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Abstract: Background and Objectives: Infertility rates and the number of couples undergoing reproduc-
tive care have both increased substantially during the last few decades. Semen analysis is a crucial
step in both the diagnosis and the treatment of male infertility. The accuracy of semen analysis results
remains quite poor despite years of practice and advancements. Artificial intelligence (AI) algorithms,
which can analyze and synthesize large amounts of data, can address the unique challenges involved
in semen analysis due to the high objectivity of current methodologies. This review addresses re-
cent AI advancements in semen analysis. Materials and Methods: A systematic literature search was
performed in the PubMed database. Non-English articles and studies not related to humans were
excluded. We extracted data related to AI algorithms or models used to evaluate semen parameters
from the original studies, excluding abstracts, case reports, and meeting reports. Results: Of the
306 articles identified, 225 articles were rejected in the preliminary screening. The evaluation of
the full texts of the remaining 81 publications resulted in the exclusion of another 48 articles, with
a final inclusion of 33 original articles in this review. Conclusions: AI and machine learning are
becoming increasingly popular in biomedical applications. The examination and selection of sperm
by andrologists and embryologists may benefit greatly from using these algorithms. Furthermore,
when bigger and more reliable datasets become accessible for training, these algorithms may improve
over time.

Keywords: artificial intelligence; machine learning; deep learning; semen; sperm

1. Introduction

Infertility is defined as the failure to achieve a pregnancy despite engaging in regular,
unprotected intercourse for at least a year [1,2]. While this condition affects more than
80 million couples in the reproductive age group worldwide, the male factor is reportedly
responsible for approximately 50% of all infertility cases [3,4]. Laboratory evaluation of
male infertility is currently performed by analyzing fresh semen specimens as per the WHO
guidelines [2]. Such evaluations include examining both macroscopic (semen volume, vis-
cosity, consistency, pH) and microscopic (sperm concentration, motility, morphology, and
other cellular components) elements. Despite years of practice and advances, standard
semen analysis still has high variability with relatively low accuracy and specificity [5].
Furthermore, inter- and intra-observer variations also affect the semen analysis results,
mainly as a result of not fully adhering to the WHO guidelines [3,6]. There are significant
challenges in performing standardized semen analysis, conducting vigorous training, and
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comparing results across various laboratories [4]. In an attempt to overcome such limita-
tions and to better standardize the analysis, numerous semi- and completely automated
computer-assisted semen analysis (CASA) systems have been developed. However, while
automation of the semen analysis process is desirable, CASA systems are still far from
being perfect, particularly due to the inaccurate identification of spermatozoa from other
seminal components of comparable size, such as spherical cells, cytoplasmic droplets, or
other debris, which represent the main challenges [4,7].

The ability to simulate human cognitive processes using a machine is known as
artificial intelligence (AI). AI can perform jobs more effectively than humans with the clever
integration of computer science, algorithms, machine learning (ML), and data sciences [8].
In neural-network-based ML, algorithms are created where machines learn and solve
problems like the human mind [9]. AI-based approaches are currently used to generate
real-time estimations of health risks for the diagnosis of various diseases, including skin,
liver, and heart diseases, as well as Alzheimer’s [10], in an effort to minimize errors in
medical practice involving diagnosis and treatment [11,12]. Similarly, the use of ML in
laboratory practices is gaining popularity. A simple example of ML utilized in the laboratory
is linear regression analysis, which forecasts standard instrument calibration [13]. These
developments hold promise for laboratory testing, serving as a major foundation for clinical
decision making [14].

Although AI technology has been evolving since the 1950s [15], it was first applied
to male reproductive health in the early 2010s [16]. As AI becomes increasingly popular,
algorithms are being trained and developed using data on age, abstinence period, semen
parameters, cigarette smoking, and hematological status to predict sperm DNA damage
and infertility conditions such as azoospermia [17–19]. Similarly, ML algorithms combined
with digital holographic microscopy were used to assess the impact of oxidative damage
on sperm motility and morphology [20]. In recent years, there has been a significant
increase in the usage of AI, particularly in the analysis of sperm morphology and motility,
as well as in improving the selection of the most appropriate sperm cells for use in assisted
reproductive technology (ART) procedures [12]. Our current systematic review aims to
discuss such involvement of AI and its potential applications in advancing our knowledge
in andrology laboratory procedures such as semen analysis, detecting sperm DNA integrity,
and predicting the success of surgical testicular sperm extraction (TESE).

2. Materials and Methods

We conducted a systematic literature search in PubMed, following the PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines [21]. The
search was limited to scientific articles published until July 2023. The following keywords
were used to retrieve the articles: (semen OR semen quality OR semen parameters OR
semen analysis OR sperm morphology OR sperm motility OR sperm viability OR sperm
selection) AND (artificial intelligence OR machine learning OR deep learning). Figure 1
explains the steps involved in the identification of relevant articles. We extracted these
data from the original studies while excluding abstracts, case reports, and meeting reports.
Non-English articles and studies not related to humans were also excluded. The retrieved
articles were screened for title and abstract independently by two authors. Furthermore,
the full-text articles were evaluated for eligibility based on predefined inclusion criteria. To
be considered for inclusion, studies had to discuss any type of AI method (such as machine
learning, neural networks, deep learning, etc.) or perform the full or semi-autonomous
analysis of any semen parameter or sperm DNA integrity or predict success of TESE.
Studies involving only AI or ML and not focusing on semen parameters were excluded.
Similarly, studies on semen parameters not highlighting the involvement of either form of
AI or ML were also excluded.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis flow diagram of
study identification and selection.

3. Results

A total of 306 papers were identified after a thorough literature evaluation using
PubMed database search. Eighty-one publications were selected after initial screening;
these included various AI applications used to evaluate semen parameters. The evaluation
of the full texts resulted in the exclusion of another 48 publications, with a final inclusion of
33 original articles in this systematic review (Figure 1, Supplementary Table S1).

4. Discussion
4.1. AI in Evaluation of Sperm Concentration or Total Count

Poor semen quality with reduced sperm concentration or total count is linked with
a majority of male infertility cases. Hemocytometry, microfluidic techniques, spectropho-
tometry, and CASA systems are common methods for measuring sperm concentration
or count [22]. CASA is the most effective approach for analyzing semen in clinics due
to its quick turnaround time in reporting the results [7,23]. On the other hand, CASA
systems are expensive, with system-to-system variation in sperm image processing that
adversely affects the results of estimated sperm concentration or count [24]. AI has become
widely accepted in medical applications that can deal with big data and heterogeneous
information [25]. Semen samples contain heterogeneous populations of sperm and other
non-sperm cells. Hence, applying ML and AI tools in semen analysis may be useful in
improving the accuracy of the results. Studies that used ML and AI tools to assess sperm
concentration or count are listed in Table 1.
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Table 1. Artificial intelligence (AI) and machine learning (ML) algorithms used to evaluate sperm
concentration or count.

Studies Dataset/Sample Algorithm or Model Performance or Outcomes

Ory et al.,
2022 [26] Semen Logistic regression,

SVM and RF Good predictive accuracy with AUC = 0.72

Lesani et al.,
2020 [23] Semen FSNN, SPNN Prediction accuracy:

SPNN = 86%, FSNN = 93%

Tsai et al.,
2020 [27] Semen Image recognition

algorithm

AI algorithm vs. manual analysis: sperm
concentration (r = 0.65, p < 0.001), motile
sperm concentration (r = 0.84, p < 0.001)

Girela et al.,
2013 [25] Semen ANN Accuracy = 90%, sensitivity = 95.45%,

specificity = 50%, PPV = 93.33%, NPV= 60%
ANN—artificial neural network; AUC—area under the curve; FSNN—full-spectrum neural network; NPV—negative
predictive value; PPV—positive predictive value; RF—random forest; SPNN—selected peak neural network;
SVM—support vector machine.

AI tools can predict sperm concentration or count with the highest accuracy of 90%,
among other seminal parameters [25]. Advanced ML algorithms also demonstrated a good
correlation among semen parameters (total sperm count and total motile sperm) reported
automatically using AI compared to manual evaluation [27]. Recently, an artificial neural
network (ANN) algorithm was used to forecast the outcomes of a semen analysis. An FSNN
(full-spectrum neural network) model, an ANN-based spectrophotometry methodology
which is a quick, inexpensive, and effective, could predict sperm concentration with an
accuracy of 93%, with significant positive correlation (R2 = 0.98, p ≤ 0.05) with clinical
data [23]. AI-based models were also developed to estimate the possibility of an increase in
sperm concentration following varicocele repair [26].

4.2. AI in Evaluation of Sperm Motility

The sperm motility and kinematics results reported by CASA systems are very reliable,
as they show a high correlation with manual semen analysis. However, CASA systems
fail to describe the motility or kinematics at the level of a single sperm [28,29]. Despite the
automation of sperm motility analysis by CASA, their operational difficulties limit their
widespread acceptance [30]. To overcome these problems, several researchers have used AI
to categorize the motility of the whole sample as well as individual spermatozoa [17,29,31].
Table 2 summarizes the AI algorithms used to evaluate and predict total sperm motility.

Table 2. Artificial intelligence (AI) and machine learning (ML) algorithms used to evaluate
sperm motility.

Studies Dataset/Sample Algorithm or Model Performance or Outcomes

Ottl et al., 2022 [32] VISEM SVR, MLP, CNN,
RNN

Mean absolute error (MAE):
SVR = 9.29, MLP = 9.50, CNN = 9.22,
RNN = 9.86

Somasundaram and
Nirmala 2021 [33] Semen THMA Accuracy = 97.37%, with minimum

execution time of 1.12 s.

Tsai et al., 2020 [27] Semen Bemaner AI
algorithm

AI algorithm vs. manual analysis:
r = 0.90, p < 0.001

Valiuškaitė et al.,
2020 [34] VISEM CNN MAE for predicted sperm

motility = 2.92

Goodson et al.,
2017 [29] Semen SVM Accuracy = 89.9%

Girela et al.,
2013 [25] Semen ANN

Accuracy = 82%, sensitivity = 89.29%,
specificity = 43.75%, PPV = 89.29%,
NPV = 43.75%

ANN—artificial neural network; CNN—convolutional neural network; MLP—multilayer perceptron; RNN—recurrent
neural network; SVM—support vector machine; SVR—linear support vector regressor; THMA—tail-to-head
movement algorithm.
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Convolutional neural networks (CNNs) are notable AI algorithms developed by the
integration of videotape recordings of sperm movement to categorize sperm motility
into progressive, non-progressive, and immotile [31]. These CNN algorithms are also
trained using sperm videos from the multinational video dataset of human spermatozoa
(VISEM) [32,34]. Sperm head movement predicted by the R-CNN (region-based CNN)
tracking algorithm had a very good positive correlation (r = 0.969) with laboratory analysis
methods [34].

Besides CNNs, other ML models, such as support vector machine learning (SVM) and
ANNs, are also well suited to tracking sperm motility. The SVM model classifies sperm
motility as weak, non-vigorous, hyperactivated, intermediate, and progressive, with a
predictive accuracy of 89% [29]. In contrast, the ANN model’s accuracy for evaluating
total sperm motility is slightly lower than concentration [25]. Furthermore, AI-based
image recognition of sperm motility coupled with a smartphone interface has been shown
to accurately evaluate total motile sperm concentration (r = 0.84, p ≤ 0.05) and motility
percentage (r = 0.90, p ≤ 0.05) [27].

In addition, AI plays an important role in accurately monitoring the characteristics
of individual sperm. When coupled with additional ML models that examine sperm
motility, there is a real possibility of automating the selection of a single excellent sperm
for successful intra-cytoplasmic sperm injection (ICSI). Neural networks can improve the
accuracy, speed, and dependability of automated single sperm identification procedures for
ICSI, where intra- and inter-operator variation are unavoidable [28]. A faster region CNN
(FR-CNN) was used to train a novel tail-to-head movement (THMA) algorithm to measure
sperm motility, and its tracking capacity had a 97% success rate of accurately classifying
individual sperm into low, moderate, and high motility [33].

4.3. AI in Evaluation of Sperm Morphology

Examining sperm morphology is one of the microscopic evaluations in a semen
analysis that examines the form, shape, and size of spermatozoa [35]. Male fertility is
significantly impacted by the morphological abnormalities of sperm [36]. It has proven
difficult to standardize sperm morphology evaluation compared to other parameters such
as concentration and motility. Several AI and ML-based models are being continuously
trained using morphology characteristics as per WHO guidelines to classify spermatozoa as
normal or abnormal [28]. AI-based morphology is evaluated based on the head dimensions
alone or combined with other parts (mid-piece and tail) of spermatozoa [28]. Table 3
summarizes the AI algorithms used to analyze human sperm morphology. Two of the
most commonly utilized AI algorithms for morphology analysis are deep neural networks
(DNNs) and SVM. These AI algorithms and ML models were mainly trained using sperm
images from different datasets such as Human Sperm Head Morphology (HuSHeM) [37],
the gold-standard dataset for the morphological classification of human sperm heads
(SCIAN) [38], and the Modified Human Sperm Head Morphology Analysis (MHSMA) [39].

Table 3. Artificial intelligence (AI) and machine learning (ML) algorithms used to evaluate sperm
morphology.

Studies Dataset/Sample Algorithm or Model Performance or Outcomes

Sato et al.,
2022 [40] JSD DL

Abnormal sperm: sensitivity = 0.881 and
PPV = 0.853
Normal sperm: sensitivity = 0.794 and
PPV = 0.689

Abbasi et al.,
2021 [41] MHSMA DTL

DMTL
Detection accuracy: head = 84.0%,
acrosome = 80.66%, and vacuole = 94.0%

Marín and
Chang 2021 [35]

SCIAN-
SpermSegGS

DL, U-Net, and
Mask-RCNN

Dice coefficient using U-net with transfer
learning: head = 0.96, acrosome = 0.94, and
nucleus = 0.95

Nygate et al.,
2020 [42] Semen DL, HoloStain Virtual (holostain) vs. chemical staining:

structural similarity (SSIM) = 0.85 ± 0.03
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Table 3. Cont.

Studies Dataset/Sample Algorithm or Model Performance or Outcomes

Valiuškaitė et al.,
2020 [34] VISEM CNN Accuracy of sperm head detection = 91.77%

Dubey et al.,
2019 [20] Semen SVM Accuracy = 89.93%, sensitivity = 91.18%,

and specificity = 88.61%

Javadi and
Mirroshandel
2019 [39]

MHSMA DL Detection accuracy: acrosome = 76.67%,
head = 77.00%, vacuole = 91.33%

Movahed et al.,
2019 [43] SCIAN CNN and SVM

Dice coefficient: head = 0.90, axial
filament = 0.77, acrosome = 0.77,
nucleus = 0.78, tail = 0.75, and
mid-piece = 0.64

Riordon et al.,
2019 [44]

HuSHeM and
SCIAN Deep-CNN, VGG16 Increased true positive rate: HuSHeM

dataset = 94.1%, SCIAN dataset = 62%

Mirsky et al.,
2017 [45] Semen SVM Good accuracy with AUC = 89.59%

Shaker et al.,
2017 [46]

SCIAN and
HuSHeM Dictionary learning Detection accuracy: HuSeM dataset = 92%,

SCIAN dataset = 62%

Shaker et al.,
2016 [37] Semen Tail point algorithm

Dice coefficient accuracy: heads = 92%,
acrosome = 84%, nucleus = 87%, and
tail = 96%

AUC—area under curve; CNN—convolutional neural network; DL—deep learning; DTL—deep transfer learning;
DMTL—deep multi-task transfer learning; HuSHeM—Human Sperm Head Morphology; JSD—Jikei sperm data
set; MHSMA—Modified Human Sperm Head Morphology analysis; R-CNN—region-based convolutional neural
network; SVM—support vector machine;.

The MHSMA database contains 1540 sperm images of the acrosome, head, neck, tail,
and vacuole labeled as normal or abnormal. Deep learning algorithms have been trained
using the MHSMA database to evaluate low-resolution sperm images. Furthermore, these
algorithms allow the selection of the most appropriate fresh sperm cell (non-stained) for
ICSI procedures with high accuracy [39]. Abbasi et al., 2021 proposed deep transfer learning
(DTL) and deep multi-task transfer learning (DMTL) algorithms to automate the sperm
morphology evaluation process with high accuracy using images (of the head, acrosome,
neck, tail, and vacuole) from the MHSMA dataset [41].

The SCIAN-Morpho dataset contains a total of 1132 bright field images of normal
as well as abnormal sperm. Furthermore, abnormal sperm head forms were divided
into four sub-classes: small, tapering, amorphous, and pyriform [38]. CNN models, a
K-means clustering approach, an SVM classifier, and a sequential forward feature selection
(SFFS) algorithm were used to develop an automatic segmentation framework technique
that validated sperm images from the SCIAN-SpermSegGS dataset with segmentation
accuracies of 90%, 77%, and 78% for the head, acrosome, and nucleus, respectively [43].
The performances of deep learning architectures such as U-Net and Mask-RCNN were also
assessed using images (210 sperm cells) from the SCIAN-SpermSegGS public dataset [35].
Riordon et al., 2019 reported that Visual Geometry Group 16 (VGG16), a deep CNN
algorithm retrained using the HuSHeM and SCIAN datasets, provides better results (i.e., a
true positive rate of 94%) compared to the CE-SVM approach [44]. In addition to VGG16, a
special CNN architecture, Morphological Classification of Human Sperm Heads (MC-HSH),
was proposed to accurately categorize sperm heads using the SCIAN-Morpho and HuSHeM
datasets with an accuracy of 63% and 95%, respectively [47]. Shaker et al., 2017 applied an
adaptive patch-based dictionary learning (APDL) approach to the SCIANMorphoSpermGS
and HuSHeM datasets. The APDL algorithm classified human sperm head images as
normal, tapered, pyriform, and amorphous with an accuracy of 92.2% and a precision of
93.5% [46].

Besides these, AI is also used in the stain-free morphological evaluation of both
normal and abnormal sperm [20,42]. Nygate et al., 2020 generated holographic virtual
stained sperm images and processed them using deep convolutional generative adversarial
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networks (DCGANs). Such virtual staining methods and DCGAN algorithms are valuable
tools for researchers and physicians to accurately analyze morphology when chemical
staining is not recommended for spermatozoa to be used for IVF or ICSI procedures [42].
Furthermore, Mirsky et al., 2017 used an SVM classifier to automate the sperm morphology
(normal and abnormal) evaluation based on stain-free optical images acquired through
interferometric phase microscopy (IPM) [45]. The YOLO v3 deep learning-based ML model
detects abnormal sperm with a high sensitivity (0.881) and positive predictive value (0.853).
In addition to morphological evaluation, this algorithm tracks the movement of sperm in
a short time under an inverted microscope to select better-quality spermatozoa for ART
procedures [40].

4.4. AI in Evaluation of Sperm DNA Integrity or Damage

A variety of laboratory tests such as single-cell gel electrophoresis or Comet assay,
TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, SCD (sperm
chromatin dispersion) assay, SCSA (sperm chromatin structure assay), and acridine orange
(AO) assay are available to measure the DNA integrity of spermatozoa [48]. The results
obtained from these techniques display a high degree of inter- and intra-observer variation.
AI algorithms might offer a new solution due to their effectiveness and dependability. DNA
fragmentation index (DFI) values were predicted by employing deep learning methods
using corresponding sperm pictures correlated with the DFI values measured by the
SCSA technique [49]. Recently, AI assistance in CASA was used to evaluate the degree of
chromatin dispersion in a large number of sperm with less inter-observer variability. A
strong substantial association was found between the manual and AI-assisted results of
DFI (r = 0.97, p < 0.001) [50]. However, despite the good diagnostic value, the spermatozoa
analyzed using these advanced techniques cannot be selected or used in ART procedures.
This is mainly because the fixation and staining processes limit cell viability or completely
lyse the cells [49]. Hence, it is important to develop new AI-based algorithms to measure
or predict DNA fragmentation levels in live spermatozoa without compromising their
biological activity to increase the success rate of ICSI procedures [51].

A list of AI algorithms for predicting sperm DNA integrity or damage is presented
in Table 4. Wang et al. (2019) detected SDF using a trained ML model that utilized the
data from sperm pictures and images [52]. This comprehensive analysis indicated that
morphology is associated with DNA integrity and can even predict DNA damage in
individual spermatozoa [52]. These machine learning algorithms, once standardized, can
uniquely assess the quality of individual sperm using photography and are free from
any subjectivity. Large sperm imaging datasets with their corresponding DFI values are
required to develop advanced AI- and ML-based algorithms to accurately predict the
DFI of individual spermatozoa. Even with limited resources, comparable systems can be
integrated into smart devices to enable patients to access these automated results at their
convenience [28].

Table 4. Artificial intelligence (AI) algorithms developed to measure or predict sperm DNA integrity
or damage.

Studies Dataset/Sample Algorithm or Model Performance or Outcomes

Kuroda et al.,
2023 [50] Semen CNN AI algorithm vs. manual scoring (r = 0.97,

p < 0.001)

Noy et al.,
2023 [51] Semen MobileNet CNN Prediction accuracy = 90%,

sensitivity = 0.93, specificity = 0.9

McCallum et al.,
2019 [49] Semen Deep CNN Sperm cell image vs. DNA quality

(bivariate correlation ~0.43)

Wang et al.,
2019 [52] Semen Logistic regression Test accuracy = 82.7%

CNN—Convolutional Neural Network.
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4.5. AI in Predicting Outcome of TESE

This surgical sperm retrieval procedure is mainly performed to isolate sperm from the
testis of infertile men with nonobstructive azoospermia (NOA) for ART purposes, mainly
IVF or ICSI. This procedure necessitates precise laboratory skills to isolate and identify
spermatozoa in the biopsied testicular tissue. Recently, with the evolution of AI in medicine,
new algorithms are being developed to predict the presence of sperm in testicular biopsies.
A list of the AI algorithms associated with predicting the success of sperm retrieval is
presented in Table 5. ML algorithms were able to forecast the likelihood of sperm retrieval
success in NOA patients with 100% sensitivity, 69.2% specificity, and an AUC = 0.90 [53].
The more complex XGBoost ML algorithm was reported to have >90% sensitivity and >51%
specificity in predicting the presence or absence of spermatozoa in patients with NOA [54].
ANN-based models were also developed using variables such as age; infertility duration;
levels of male reproductive hormone such as LH, total and free testosterone, prolactin, and
serum FSH; and right and left testicular volume to predict the presence of sperm cells in
testes with an accuracy of 80.8% in NOA patients [55]. Similarly, another ANN model was
able to correctly predict 59.4% of micro-TESE outcomes in patients using their preoperative
clinical information [56].

Microscopic screening by expert personnel of the testicular biopsy samples to accu-
rately identify sperm is a labor-intensive and time-consuming process. AI and ML were
employed to generate algorithms that can identify the rare spermatozoa in the testicular
biopsies without human intervention. A DNN-based deep object detection network was
developed to identify sperm in testicular biopsy samples with a precision of 0.741 in real
time [57]. The U-Net architecture, a CNN program, was trained with bright field images of
spermatozoa from fertile males to detect rare sperm with an 84.4% PPV in biopsy samples
that were clinically determined to be negative for spermatozoa [58]. All of these studies
show that AI and ML have the potential to serve as support systems for physicians in
decision making for performing TESE for their NOA patients.

Table 5. Artificial intelligence (AI) algorithms developed to detect sperm and predict success of
testicular sperm extraction.

Studies Dataset/Sample Algorithm or Model Performance or Outcomes

Bachelot et al.,
2023 [53] Semen DNN RF model: detected AUC = 0.90,

sensitivity = 100%, specificity = 69.2%

Lee et al.,
2022 [58] Semen CNN

For dissociated micro-TESE samples doped
with an abundant quantity of sperm
obtained: PPV = 84.0%, sensitivity = 72.7%,
F1-score = 77.9%
For dissociated micro-TESE samples doped
with rare sperm obtained: PPV = 84.4%,
sensitivity = 86.1%, F1-score = 85.2%

Wu et al.,
2021 [57] Semen DNN Obtained mean average precision

(mAP) = 0.741, average recall (AR) = 0.376

Zeadna et al.,
2020 [54] Semen GBTs Detected AUC = 0.8, sensitivity = 91%,

specificity = 25%

Ramasamy
et al., 2013 [56] Semen ANN Achieved ROC = 0.641, accuracy = 59.4%

Samli and
Dogan 2004 [55] Semen ANN Prediction accuracy = 80.80%

ANN—artificial neural network; AR—average recall; AUC—area under the curve; CNN—convolutional neural network;
DNN—deep neural network; GBTs—gradient-boosted trees; mAP—mean average precision; PPV—positive predictive
value; RF—random forest; ROC—receiver operating characteristic.

4.6. Strengths, Weaknesses, Opportunities, Threats (SWOT) Analysis of AI in Semen Analysis and
Andrology Procedures

AI applications in semen analysis are still emerging. There are several potential
limitations and pitfalls that are present in existing AI models. Standardized semen analysis
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requires a diverse dataset to train accurate models. The limited availability of high-quality,
diverse semen samples can also hinder the development of robust AI models. Semen
samples can vary significantly between individuals and even within the same individual
over time. The complexity and variability of semen composition may pose challenges
for AI models to generalize effectively. Furthermore, infertility is a complex issue, and
semen analysis is just one aspect. AI models may not be able to address underlying
causes of infertility that go beyond semen quality, such as hormonal imbalances or genetic
factors. These shortcomings with the currently available AI models needs to be overcome to
ensure their clinical usability in andrology laboratories for performing semen analysis. The
strengths and weaknesses of AI in assisting semen analysis and other andrology procedures
are summarized through a SWOT analysis (Figure 2).
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5. Conclusions

We discussed the applications of several AI- and ML-based approaches in evaluating
sperm parameters (concentration/count, motility, and morphology), sperm DNA integrity
or damage, and success of TESE in NOA patients. AI tools have tremendous potential to
manage large amounts of semen analysis data in order to improve the accuracy of the results.
AI and ML algorithms trained with high-quality data could provide an advantage for
andrologists and embryologists in creating standard, time-effective, and trustworthy sperm-
selection procedures that improve embryo quality, pregnancy, and live-birth outcomes.
While AI and ML hold promise in accurately assessing semen analysis and providing
correct information to clinicians, it is essential to address challenges such as data quality,
standardization, and ethical considerations. Additionally, the collaboration between ML
experts and domain-specific medical professionals is crucial for the successful development
and deployment of AI and ML applications in selecting a spermatozoon for ICSI. Over time,
incorporating such approaches into medical practice would help reproductive healthcare
professionals offer more effective and accurate diagnoses and patient care.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/medicina60020279/s1, Table S1: Studies employing artificial
intelligence (AI) or machine learning (ML) to evaluate or predict semen parameters, sperm DNA
damage and outcome of surgical testicular sperm extraction (TESE).

https://www.mdpi.com/article/10.3390/medicina60020279/s1
https://www.mdpi.com/article/10.3390/medicina60020279/s1


Medicina 2024, 60, 279 10 of 12

Author Contributions: Conceptualization, M.K.P.S.; methodology, M.K.P.S., A.K.M. and S.B.; valida-
tion, M.K.P.S., A.K.M. and S.B.; formal analysis, M.K.P.S., A.K.M. and S.B.; data curation, M.K.P.S.,
A.K.M. and S.B.; writing—original draft preparation, M.K.P.S. and A.K.M.; writing—review and
editing, M.K.P.S., S.B., A.K.M., R.F., M.C.H. and S.C.S.; supervision, M.K.P.S. and S.C.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are thankful to the Department of Urology, Tulane University School of
Medicine, for supporting this research.

Conflicts of Interest: Author Matthew C. Hudnall was employed by the company Cryobio and
Reproductive Diagnostics, Inc. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

References
1. Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke,

I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil. Steril. 2017, 108, 393–406. [CrossRef]
2. World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization:

Geneva, Switzerland, 2021.
3. Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male infertility.

Lancet 2021, 397, 319–333. [CrossRef]
4. Sikka, S.C.; Hellstrom, W.J. Current updates on laboratory techniques for the diagnosis of male reproductive failure. Asian J.

Androl. 2016, 18, 392–401. [CrossRef]
5. Niederberger, C.; Pellicer, A.; Cohen, J.; Gardner, D.K.; Palermo, G.D.; O’Neill, C.L.; Chow, S.; Rosenwaks, Z.; Cobo, A.; Swain,

J.E.; et al. Forty years of IVF. Fertil. Steril. 2018, 110, 185–324.e185. [CrossRef]
6. Keel, B.A. How reliable are results from the semen analysis? Fertil. Steril. 2004, 82, 41–44. [CrossRef]
7. Finelli, R.; Leisegang, K.; Tumallapalli, S.; Henkel, R.; Agarwal, A. The validity and reliability of computer-aided semen analyzers

in performing semen analysis: A systematic review. Transl. Androl. Urol. 2021, 10, 3069–3079. [CrossRef]
8. Busnatu, S, .; Niculescu, A.G.; Bolocan, A.; Petrescu, G.E.D.; Păduraru, D.N.; Năstasă, I.; Lupus, oru, M.; Geantă, M.; Andronic,

O.; Grumezescu, A.M.; et al. Clinical Applications of Artificial Intelligence-An Updated Overview. J. Clin. Med. 2022, 11, 2265.
[CrossRef] [PubMed]

9. Iqbal, M.J.; Javed, Z.; Sadia, H.; Qureshi, I.A.; Irshad, A.; Ahmed, R.; Malik, K.; Raza, S.; Abbas, A.; Pezzani, R.; et al. Clinical
applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future. Cancer Cell Int. 2021, 21,
270. [CrossRef] [PubMed]

10. Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing
framework and future research agenda. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 8459–8486. [CrossRef] [PubMed]

11. Keenan, T.D.L.; Clemons, T.E.; Domalpally, A.; Elman, M.J.; Havilio, M.; Agrón, E.; Benyamini, G.; Chew, E.Y. Retinal Specialist
versus Artificial Intelligence Detection of Retinal Fluid from OCT: Age-Related Eye Disease Study 2: 10-Year Follow-On Study.
Ophthalmology 2021, 128, 100–109. [CrossRef] [PubMed]

12. Wang, R.; Pan, W.; Jin, L.; Li, Y.; Geng, Y.; Gao, C.; Chen, G.; Wang, H.; Ma, D.; Liao, S. Artificial intelligence in reproductive
medicine. Reproduction 2019, 158, R139–R154. [CrossRef]

13. Smith, K.P.; Wang, H.; Durant, T.J.; Mathison, B.A.; Sharp, S.E.; Kirby, J.E.; Long, S.W.; Rhoads, D.D. Applications of artificial
intelligence in clinical microbiology diagnostic testing. Clin. Microbiol. Newsl. 2020, 42, 61–70. [CrossRef]

14. Rabbani, N.; Kim, G.Y.E.; Suarez, C.J.; Chen, J.H. Applications of machine learning in routine laboratory medicine: Current state
and future directions. Clin. Biochem. 2022, 103, 1–7. [CrossRef]
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