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Abstract: The objective of this research is to propose an efficient energy management system for
photovoltaic (PV) generation units connected to monopolar DC distribution networks via convex
optimization while considering a day-ahead dispatch operation scenario. A convex approximation is
used which is based on linearization via Taylor’s series expansion to the hyperbolic relations between
voltages and powers in the demand nodes. A recursive solution methodology is introduced via
sequential convex programming to minimize the errors introduced by the linear approximation in
the power balance constraints. Numerical results in the DC version of the IEEE 33-bus grid demon-
strate the effectiveness of the proposed convex model when compared to different combinatorial
optimization methods, with the main advantage that the optimal global solution is found thanks to
the convexity of the solution space and the reduction of the error via an iterative solution approach.
Different objective functions are analyzed to validate the effectiveness of the proposed iterative
convex methodology (ICM), which corresponds to technical (energy losses reduction), economic
(energy purchasing and maintenance costs), and environmental (equivalent emissions of CO2 to the
atmosphere in conventional sources) factors. The proposed ICM finds reductions of about 43.9754%
in daily energy losses, 26.9957% in energy purchasing and operating costs, and 27.3771% in CO2

emissions when compared to the benchmark case in the DC version of the IEEE 33-bus grid. All nu-
merical validations were carried out in the MATLAB programming environment using the SEDUMI
and SDPT3 tools for convex programming and our own scripts for metaheuristic methods.

Keywords: convex relaxations; efficient energy management system; photovoltaic generation;
monopolar DC distribution networks; optimal power flow solution

1. Introduction

Monopolar DC distribution grids show promise to interface substations with end
users at medium- and low-voltage levels [1] as they are characterized by low energy losses
and excellent voltage profiles [2]. The main advantage of DC networks when compared
to classical AC grids is the absence of frequency and reactive power [3]. This makes them
easily controllable as the primary variable corresponds to the voltage output at the terminals
of the substation [4]. Monopolar DC networks can be analyzed from two perspectives.
The first approach involves the dynamical analysis of the networks, which corresponds to
studies associated with the control of power electronic converters [5] and studies regarding
transient phenomena and protection coordination [6–8], among others. The second area of
analysis is associated with the application of optimization methods to improve the electrical
performance of DC networks by including renewable generation based on photovoltaic
(PV) and wind power technologies [9–11] as well as energy storage devices [12,13]. Both
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research areas require efficient methodologies to address their main challenges, i.e., efficient
control design methodologies or effective optimization techniques, in order to obtain the
highest possible benefits while operating a network.

This research takes an interest in optimization applied to monopolar DC networks with
high penetration of renewable generation based on PV technologies to improve the daily
performance of distribution networks. The specialized literature has proposed multiple
approaches in topics related to this field of study, which are detailed below.

The authors of [14] proposed the application of the salp swarm algorithm (SSA) to
determine the optimal dispatch of PV generation units in DC distribution networks while
considering multiple objective function formulations, i.e., daily energy losses, daily CO2
emissions, and expected daily energy production costs. Numerical results in two distri-
bution networks composed of 27 and 33 nodes demonstrated the effectiveness of the SSA
approach when compared to different combinatorial optimizers, such as particle swarm
optimization and the crow search algorithm. In [12], a semi-definite programming relax-
ation was proposed to operate renewable energy resources and batteries in monopolar DC
networks. Numerical results demonstrate that the semidefinite approximation found the
same optimal solution as the exact NLP model in the GAMS software. The main difficulty
of the semi-definite programming method is the square increase in the number of variables
with the number of nodes of the distribution grid under analysis, which can increase
the time required by the semidefinite programming model to minutes or hours in some
cases. The authors of [15] proposed the application of the second-order cone programming
approach to determine the optimal dispatch of PV generation units in monopolar DC
networks with the aim of minimizing the total greenhouse gas emissions in rural diesel-fed
networks. Numerical results in different test feeders confirmed the efficiency of the conic
model in dispatching these PV sources when compared to the exact solution provided
by the GAMS software. The work by [16] proposed a general design of PV sources for
residential applications in Bogotá while considering the Colombian laws regarding renew-
able generation and energy costs for residential users in four economic strata. Numerical
validations demonstrated that end-user investments can be recovered in periods between 4
and 8 years. The authors of [17] proposed a convex approximation methodology to operate
wind power and PV generation in medium-voltage DC distribution networks. Numerical
results in two test feeders composed of 10 and 39 nodes showed the effectiveness of the
proposed convex model when comparing their solution against different commercially
available optimization tools. Other approaches used to study the problem regarding the
optimal integration of renewable generators in electrical distribution grids include particle
swarm optimization [18,19], ant colony optimization [20], the multiverse optimization
approach [21], the krill herd algorithm [22], the whale optimization algorithm [23], evolu-
tionary programming [24], and simulated annealing [25]. In addition, a complete review
regarding the optimal design, modeling, and simulation of PV generation systems in dis-
tribution grids with grid-connected and standalone characteristics was presented by the
authors of [26].

The main characteristic of the aforementioned combinatorial optimization methods
for locating and sizing PV generation units in electrical distribution networks is that they
all work with master-slave methodologies, where the master stage defines the nodes where
the PV generation units must be installed. The slave stage (typically a power flow solver)
is entrusted with defining the optimal sizes of these PV generation units. In addition,
the most common objective function corresponds to minimizing the power/energy losses,
which has a nonlinear nature and is a typical performance indicator used by regulatory
entities in the sector to measure the efficiency of electrical networks.

Based on this review of the state of the art, this research makes the following contributions:

i. A convex approximation to the problem regarding the efficient dispatch of PV gen-
eration units in monopolar DC networks while considering three different objective
functions. The convex approximation is reached by linearizing the hyperbolic rela-
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tionship between voltage and powers in constant power terminals as well as a linear
approximation to these relations in the case of renewable generation.

ii. An iterative solution methodology to reduce/eliminate the error induced in the final
objective function value due to the use of linearization methods.

Note that the proposed optimization methodology assumes that the distribution com-
pany has characterized all the generation inputs of the PV sources and demand behaviors
as they are included in the optimization model as external inputs with no uncertainties.
In addition, the location of the PV generation units has also been predefined by the utility.
This study takes interest in presenting an efficient methodology to operate these resources
in order to minimize three objective functions, which are technical (daily energy losses),
economic (daily energy purchasing and maintenance costs), and environmental (daily
kilograms of CO2 emissions). The main limitations of our approach are (i) the assumption
that the demand and PV inputs are constant parameters with no uncertainties; (ii) the fact
that the resolution of the day-ahead dispatch of the PV plants is defined as ∆h, and it is
assumed as 1 hour in a daily operation environment, which implies that the precision of
the proposed convex depends on the exactness of the renewable and demand prediction
for each hour; and (iii) the fact that the proposed solution method is only applicable to
monopolar DC configurations, which implies that more research is required to include the
stochastic nature of renewables and demand as well as considering bipolar DC configu-
rations with different neutral-to-ground connections and reducing the time-step of ∆h to
minutes and allowing for more accurate results when compared to the daily variations of
the PV plants and load measurements in the substation.

The remainder of this research is structured as follows. Section 2 describes the problem
of mathematically designing an efficient day-ahead dispatch tool for renewable generators
in monopolar DC distribution networks through a nonlinear programming formulation.
Section 3 presents the proposed convexification approach and the iterative solution used
to minimize the estimation error induced by the linearization method. Section 4 reveals
the main characteristics of the test feeder, which corresponds to the DC version of the
IEEE 33-bus grid adapted for the operative conditions of the city of Medellín, Antioquia,
Colombia. Section 5 shows all the numerical validations for the proposed convex model
and a comparison with different combinatorial optimization methods recently reported
in the specialized literature. Finally, Section 6 presents the main conclusions of this study
in addition to some possible future works.

2. General NLP Formulation

This section addresses the general NLP model that represents the optimal operation of
PV plants in monopolar DC distribution networks. Firstly, the classical multi-period optimal
power flow formulation is presented considering the total grid energy losses, which must
be minimized as the objective function. Secondly, two alternative functions are presented,
which can be considered in the day-ahead economic dispatch of PV plants in monopolar
DC networks. These functions are economical and environmental. The economic function
considers the energy purchasing costs at the terminals of the substation bus in addition
to the operating cost of the PV sources, and the environmental function is related to the
minimization of the CO2 emissions into the atmosphere by the distribution network, i.e.,
as an equivalent of the emissions when the electrical energy comes from thermal sources.

2.1. Energy Loss Minimization

The problem regarding the day-ahead dispatch of PV generation units in monopolar
DC networks can be modeled through a nonlinear programming model, where the non-
linearities appear in the power balance constraints and the objective function, while the
remaining constraints belong to the family of linear functions. In this research, the objective
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function associated with the day-ahead dispatch of PV generation units corresponds to the
minimization of the total grid energy losses as defined in Equation (1).

Eloss = ∑
h∈H

∑
k∈N

(
vk,h ∑

m∈N
Gkmvm,h

)
∆h, (1)

where Eloss represents the objective function value, i.e., the total grid energy losses for a
daily operation scenario; vk,h and vm,h are the decision variables regarding the voltages
at nodes k and m for time h; Gkm denotes the km element of the conductance matrix that
relates nodes k and m (note that this value is different from zero only if there is a physical
connection between both nodes); ∆h is the fraction of time in which all the variables of
the optimization problem take constant values; H is the set that contains all the periods
considered in the day-ahead economic dispatch (in this research, ∆h = 1 h, and the
cardinality of the setH, i.e., its number of elements is 24, which implies that the proposed
day-ahead dispatch is programmed while considering predictions regarding demand and
PV generation inputs in fractions of 1 h); and N corresponds to the set that contains all the
nodes of the network.

Remark 1. The main characteristic of the objective function in (1) is that it corresponds to a
quadratic function from the family of convex functions, so it can be represented as follows:

Eloss = ∑
h∈H

V>h GVh, (2)

where Vh is a vector that contains all the voltage variables per period of analysis, and G is the
conductance matrix, which is positive semi-definite if and only if the monopolar DC network has all
its nodes connected at least in tree form, i.e., there are no isolated nodes [27].

The constraints associated with the day-ahead dispatch of PV generation units in
monopolar distribution networks are listed from (3) to (8).

pcg
k,h + ppv

k,h − pd
k,h = vk,h ∑

m∈N
Gkmvm,h, {∀k ∈ N , ∀h ∈ H} (3)

vk,h − vm,h − rkmikm,h = 0 {∀km ∈ L, ∀h ∈ H} (4)

pmin
k,h ≤ pk,h ≤ pmax

k,h , {∀k ∈ N , ∀h ∈ H} (5)

ppv,min
k,h ≤ ppv

k,h ≤ ppv,max
k,h , {∀k ∈ N , ∀h ∈ H} (6)

vmin
k ≤ vk,h ≤ vmax

k , {∀k ∈ N , ∀h ∈ H} (7)∣∣ikm,h
∣∣ ≤ imax

km , {∀km ∈ L, ∀h ∈ H} (8)

where pcg
k,h represents the power generation input in the conventional source (slack node)

connected at node k in the period h; ppv
k,h is the power injection in the PV sources connected

at node k in the period h; pd
k,h means the total constant power consumption for a load

connected at node k in the period h; rkm corresponds to the resistive parameter associated
with the distribution line that connects nodes k and m; ikm,h is the current flowing through
the route that connects nodes k and m at time h; pmin

k,h and pmax
k,h correspond to the lower and

upper bounds allowed for the power generation of the conventional source at each time;
ppv,min

k,h and ppv,max
k,h are the minimum and maximum generation bounds associated with PV

generation; vmin
k and vmax

k are constant parameters related to the minimum and maximum
voltage values allowed at all nodes of the network (i.e., the voltage regulation constraint);
and L is the set that contains all the branches of the monopolar DC distribution grid.

Note that the set of constraints (3)–(8) can be interpreted as follows: Equation (3)
expresses the power equilibrium at each node of the network at each time; equality con-
straint (4) represents Kirchoff’s second law applied in each branch of the network, i.e.,
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it allows determining the voltage drop at each distribution line; box-type constraints (4)
and (5) are related to the generation capacities of the conventional and renewable genera-
tors connected to the monopolar DC network; box-type constraint (7) is associated with the
voltage regulation bounds allowed by regulatory policies at any node of the distribution
network; and inequality constraint (8) represents the maximum thermal bounds allowed
for each conductor at each route that connects nodes k and m.

Remark 2. The main characteristic of the set of constraints (3)–(8) is that the only non-convex
restriction is the power equilibrium at each bus of the network, as shown in Equation (3), since it
exhibits the product between voltages in all the buses interfaced by the conductance matrix [28].

2.2. Economic and Environmental Objective Functions

Day-ahead dispatch studies typically involve economic objective functions associated
with minimizing the total expected generation and operation costs. Here, an objective
function associated with the maintenance costs of the PV plants, added with the energy
purchasing costs at the substation terminals, is proposed as defined in (9).

min Ecosts = ∑
h∈H

∑
k∈N

(
Cs

kWh ps
k,h + Cpv

O&M ppv
k,h

)
∆h, (9)

where Ecosts denotes the expected operating costs for the analyzed period of operation;
Cs

kWh corresponds to the energy purchasing costs in the conventional generator (thermal
source) and/or the equivalent substation node, and Cpv

O&M is the expected maintenance and
operation costs in the PV plant, which has a power output defined as ppv

k,h.
An additional objective function for operating renewable energy resources in electrical

distribution networks is minimizing the expected greenhouse gas emissions caused by
energy production with thermal plants. In the case of distribution networks, the total CO2
emissions are quantified as a factor that multiplies the energy production at the substation
bus. This objective function is formulated as presented in (10).

min ECO2 = ∑
h∈H

∑
k∈N

γs ps
k,h∆h, (10)

where ECO2 is the objective function value associated with minimizing the emissions of
carbon dioxide into the atmosphere; γs denotes the emissions coefficient associated with the
equivalent kilograms of CO2 per kilowatt of electrical energy produced at the substation bus.

The objective functions (9) and (10) are linear functions, which implies that both
of them are convex (also concave) and that the only one set of nonlinear non-convex
constraints in the optimization model corresponds to the power balance equations in (3).
The following section proposes a convexification approach that transforms constraint (3)
into a linear equivalent using a linearization approach based on Taylor’s series expansion.

3. Proposed Convexification Method

Here, a linear approximation is presented which is based on the convex OPF approach
recently reported in [29] for obtaining a convex equivalent formulation of the power balance
constraint. This approximation is carried out in two steps. The first step linearizes the
hyperbolic relation between voltages and powers strictly for the demand nodes. The sec-
ond step approximates the hyperbolic relation between voltages and powers strictly for
renewable generation sources.
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3.1. Linearization of the Demand Nodes

Let us consider that the demanded current in a constant power terminal can be
expressed as follows:

id
k,h =

pd
k,h

vk,h
, (11)

where it is possible to obtain a linear equivalent if Taylor’s series expansion is applied [29].
This approximation is presented in Equation (12), which assumes that the linearizing point
is v0

k,h.

id,0
k,h ≈

 2
v0

k,h
− 1(

v0
k,h

)2 vk,h

pd
k,h. (12)

Note that (12) is now a linear function of the voltage profiles. The initial values are
defined by v0

k,h, which implies that it is substituted into the power balance constraint (3).
Thus, the component associated with the demand nodes becomes a convex function.

3.2. Linearization for PV Nodes

In the case of renewable generation, a linearization is considered in which both
components of the PV net current injection (i.e., the numerator associated with PV power
injection and the denominator corresponding to the voltage value), as presented below:

ipv
k,h =

ppv
k,h

vk,h
, (13)

where it is evident that, due to the voltage regulation constraint (7), the voltage variable
has small variations regarding the initial value:

ipv
k,h =

ppv
k,h

v0
k,h + ∆vk,h

, (14)

which means that ∆vk,h ≈ 0 during the iteration process, implying that (14) can be approxi-
mated as a linear equation, as defined in (15):

ipv,0
k,h =

ppv
k,h

v0
k,h

. (15)

3.3. Recursive Optimization Model

Once all the components of the power balance constraints have been linearized,
Equation (3) can be rewritten as an affine equation, as presented in (16):

pk,h

v0
k,h

+
ppv

k,h

v0
k,h
−

 2
v0

k,h
− 1(

v0
k,h

)2 vk,h

pd
k,h = ∑

m∈N
Gkmvm,h, {∀k ∈ N , ∀h ∈ H} (16)

Remark 3. In the approximated power balance constraint (16), it is evident that using the lineariz-
ing point v0

k,h induces an estimation error in the final value of the power and voltages. However,
to minimize this error, the complete optimization model (1)–(8) can be recursively solved by using
an iterative counter t.
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The proposed recursive model is presented in (17), where the superscripts t and t + 1
are introduced in order to define the linearizing point vt

k,h and the next set of voltage values,
vt+1

k,h , which are obtained after solving this model.

Obj. func.: Eloss = ∑
h∈H

∑
k∈N

(
vt+1

k,h ∑
m∈N

Gkmvt+1
m,h

)
∆h,

Subject to:

pk,h

vt
k,h

+
ppv

k,h

vt
k,h
−

2pd
k,h

vt
k,h

+
pd

k,h(
vt

k,h

)2 vk,h = ∑
m∈N

Gkmvt+1
m,h ,

{
∀k ∈ N
∀h ∈ H

}

vt+1
k,h − vt+1

m,h − rkmikm,h = 0
{
∀km ∈ L
∀h ∈ H

}
pmin

k,h ≤ pk,h ≤ pmax
k,h ,

{
∀k ∈ N
∀h ∈ H

}
(17)

ppv,min
k,h ≤ ppv

k,h ≤ ppv,max
k,h ,

{
∀k ∈ N
∀h ∈ H

}
vmin

k ≤ vt+1
k,h ≤ vmax

k ,
{
∀k ∈ N
∀h ∈ H

}
∣∣ikm,h

∣∣ ≤ imax
km ,

{
∀km ∈ L
∀h ∈ H

}
Regarding the minimization of the error induced by the linearization approach that

allowed the NLP model (1)–(8) to become a convex approximation with the structure (17),
Figure 1 presents the recursive solution methodology proposed in this research.

Remark 4. Note that the iterative convex model (17) is recursively solved via a convex optimization
tool until the desired convergence is achieved. This convergence criterion is defined as the difference
in voltage magnitudes between two consecutive iterations, which fulfills the expected convergence
error. The convergence criterion is presented below.

max
k∈N , h∈H

∣∣∣vt+1
k,h − vt

k,h

∣∣∣ ≤ ε, (18)

where ε means the maximum convergence error, defined as 1× 10−10 [29].

The main characteristic of the proposed iterative convex methodology shown in
Figure 1 is the recursive solution of the approximated convex model (17), which is carried
out until the desired convergence is reached. However, in order to implement this model in
the convex disciplined tool (CVX) of the MATLAB programming environment, the pseudo-
code in Algorithm 1 must be followed.

Note that the CVX implementation of the approximated convex model in (17) is based
on the interpreted language programming structure, where the model is written as symbolic
using parameters, vectors, and matrices, which allows researchers to focus on developing
new efficient optimization models, not on the solution technique itself. For more details
regarding the use of the CVX programming tool, see [30,31].
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Algorithm 1: Implementation of the approximated convex model (17) in the
CVX environment of MATLAB.

Data: Define grid parameters (Demands, PV inputs, and grid topology)
1 Obtain the per-unit representation of the system;
2 Define the upper and lower bounds of the optimization variables;
3 cvx_begin quiet;
4 cvx_solver SDPT3;
5 Define variables Define the objective function;
6 subject to;
7 Write model equalities;
8 Write model inequalities;
9 cvx_end;

Result: Report voltage variables

Start: Iterative
convex model

Generation
and load data

Grid topology

Make t = 0

Set vt
k,h = Vnom

Obtain the nodal
conductance matrix G

Program the opti-
mization model (17)

Solve the opti-
mization model

using a convex tool

Report voltages
and powers

Evaluation
ends?

End: Result analysis

Solution report

Increase the t value,
i.e., t = t + 1

no

yes

Figure 1. Iterative solution methodology for solving the optimization model (17).

4. Test Feeder Characteristics

In this section, a distribution network composed of 33 nodes characterized for an urban
network in Colombia (Medellín) is considered as a test feeder. The electrical configuration
of this distribution network is presented in Figure 2.
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DC
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20
21
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23
24
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26 27 28 29 30 31 32 33

Figure 2. Urban distribution network composed of 33 nodes.

This test system includes three PV sources located at nodes 12, 15, and 31, with a
nominal power of 2400 kW. In addition, it operates with a nominal voltage of 12.66 kV
at the terminals of the substation. The parametric information regarding the loads and
branches of the 33-bus grid is presented in Table 1.

Table 1. Parametric information of the urban distribution network.

Line l Node i Node j Rij (Ω) Pj (kW) Imax
l (A)

1 1 2 0.0922 100 320
2 2 3 0.4930 90 280
3 3 4 0.3660 120 195
4 4 5 0.3811 60 195
5 5 6 0.8190 60 195
6 6 7 0.1872 200 95
7 7 8 1.7114 200 85
8 8 9 1.0300 60 70
9 9 10 1.0400 60 55

10 10 11 0.1966 45 55
11 11 12 0.3744 60 55
12 12 13 1.4680 60 40
13 13 14 0.5416 120 40
14 14 15 0.5910 60 25
15 15 16 0.7463 60 20
16 16 17 1.2890 60 20
17 17 18 0.7320 90 20
18 2 19 0.1640 90 30
19 19 20 1.5042 90 25
20 20 21 0.4095 90 20
21 21 22 0.7089 90 20
22 3 23 0.4512 90 85
23 23 24 0.8980 420 70
24 24 25 0.8900 420 40
25 6 26 0.2030 60 85
26 26 27 0.2842 60 85
27 27 28 1.0590 60 70
28 28 29 0.8042 120 70
29 29 30 0.5075 200 55
30 30 31 0.9744 150 40
31 31 32 0.3105 210 25
32 32 33 0.3410 60 20

The PV generation and demand curves have been taken from [14], a complete study
that deals with the characterization of the electrical behavior of Medellín (a city in Colom-
bia). The demand and generation curves are presented in Figure 3.
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Figure 3. Behavior of the generation and demand curves for the municipality of Medellín.

5. Results and Discussion

This section presents and analyzes all the numerical results obtained for the 33-bus
grid. During the computational implementation, the MATLAB programming environment
(version 2021b) was used on a PC with an AMD Ryzen 7 3700 2.3 GHz processor and 16.0 GB
RAM running the 64-bit version of Microsoft Windows 10 Single Language. The solution
of the recursive convex approximation (15) was reached via the convex disciplined tool
environment (also known as CVX) of MATLAB, using the SEDUMI and SDPT3 solvers.

5.1. Minimization of Daily Energy Losses

In this section, a complete comparison with different combinatorial optimizers is
presented to demonstrate the effectiveness of the proposed iterative convex model (ICM).
These combinatorial optimizers are the multi-verse optimization (MVO) approach, the parti-
cle swarm optimizer (PSO), the crow search algorithm (CSA), and the salp swarm algorithm
(SSA). Note that all these methods have been recently reported in [14]. Table 2 presents
the numerical comparisons between the proposed ICM and the combinatorial optimiza-
tion methods. This table shows that the benchmark case (i.e., the scenario without PV
generation) has expected daily energy losses of about 2186.2799 kWh/day.

Table 2. Numerical comparison between the ICM approach and the combinatorial optimization methods.

Method Ploss (kWh/day) Reduction (%) Avg. Time (s)

Ben. Case 2186.2799 — 10.5630

SSA 1225.3323 43.9536 20.8476
MVO 1231.2531 43.6827 2.4479
PSO 1268.5973 41.9746 5.9597
CSA 1270.1562 41.9033 36.3663

ICM 1224.8548 43.9754 34.7228

The numerical results in Table 2 show that:

i. The proposed ICM finds a reduction of about 43.9754% concerning the benchmark
case, (961.4251 kWh/day), which is the best objective function value obtained for
the DC version of the IEEE 33-bus grid, i.e., the optimal solution. This solution is
only closely followed by the SSA algorithm, as reported in [14], with a reduction of
43.9536%, i.e., 960.9476 kWh/day. This difference, even though it is small, shows
that the proposed convex approximation can find the optimal solution to the studied
problem due to the convexification applied to the solution space, which is not possible
with random-based optimization algorithms, as is the case of the SSA approach, where
statistical analyses must be conducted in order to define its average behavior in terms
of solution quality and repeatability.



Energies 2023, 16, 1105 11 of 14

ii. The PSO and the CSA algorithms find solutions with expected reductions lower than
42%, demonstrating that both methods are stuck in locally optimal solutions. Note
that the solution of the ICM allows for improvements of about 2.0214 and 2.0927%
with respect to these methods.

iii. Regarding processing times, all the optimization methods take between 2 and 37 s.
The SSA shows an average time of 20.8476 s, and the proposed ICM reports an average
time of about 34.7228 s. Nevertheless, it is important to mention that, in order to find
the solution with the SSA approach, 100 consecutive evaluations of the methodology
were conducted, which implies that the real processing time was about 34.7460 min,
thus demonstrating that the proposed ICM is the most efficient algorithm in this
regard as only one evaluation is needed to obtain an optimal solution.
To illustrate the convergence characteristics of the proposed ICM, Figure 4 shows

the curves for the benchmark case and the optimal solution found with the SEDUMI and
SDPT3 tools in the CVX optimization package of the MATLAB programming environment.
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Figure 4. Evolution of the convergence error for the proposed ICM.

The evolution of the convergence error (Figure 4) shows that, in the benchmark
case, the total number of iterations required to reach the expected convergence error (i.e.,
ε = 1× 10−1) is four. In contrast, when the PV generation units are optimally dispatched,
these iterations increase to 13. This is an expected behavior, given that in the benchmark
case there is no presence of the dispersed generation variables, i.e., the solution space has
fewer variables in comparison with the optimal operation of the PV sources, where 72 new
variables must be assigned during the optimization process. This causes the voltage profiles
to exhibit more oscillations during the optimization process. Regarding the convergence
error, it is evidenced that the benchmark case converges quadratically, which is normal
behavior for iterative methods based on derivatives, as is the case of the proposed approach
for the multi-period power flow solution. However, in the case of the optimal dispatch
of the PV sources, there is no evidence of a clear tendency, which is attributable to the
fact that the hyperbolic relation between powers and voltages was relaxed without using
derivatives, unlike the component associated with the constant power terminals.

5.2. Minimization of Economic and Environmental Functions

This section presents the results regarding the minimization of the economic (energy
purchasing costs in the substation bus and the maintenance costs in the PV sources) and the
objective environmental function (CO2 emissions). Note that the values of the coefficients in
the objective functions (9) and (10) are set as Cs

kWh = 0.1302 kWh/day, γs = 0.1644 kg/kWh,
and Cpv

O&M = 0.0019 USD/kWh.
Table 3 presents the numerical results regarding the minimization of Ecosts and ECO2 .
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Table 3. Numerical results regarding the minimization of Ecosts and ECO2 with the comparative and
proposed ICM.

Method Ecosts (USD/day) ECO2 (kg/day)

Benc. Case 9776.3892 12,345.1497

CSA 7407.9046 9328.7685
PSO 7392.0432 9282.4081

MVO 7298.7157 9187.9682
SSA 7297.9712 9166.6746

ICM 7137.1822 8965.4072

The numerical results in Table 3 show that (i) the proposed ICM allows finding
the best numerical results for both objective functions, i.e., 7137.1822 USD/day and
8965.4072 kg/day, which are reductions of about 26.9957 and 27.3771% regarding the bench-
mark case, respectively; (ii) the best combinatorial optimizer is the SSA approach, but the
proposed ICM outperforms these results by about 160.7890 USD/day and 201.2674 kg/day,
respectively; and (iii) all the combinatorial optimization methods are stuck in locally opti-
mal function values, which can be attributed to the number of variables associated with
the studied problem and the random nature of their exploration. In contrast, the proposed
convex-based optimization method allows for better numerical results, with the main
advantage being the solution’s repeatability.

Table 3 confirms that the proposed ICM is an efficient optimization methodology
to deal with the optimal operation of PV plants in monopolar DC distribution networks
while considering different objective functions, i.e., technical, economic, and environmental,
with the main advantage that the global optimum is reached in each one of the possible PV
dispatch scenarios.

6. Conclusions and Future Works

An iterative convex approximation was proposed in this research to solve the problem
regarding the optimal dispatch of PV generation units in monopolar DC networks to
minimize technical, economic, and environmental objective functions. Taylor’s series
expansion was used to obtain a linear relaxation of the hyperbolic relation between powers
and voltages in constant power terminals to obtain a convex approximation. In the case of
the dispersed generation units, the approximation was based on the slight variations of the
voltage magnitudes compared to the expected variations in PV generation. To minimize the
error induced by both relaxations, a recursive solution methodology involved the iterative
solution of the proposed convex approximation, with an initial set of voltage values to be
updated until the desired convergence error was reached.

Numerical results in the DC version of the IEEE 33-bus grid demonstrated that the
ICM reached the optimal solution value regarding the final daily energy losses through
an efficient dispatch of the PV generation units, with a value of 1224.4048 kWh/day,
which was only followed by the SSA approach (1225.3323 kWh/day). As for the daily
operating costs, the improvement reached by the proposed ICM was 160.7890 USD/day
with respect to the SSA approach, while this difference was about 201.2674 kg/day for
the CO2 emissions. These results confirm the effectiveness and robustness of convex-
based optimization methods to deal with multi-period optimal power flow problems in
monopolar DC networks when compared to traditional and largely used combinatorial
optimization methods.

Note that the main advantage of the proposed ICM is that, due to the convexification
of the solution space, the final solution for the studied problem will always be the same
(i.e., optimal solution value after applying the iterative convex solution method, which
allows eliminating the error introduced by the linearization point), which is not possible
with any of the combinatorial optimization techniques, given that their random-based
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nature requires multiple evaluations in order to determine their average behavior, with no
guarantee that the optimal solution will be found.

In the future, it will be possible to carry out the following works: (i) extending the pro-
posed ICM to the problem regarding the efficient operation of renewable energy resources
and battery energy storage systems in monopolar and bipolar DC distribution networks;
(ii) performing a comparative analysis with additional convex optimization methods such
as semi-definite programming, second-order cone programming, and alternative recursive
convex approximations; and (iii) modifying the proposed convex approximation to include
binary variables with regard to the optimal location and sizing of renewable sources in
monopolar DC networks.
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