sensing signals are shown in Table 5.
Specifically, the correlation index Ci of the signal on day 1 was 99.87%. The Ci values of
day 3, 5, 10 and 15 are 98.62%, 97.97%, 96.45% and 96.40%, respectively. The values of all
Ci exceed 95% within 15 days, further confirming the stability and reproducibility of the
sensor materials and signals.

Table 5. Repeatability of multi-layer complex plate signals based on correlation index.

Date Day 1 Day 3 Day 5 Day 10 Day 15

Correlation index (Ci) 99.87% 98.62% 97.97% 96.45% 96.40%
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Figure 8. Comparison of the received signals of the multi-layer complex structure at different
sensing distances.

5.1.2. Damage Signal Processing

The baseline signal and the damage signals for damage lengths of 5 cm, 10 cm and
15 cm, respectively, are shown in Figure 9a. As can be seen from the partially enlarged
detail in the lower right corner, the peak of the direct wave gradually increases, and the
phase gradually shifts to the right as the damage length increases. All damage signals are
converted into the corresponding scattered signals shown in Figure 9b.
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Figure 9. Comparison of signals without damage and signals with different damage lengths. (a) Base-
line signals and damage signals. (b) Undamaged and damaged scattered signals.

In the Hilbert transform, the sampling time window is 70–300 µs, which avoids
crosstalk signals in the early stage, reflected waves in the late stage and multimodal waves.
Figure 10 shows the variation process of damage signal and scattered signal when the
damage lengths are 1 cm, 3 cm, 5 cm, 7 cm, 9 cm, 11 cm, 13 cm and 15 cm, with an excitation
frequency of 75 kHz. Overall, the first three wave packets are more sensitive to damage
occurrence. The amplitude of the scattered signal increases gradually with the increase
in the damage length. When the damage occurs in the early stage, the damage is mainly
reflected in the change of the second wave packet. However, as the damage gradually
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extends from the edge to the sensor’s connection line, the sensitivities of both the first
direct wave packet and the third wave packet to the damage gradually increase. Therefore,
subsequent damage features will be performed for the first three wave packets.
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Figure 10. Hilbert transform of baseline, damage and scattered signals of different damage lengths.
(a) Damage length: 1 cm. (b) Damage length: 3 cm. (c) Damage length: 5 cm. (d) Damage length:
7 cm. (e) Damage length: 9 cm. (f) Damage length: 11 cm. (g) Damage length: 13 cm. (h) Damage
length: 15 cm.
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5.2. Dual Damage Information Selection Based on Time and Frequency Domains

This section describes the damage information selection method based on a combina-
tion of time and frequency domains. The correlation between the damage signal and the
baseline signal in the excitation frequency range of 20–300 kHz is explored in Figure 11a.
The shapes of the correlation coefficient curves are different for different frequencies. How-
ever, the general trend is that the correlation coefficient decreases with increasing damage
length. The most significant change in the correlation coefficient occurs in the 70–90 kHz
band. It indicates that the sensitivity of damage monitoring is higher in this frequency
band. Similarly, the maximum values of the scattered signal are shown in Figure 11b. It
shows a non-linear relationship with the damage length, but the most significant changes
are observed in the 70–90 kHz band. Thus, this step localizes the frequency from a large
range of 20–300 kHz to a small range of 70–90 kHz. It is the first step in the process of
damage information selection based on the time domain analysis.
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Figure 11. The correlation coefficient of the acquired signal and the maximum of the scattered signal
at the excitation frequency of 30–300 kHz. (a) Correlation coefficient. (b) Maximum.

From the point of view of signal energy, the root mean square and variance reflect the
overall energy level of the scattered and acquired signals. Figure 12 shows the signals in the
frequency range of 70–90 kHz. It can be noticed that the root mean square shows a similar
linear growth trend with increasing damage length, while the variance shows a similar
exponential growth, indicating that the energy-centered analysis is also an important
characterization parameter. In addition, the curves of root mean square and variance in the
frequency range of 70–90 kHz show small differences at different frequencies, respectively.
It has been proven that the energy characterizations are similar for different frequencies
in this band. Further selection of damage information through the frequency domain
is needed.

After performing FFT on signals with different damage lengths at an excitation fre-
quency of 70–90 kHz, it can be found that most of the spectral peaks occur at 73 kHz.
Figure 13 shows the spectrogram plots after FFT and the time-frequency plots after Short
Time Fourier Transform (STFT) for the damage length of 5 cm. It can be clearly seen from
the figure that a peak at 73 kHz appears in all the spectrograms from 70 to 90 kHz, which
fully indicates that the 73 kHz frequency is the most sensitive to damage. Meanwhile, the
time frequency diagram also demonstrates the variation of the damage signal in time and
frequency. Therefore, in the subsequent feature fusion and damage quantization analysis,
we use 73 kHz as the excitation frequency for feature extraction of multi-layer complex
structures. Therefore, this step localizes the frequency from a small range of 70–90 kHz to a
precise frequency of 73 kHz. The second step of damage information selection based on the
frequency domain analysis is realized.
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Figure 12. The RMS and VAR of the scattered signal at the excitation frequency of 70–90 kHz. (a) Root
mean square. (b) Variance.
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Figure 13. Spectrum and time frequency diagrams of scattered signals: (a) 70 kHz; (b) 75 kHz;
(c) 80 kHz; (d) 85 kHz; (e) 90 kHz.
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5.3. Dual Damage Feature Fusion Based on Dimension Optimization and Dimension Fusion

After dual damage information selection based on time and frequency domains, the
experiment locates the exact excitation frequency information of 73 kHz. On this basis, this
section will further feature mine the damage information. A total of 16 damage features that
can characterize the damage signal are extracted according to Tables 1 and 2. Meanwhile,
all the features are normalized, and the normalized features are shown in Figure 14.
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Figure 14. Normalized features. (a) Features 1–5. (b) Features 6–9. (c) Features 10–12.
(d) Features 13–16.

After feature normalization, the importance of each feature is evaluated using the
RF algorithm. The output of each decision tree is traversed, compared and analyzed to
produce the most robust decision. Figure 15 illustrates the importance of the 16 features.
After the analysis, it can be seen that eight features (1, 3, 5, 6, 7, 12, 14 and 16) are more
important and are selected. Therefore, the step completes the dimension optimization from
16 to 8 features, which is the first step in damage feature fusion.
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Figure 15. Importance of individual features.

The damage is classified into three categories: damage severity 1, damage severity 2
and damage severity 3. The optimized dimensions are fused using PCA. The fusion results
are shown in Figure 16. This method is effective in distinguishing the damage severity,
which proves that the features can effectively characterize damage severity after dimension
optimization and dimension fusion. Therefore, the step completes the information fusion
of 8-dimensional features, which is the second step in damage feature fusion.
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Figure 16. Different damage severities based on dual feature fusion.

5.4. Damage Severity Identification Results

A SVM classifier is used to evaluate the damage degree to verify the effectiveness
of the proposed damage information extraction method based on ladder feature mining.
Testing sets are randomly selected for validation from the undamaged samples and from
the samples with three different damage severity degrees, respectively. Ten-fold cross-
validation is used to validate the results to reduce the chance of the accuracy results. There
are ten model sample selections. Among them, the sample selection for Model 1 is shown
in Table 6.
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Table 6. Sample selection order for Model 1 in ten-fold cross-validation.

Model 1 2 3 4 5 6 7 8 9 10

Non-damage 3 1 2 1 4 2 3 2 1 5
Damage severity 1 6 8 10 8 10 7 8 10 6 10
Damage severity 2 14 15 14 12 11 12 13 13 11 15
Damage severity 3 18 19 20 17 20 16 16 19 18 20

The damage severity identification accuracies of the normalization, normalization + di-
mension optimization, normalization + dimension fusion and normalization + dual feature
fusion methods are compared sequentially. Figure 17 shows the accuracies of the different
methods after ten-fold cross-validation. Table 7 provides the final identification accuracies.
It is clear that the highest identification accuracy of 96% is achieved by the dual feature
fusion method. This method improves the accuracy by 12.25% compared to the accuracy
without feature fusion, and it improves accuracy by 7% and 5.75% compared to the two
methods that performed only one fusion. Both methods that perform feature fusion only
once have higher identification accuracy rates compared to the methods without feature
fusion. It confirms that the proposed method can accurately and efficiently recognize
damage severity. In addition, feature fusion processes of feature dimension optimization
and feature dimension fusion both contribute to identification accuracy.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 21 
 

 

Table 6. Sample selection order for Model 1 in ten-fold cross-validation. 

Model 1 2 3 4 5 6 7 8 9 10 

Non-damage 3 1 2 1 4 2 3 2 1 5 

Damage severity 1 6 8 10 8 10 7 8 10 6 10 

Damage severity 2 14 15 14 12 11 12 13 13 11 15 

Damage severity 3 18 19 20 17 20 16 16 19 18 20 

The damage severity identification accuracies of the normalization, normalization + 

dimension optimization, normalization + dimension fusion and normalization + dual fea-

ture fusion methods are compared sequentially. Figure 17 shows the accuracies of the dif-

ferent methods after ten-fold cross-validation. Table 7 provides the final identification ac-

curacies. It is clear that the highest identification accuracy of 96% is achieved by the dual 

feature fusion method. This method improves the accuracy by 12.25% compared to the 

accuracy without feature fusion, and it improves accuracy by 7% and 5.75% compared to 

the two methods that performed only one fusion. Both methods that perform feature fu-

sion only once have higher identification accuracy rates compared to the methods without 

feature fusion. It confirms that the proposed method can accurately and efficiently recog-

nize damage severity. In addition, feature fusion processes of feature dimension optimi-

zation and feature dimension fusion both contribute to identification accuracy. 

 

Figure 17. The damage severity identification results of different methods by ten iterations of ten-

fold cross-validation. 

Table 7. Damage severity identification accuracies of different methods. 

Methods Accuracy 

Normalization 83.75% 

Normalization + Dimension optimization 89.00% 

Normalization + Dimension fusion 90.25% 

Normalization + Dual feature fusion 96.00% 

6. Conclusions 

In this article, the propagation of guided wave signals in aluminum-foamed silicone 

rubber multi-layer complex structures and the processing of damage information are an-

alyzed. A damage information extraction method with ladder feature mining is proposed. 

During the damage signal selection stage of the method, a dual localization method in 

both time and frequency domains, transitioning from regional frequencies to precise fre-

quencies, is proposed. A precise frequency of 73 kHz is localized from a large regional 

frequency range of 20–300 kHz to select the most sensitive excitation frequency for dam-

age detection. During the signal fusion stage of the method, a multi-dimensional dual 

feature fusion method from high to low dimensions is proposed. It achieves RF-based 

feature dimension optimization and PCA-based feature dimension fusion. The results 

show that the proposed damage information extraction method is effective for damage 

severity assessment. The accuracy of damage severity identification using this method 

0.825 0.825 0.85 0.8 0.85 0.825 0.875 0.825 0.85 0.85

0.9 0.925 0.85 0.875 0.85 0.925 0.875 0.925 0.875 0.9

0.925 0.875 0.9 0.95 0.875 0.95 0.875 0.95 0.85 0.875

0.95 0.925 0.975 1 0.975 0.975 0.95 0.925 0.95 0.975

1 2 3 4 5 6 7 8 9 10

Model

0.800

0.850

0.900

0.950

1.000

Normalization +
Dual feature fusion

Normalization +
Dimension fusion

Normalization +
Dimension optimization

Normalization

Figure 17. The damage severity identification results of different methods by ten iterations of ten-fold
cross-validation.

Table 7. Damage severity identification accuracies of different methods.

Methods Accuracy

Normalization 83.75%
Normalization + Dimension optimization 89.00%

Normalization + Dimension fusion 90.25%
Normalization + Dual feature fusion 96.00%

6. Conclusions

In this article, the propagation of guided wave signals in aluminum-foamed silicone
rubber multi-layer complex structures and the processing of damage information are ana-
lyzed. A damage information extraction method with ladder feature mining is proposed.
During the damage signal selection stage of the method, a dual localization method in both
time and frequency domains, transitioning from regional frequencies to precise frequencies,
is proposed. A precise frequency of 73 kHz is localized from a large regional frequency
range of 20–300 kHz to select the most sensitive excitation frequency for damage detection.
During the signal fusion stage of the method, a multi-dimensional dual feature fusion
method from high to low dimensions is proposed. It achieves RF-based feature dimension
optimization and PCA-based feature dimension fusion. The results show that the proposed
damage information extraction method is effective for damage severity assessment. The
accuracy of damage severity identification using this method reaches 96%, which is im-
proved by 12.25% compared to other methods. However, there are still some shortcomings.
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The sample size of real damage obtained in this study is small, and the sensor layout is
sparse. The accuracy of localization and quantification needs to be further explored. In
addition, the damage extension path is relatively simple, but its generalization ability needs
to be improved.
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