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Abstract: Transient stability preventive control (TSPC), a method to efficiently withstand the severe
contingencies in a power system, is mathematically a transient stability constrained optimal power
flow (TSC-OPF) issue, attempting to maintain the economical and secure dispatch of a power system
via generation rescheduling. The traditional TSC-OPF issue incorporated with differential-algebraic
equations (DAE) is time consumption and difficult to solve. Therefore, this paper proposes a
new TSPC method driven by a naturally inspired optimization algorithm integrated with transient
stability assessment. To avoid solving complex DAE, the stacking ensemble multilayer perceptron
(SEMLP) is used in this research as a transient stability assessment (TSA) model and integrated into
the optimization algorithm to replace transient stability constraints. Therefore, less time is spent
on challenging calculations. Simultaneously, sensitivity analysis (SA) based on this TSA model
determines the adjustment direction of the controllable generators set. The results of this SA can be
utilized as prior knowledge for subsequent optimization algorithms, thus further reducing the time
consumption process. In addition, a naturally inspired algorithm, Aptenodytes Forsteri Optimization
(AFO), is introduced to find the best operating point with a near-optimal operational cost while
ensuring power system stability. The accuracy and effectiveness of the method are verified on the
IEEE 39-bus system and the IEEE 300-bus system. After the implementation of the proposed TSPC
method, both systems can ensure transient stability under a given contingency. The test experiment
using AFO driven by SEMLP and SA on the IEEE 39-bus system is completed in about 35 s, which is
one-tenth of the time required by the time domain simulation method.

Keywords: Aptenodytes Forsteri Optimization; stacking ensemble learning; sensitivity analysis;
transient stability; transient stability preventive control

1. Introduction

With the increase in penetration of renewable energy and the widespread applica-
tion of novel power electronic devices, the complexity and uncertainty of modern power
systems have increased significantly. As a result, the systems gradually operate close
to security stability limits [1–3]. Preventive control strategies for power systems are de-
signed to adjust the system to a reliable operating point before probable contingencies
occur. Formulating effective grid operation points and stability control strategies involves
comprehensive simulation analysis. This process needs to be enhanced due to its inherently
time consumption nature. Therefore, research on the development of a rapid transient
stability preventive control strategy is of utmost importance to guarantee the transient
stability of power systems.

Transient stability assessment (TSA) is a methodology for evaluating the transient
stability state of a power system by analyzing system operational features. The traditional
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transient stability assessment methods contain the time domain simulation method [4]
based on large-scale simulation calculations and the direct method [5] based on Lyapunov’s
stability theory. The accuracy of these conventional methods is undeniable. However,
their innate complexity often leads to a considerably long process of obtaining swift
stability results. Data-driven TSA is becoming increasingly popular in academia and
industry because traditional time-domain simulations and the direct method cannot match
the real operation requirements of power systems [6,7]. Machine learning methods [8,9],
involving widely used data feature mining algorithms, possess the capability of establishing
a mapping relationship between input features and output. A TSA model can be built by
machine learning algorithms, where the operational features of the system are taken as
the input, and the assessment of transient stability is taken as the output. In [10], a series
of location-specific decision tree (DT) regressors are trained for TSA, which leads to an
improvement in the stability margin at specific locations. An imbalanced correction method
based on a support vector machine (SVM) is proposed in [11], and this method is used
to establish the TSA model. In [12], the extreme gradient boosting (XGBoost) algorithm
is introduced to recognize different unstable patterns after a power system fault. The
aforementioned studies aim to develop TSA models using machine learning algorithms.
However, due to the simplicity of the model’s structure, the accuracy of the above TSA
models is insufficient. Moreover, the use of a black box model in these approaches limits the
interpretability of the results. Compared with traditional machine learning methods, deep
learning methods [13,14], which use multiple layers to progressively extract higher-level
features from the raw input, have the advantages of strong feature extraction ability and
good convergence. In recent years, deep learning algorithms have been widely applied
to TSA in power systems. For instance, in [15], an improved Deep Belief Network (DBN)
model is proposed for the rapid assessment of transient stability, along with a reasonable
interpretation of the underlying relationship between system features and assessment
results. Additionally, reference [16] proposes a transient stability predictor that considers
operational variability based on a Convolutional Neural Network (CNN) ensemble method,
to enable adaptation to near-future operation conditions in a limited time. Moreover, using
the latest deep learning techniques such as Generative Adversarial Networks (GAN) [17]
for online TSA is explored. Notably, although these studies constructed TSA models with
higher accuracy using deep learning techniques, they did not guide the development of
system control strategies. Therefore, further research efforts should aim to leverage these
high-accuracy models in developing effective control strategies for power systems.

Transient stability preventive control (TSPC) aims to withstand high-probability severe
contingencies through measures such as generation rescheduling [18]. However, system
generation rescheduling can result in substantial dispatching costs, which can be onerous
for system operators. To resolve this conflict between economy and stability requirements,
transient stability constraints are introduced into optimal flow formulation. The presence
of transient stability constraints manifested as differential-algebraic equations (DAE) [19]
poses a significant challenge to conventional optimization algorithms. Specifically, the
DAE’s complexity makes it difficult to apply standard mathematical optimization methods.
Linear programming and the interior point method are utilized in [20] and [21], respectively.
These approaches use advanced mathematical optimization algorithms to overcome the
limitations of DAE but still suffer from significant time consumption. In reference [22], the
application of a Backpropagation Neural Network (BPNN) optimized through the genetic
algorithm (GA) is employed as the TSA model. This approach is further enhanced by
integrating it with the particle swarm algorithm to assess the power system’s transient
stability after conducting TSPC strategies. Nevertheless, this approach just uses a basic
BPNN structure, is unreliable in evaluation outcomes, and is inappropriate for complex
scenarios. In ref. [23], DBN is strategically integrated with a non-dominated sorting genetic
algorithm (NSGA-III) to develop a new preventive control framework. This method reduces
the difficulty of solving DAE by replacing them with TSA. However, the optimization
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solution path of NSAG-II is single, and the method described in the paper lacks the
necessary prior knowledge to assist in the rapid optimization solution.

In summary, the drawbacks of the existing studies can be summarized as follows:

1. The traditional TSC-OPF issue incorporated with differential-algebraic equations
(DAE) is time consumption and difficult to solve.

2. Due to the simplicity of the machine learning model’s structure, the accuracy of TSA
models is insufficient. The common deep learning approach has three drawbacks: it
only has one input feature set, it is difficult to choose structures, and its assessment
results’ dependability is unknown.

3. When TSA is directly introduced into the OPF as a constraint, the issue of lack of
prior knowledge will arise. As a result, features that have little effect are frequently
added as input features to the optimization process, which lowers the efficiency
of optimization.

4. Widely used optimization algorithms often have only one optimization path. This can
lead to algorithms that are not fast enough to solve, and the accuracy of the results
needs to be improved.

In response to the many problems in the above studies. This paper proposed a novel
TSPC method driven by naturally inspired optimization with improved transient stability
assessment. The main contributions of this paper are as follows:

1. In this paper, an ensemble learning model is used as a TSA model to solve the DAE
equation, which simplifies the calculation and improves the efficiency.

2. The stacking ensemble multilayer perceptron (SEMLP) approach is introduced to
determine the transient stability of the system. The two-layer integrated model is
designed in this paper to extract valuable information from diverse system operational
features, thereby enhancing the overall model’s generalizability and accuracy. Based
on this method, an online TSA model is developed and serves to determine the
transient stability for TSPC.

3. Sensitivity analysis based on TSA is used to determine the adjusting direction of the
controllable generator set. The results of the sensitivity analysis are input as a priori
knowledge into the subsequent optimization algorithm to improve the efficiency of
the optimization algorithm.

4. A novel TSPC method, AFO driven by SEMLP, is introduced to achieve a good balance
between stability, economy, and rapidity in generation rescheduling.

2. Transient Stability Assessment Model Based on SEMLP
2.1. Stacking Ensemble Multilayer Perceptron

Multilayer perceptron (MLP) is a quintessential deep learning algorithm, which con-
sists of several fully connected perceptron layers interconnected through an extensive
neural network architecture. The structure of MLP is shown in Figure 1. The last layer
uses the softmax function as the activation function to output the labels for classification
and recognition, and the remaining intermediate layers perform feature extraction layer
by layer.

Despite its powerful feature extraction capabilities, optimizing only one single MLP
model to find the optimal settings can be a time consumption and labor-intensive process.

Stacking ensemble learning [24,25] combines multiple learning algorithms to improve
the model’s accuracy. It involves training multiple weak classifiers and then combining
them to create a stronger classifier. The general idea is to use a meta-learner to learn from
the outputs of the basic classifiers. The meta-learner then makes a final decision. Figure 2
shows the basic structural diagram of stacking ensemble learning.

The stacking ensemble learning approach can be employed to mitigate the influence of
variable parameters in MLP classifiers and enhance their accuracy. By combining multiple
MLP models trained on different data sets, the SEMLP method can help alleviate the
overfitting problem and improve the generalization ability of the model. As a result, it can
outperform a single MLP model in terms of accuracy and efficiency.
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2.2. Input Vectors and Output of SEMLP

The TSA model is trained with diverse factors that affect the stability of the power
system, including generators’ output and bus features. These factors are critical in assessing
the power system’s transient stability during disturbances. By incorporating these diverse
factors within the TSA model, it becomes more effective in identifying potential stability
issues and providing preventative measures. In this research, three types of feature data are
introduced for use in TSA. The first feature set (PG1, PG2, . . ., PGn) refers to the generators’
active power output, the second feature set (|V1|, |V2|, . . ., |Vn|) refers to bus voltage
magnitudes, and the third feature set (θ1, θ2, · · · θm) refers to bus voltage angle difference. m
represents the total quantity of buses. n denotes the total number of generators. Therefore,
the input to SEMLP is as follows:

I(t) = [PG1, PG2, · · · , PGn, |V1|, |V2|, · · · , |Vm|, θ1, θ2, · · · , θm] (1)

The Transient Stability Index (TSI) is used as a quantitative measure to evaluate the
transient stability of a system. TSI is an indicator that quantifies the maximum deviation in
rotor angle among the power system’s generators throughout the transient period. The TSI
formula is presented as follows:

TSI =
360 − |δmax|
360 + |δmax|

(2)
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δmax is the largest difference in rotor angle between any two generators. TSI > 0 reflects
that the power system is in a state of transient stability, whereas TSI < 0 indicates that
the power system is in a state of transient instability. The numerical simulation samples’
TSIs are all determined using PSASP. In this research, the TSA model is employed to
replace the nonlinear DAEs, which are conventionally used to impose transient stability
constraints. The SEMLP model accurately establishes the connection between diverse
system operational features and TSI values. Therefore, the output of SEMLP is as follows:

o(t) = TSI (3)

2.3. Training of the TSA Model Based on SEMLP

The structure of the TSA model based on SEMLP is shown in Figure 3.
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The specific steps for training SEMLP are as follows:
Step 1. Input the time-domain simulated sample data into the model. As shown in

Figure 3, Feature A is inputted into MLP-1, MLP-2, and MLP-3. Feature B is inputted into
MLP-4, MLP-5, and MLP-6. Feature C is inputted into MLP-7, MLP-8, and MLP-9.

Step 2. By training MLPs with different structures in parallel, the basic classifier layer
is built up. The specific neural network parameters of the SEMLP model are shown in
Table 1. As Table 1 shows, each MLP sub-model possesses its unique architecture.

Table 1. SEMLP model structure parameters.

Sub-Model Hidden Layer Neuronal Count per Layer
(from Left to Right)

MLP-1 3 (64, 32, 16)
MLP-2 4 (128, 64, 32, 16)
MLP-3 5 (256, 128, 64, 32, 16)
MLP-4 3 (64, 32, 16)
MLP-5 4 (128, 64, 32, 16)
MLP-6 5 (256, 128, 64, 32, 16)
MLP-7 3 (64, 32, 16)
MLP-8 4 (128, 64, 32, 16)
MLP-9 5 (256, 128, 64, 32, 16)

Meta-classifier MLP 3 (64, 32, 16)
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These sub-models are utilized to construct a base classifier layer, with each MLP
independently processing a specific set of features. The outputs of the three MLP sub-
models corresponding to each feature are then integrated through a process of averaging.
TSI-pre integration, the three mean values, are considered as the output of the basic classifier
layer. This integrated approach ensures that each sub-model’s contribution is given equal
weight, effectively combining the results in a balanced and comprehensive manner.

Step 3. Train the meta-classifier layer. The actual TSI label that corresponds to the
feature set is used as the input label for the meta-classifier, while the output of each base
classifier is used as the input feature for the meta-classifier. This research uses a weighted
cross-entropy loss function to solve the imbalance between the number of stable samples
and the number of unstable samples. The specific weighting process is described as follows:

L = − 1
Nsp

[∑
Nsp

Wsyilg ŷi + ∑
Nsp

Wu(1 − yi)lg(1 − ŷi)] (4)

where L means the calculation of the cross-entropy loss function; Nsp donates the total
number of samples; yi represents the real stability label of the i-th sample, and the value
of yi is 0 or 1; ŷi represents the probability that the predicted label of the i-th sample is
stable, and ŷi ∈ ( 0, 1 ); Ws and Wu are loss weights for stable and unstable samples,
respectively. To draw more emphasis to the unstable sample with very small sample sizes,
we set Ws < Wu.

Step 4. Obtain the predicted results of TSA. The SEMLP model’s output is the TSI
predicted value. TSI < 0 indicates that the power system is in a state of transient instability.
The suggested SEMLP method and TSI index can not only assess binary information
regarding the samples’ state but also calculate the stability margin or instability degree.

2.4. Evaluation Indices

Table 2 displays the TSA evaluation results.

Table 2. Results of TSA.

Real Label
Predicted Results of TSA

Stable (Predicted) Unstable (Predicted)

Stable (actual) TP FN
Unstable (actual) FP TN

TSA is a non-equilibrium classification problem. This research has adopted the evalua-
tion indices: Acc, TPR, TNR, and Gmean. Acc is the overall classification accuracy. TPR means
the ability to identify stable samples. TNR denotes the ability to identify unstable samples.
Gmean is a comprehensive index.

Acc =
TP + TN

TP + FN + FP + TN
(5)

TPR =
TP

FN + TP
(6)

TNR =
TN

TN + FP
(7)

Gmean =
√

TPRTNR (8)

2.5. Controllable Generator Set Selection Based on Sensitivity Analysis

To enhance the effectiveness of the solution of the optimization, it is crucial to find the
generators that have a significant influence on transient stability. The trajectory sensitivity
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can be computed using the pre-trained neural network parameters, which can then be
utilized to form positively and negatively adjusted generator sequences.

For a regular neural network, the output of the fully connected layer can be expressed
as follows:

o =
Mn

∑
1

σ

(
ωnm ·

Mn−1

∑
1

σ
(

ω(n−1)m · x(n−1)m + b(n−1)m

)
+ bnm

)
(9)

where xnm represents the input from the n-th to the m-th layer; ωnm and bnm represent the
weights and biases, respectively; σ is the activation function; Mn is the number of neurons
per layer. Rewrite (9) in the form of a mapping relation:

o = fn(I) (10)

where I represents the initial input vector to SEMLP. The derivative function of fn can be
expressed as:

f̃n =
Mn

∑
1

σ′
(

ωnm ·
Mn−1

∑
1

σ
(

ω(n−1)m · x(n−1)m + b(n−1)m

)
+ bnm

)
(11)

Therefore, the partial derivative of output with respect to input can be expressed
as follows:

do
dIi

=
N

∏
n=1

ωni

N

∏
n=1

f̃n(I) (12)

This partial derivative can be used as the sensitivity of controllable generators:

SGi =
do
dIi

(13)

where SGi is the sensitivity of the i-th controllable generator’s active power with respect
to TSI.

Depending on SGi , all generators in the power system can be divided into positively
adjusted generator sequences and negatively adjusted generator sequences. Z+ =

{
δk

∣∣∣SGk > SG(k+1)
, SGk > 0, SG(k+1)

> 0
}

Z− =
{

εk

∣∣∣∣∣SGk

∣∣ < ∣∣∣SG(k+1)

∣∣∣, SGk < 0, SG(k+1)
< 0

} (14)

where δk and εk represent the k-th controllable generator in Z+ and Z−, respectively.
Generators in positively adjusted generator sequence Z+ are sorted by the size of the
adjustment amount from largest to smallest. Reversely, generators in negatively adjusted
generator sequence Z− are sorted from smallest to largest. The positive and negative
adjustment sorts can be incorporated into the initial sample set as prior knowledge for the
subsequent optimization algorithm.

3. Transient Stability Preventive Control Algorithm

TSPC encompasses control measures taken to guarantee the stability of the system
during normal operation, involving aspects such as generator output control, load control,
voltage control, etc. TSPC can be considered equivalent to transient stability-constrained
optimal power flow (TSCOPF). TSCOPF seeks to optimize the power system’s parameters
while adhering to certain safety limits, thereby facilitating reliable operation even in the
face of external perturbations.
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3.1. TSCOPF
3.1.1. Objective Function

The TSPC strategy employs generator output control as the primary method, and the
optimization objective is to minimize the total cost of adjustment:

minC = min ∑
i∈SG

(
rup

G,i∆Pup
G,i + rdown

G,i ∆Pdown
G,i

)
(15)

∆Pup
G,i =

{
Paf

G,i − Pbe
G,i,

0,
Paf

G,i > Pbe
G,i

Paf
G,i ≤ Pbe

G,i
(16)

∆Pdown
G,i =

{
Pbe

G,i − Paf
G,i,

0,
Paf

G,i < Pbe
G,i

Paf
G,i ≥ Pbe

G,i
(17)

where C represents the total cost of the controllable generator set’s output adjustment; SG
denotes the controllable generator set; Pbe

G,i and Paf
G,i represent the i-th generator’s output

before and after TSPC, respectively; ∆Pup
G,i and ∆Pdown

G,i represent the quantities by which
the output of the generators increases and decreases, respectively; rup

G,i and rdown
G,i represent

the expenses associated with increasing and decreasing the generator outputs, respectively.

3.1.2. Power Flow Constraints

Pi(V, δ) = |Vi|
N

∑
1
|Vi|
∣∣Vij
∣∣ cos

(
δi − δj − ϕij

)
(18)

Qi(V, δ) = |Vi|
N

∑
1
|Vi|
∣∣Vij
∣∣ sin

(
δi − δj − ϕij

)
(19)

Yij =
∣∣Yij
∣∣∠ϕij (20)

Pi and Qi are the bus i’s active power and reactive power; V and δ are the voltage
amplitude dataset and phase angle dataset, respectively; |Vi| represents the bus i’s voltage
amplitude; δi is the bus i’s voltage phase angle; Yij is the admittance matrix value, and ϕij
is the phase angle; N represents the overall quantity of buses.

3.1.3. Inequality Constraints

Inequality constraints play a critical role in ensuring the safe operation of the power
system, and they encompass various aspects such as the generator’s power output con-
straints (21), the buses’ voltage constraints (22), and the lines’ thermal stability con-
straints (23): {

Pmin
Gi ≤ PGi ≤ Pmax

Gi
Qmin

Gi ≤ QGi ≤ Qmax
Gi

, i ∈ SG (21)

Vmin
i ≤ Vi ≤ Vmax

i , i ∈ SN (22)

Pmin
ij ≤ Pij ≤ Pmax

ij , (i, j) ∈ SL (23)

where Pmin
Gi , Pmax

Gi , Qmin
Gi and Qmax

Gi denote the minimum and maximum values for the active
and reactive power output of the generators; Vmin

i , Vmax
i are lower and upper limits of bus

voltage amplitude; Pmin
ij and Pmax

ij are the limits of the line ij’s thermal capacity; SN is the
collection of all buses; SL is the collection of all lines.
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3.1.4. Transient Stability Constraints

The power system’s transient stability constraints can be mathematically represented
by a differential Equation (24) and an algebraic Equation (25).

dx
dt

= f (x, y, λ) (24)

h(x, y, λ) = 0 (25)

where x is the state variable, y is the algebraic variable and λ is the control variable. Solving
the system of the nonlinear differential-algebraic equations described by the previous
two equations can be a challenging and computationally expensive task. Therefore, it is
imperative to develop efficient methods for transient stability constraint assessment in
the context of power system preventive control. To address this issue, we propose the
SEMLP-based TSA as a replacement for the computationally complex solution process.
This approach leverages the advantages of the SEMLP algorithm, which can effectively
handle high-dimensional data and provide fast and accurate estimations of the system’s
transient stability. By utilizing this method, we can significantly reduce the computational
effort required to assess the constraints related to power system transient stability.

3.2. TSPC Algorithm: AFO Driven by SEMLP-Based TSA

In this section, the SEMLP-based TSA is introduced into the TSCOPF problem. To
efficiently solve TSCOPF, we utilize the Aptenodytes Forsteri Optimization algorithm
(AFO) [26]. The traditional approaches, such as the interior point method, convex pro-
gramming, and linear/quadratic programming methods, are ineffective and challenging
to use in many real-world situations. The complex DAE solving involved in traditional
methods results in higher computational complexity and longer computation time. To sim-
plify calculations, the neural network SEMLP-based TSA model, used as transient stability
constraints, is integrated into the process of TSC-OPF solving. However, the TSC-OPF
problem, which contains black-box constraints derived from SEMLP, is almost impossible
to solve using the traditional methods. To deal with that, the AFO algorithm, which is
inspired by the warm-hugging behavior of emperor penguins and can solve optimization
problems more quickly, is integrated with the SEMLP to solve the TSC-OPF problem.

AFO mimics five warm-hugging strategies observed in penguins, including sensing
temperature changes, considering where the other penguins are located, moving towards
the center of the population, minimizing energy loss, and referring to memory. These strate-
gies are formulated into five ways for updating variables. AFO provides a computational
benefit when compared to traditional optimization techniques such as genetic algorithm
(GA) and Particle Swarm Optimization (PSO) in terms of computational expenses, solution
times, and convergence.

Sensitivity analysis (SA) and SEMLP-based TSA are both integrated into the AFO
algorithm to form the TSPC algorithm abbreviated as SEMLP-AFO. The structure of AFO
driven by the SEMLP algorithm is illustrated in Figure 4.

Firstly, diverse sample features and TSI labels are collected and utilized as input
data for sensitivity analysis. The computed positively and negatively adjusted genera-
tor sequence resulting from SA is utilized as the initial sample set for the subsequent
optimization algorithm.

Secondly, MATPOWER, which can conduct numerical simulation calculations, is uti-
lized to replace TSC-OPF’s equation constraints. It is worth mentioning that MATPOWER
can generate bus voltage amplitude and phase angle by simulation.
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Thirdly, input the amplitude and phase angle of the bus voltage and the position of
the penguins (the generators’ output) into SEMLP to acquire the TSI. The SEMLP-based
TSA can be seen as the inequality restrictions at the current operation point.

Finally, the AFO algorithm addresses the TSCOPF problem by aiming to minimize
adjustment costs while ensuring the satisfaction of constraints. The updated generators’
output, which corresponds to the penguin population positions in the AFO algorithm, is
calculated based on the optimization results.

The proposed SEMLP-AFO preventive control algorithm offers an effective solution for
TSCOPF. By integrating SA and SEMLP-based TSA with the AFO algorithm, this approach
achieves a good balance of stability, economy, and rapidity when generation rescheduling.

The detailed steps for the AFO driven by the SEMLP model for preventive control are
summarized in Figure 5.
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4. Case Study
4.1. Sample Dataset Generation

The IEEE 39-bus system is widely employed for TSA in power systems. In this research,
PSASP is used to run simulation studies and provide sample data. The simulations are
conducted using a sampling frequency of 100 Hz, resulting in a sampling time step of 0.01 s.
The active power of the loads and generator outputs are varied between 80% and 120%,
while the generator voltage magnitudes are expected to fluctuate between 1.0 and 1.05.
A stochastic sampling technique is employed to choose 5000 operating points from the
available pool of power system operating points. In this research, faults are set to the most
severe three-phase short circuit faults. In total, 34 lines out of 46 are chosen to participate
in the process of generating the sample. The simulation has a duration of 5 s, with the
fault happening at t = 1 s and being resolved at t = 1.10 s. In total, 170,000 samples are
generated. All TSI values for all 34 line-fault samples at a specific operating point are
calculated, but only the TSI with the lowest value is chosen as the actual TSI label. Out of
the 5000 labeled samples generated by numerical simulation, 2812 samples are categorized
as stable, while 2188 samples are deemed unstable. To establish a robust model, a random
sampling method was implemented to select 4000 samples out of the total 5000, which form
the train set. Meanwhile, the remaining 1000 samples make up the test set. The evaluation
index can be found in Section 2.4.

4.2. TSA Performance Analysis
4.2.1. Performance of SEMLP

SEMLP model is trained based on sample set data. The accuracy and loss values
obtained during each iteration of the SEMLP-based TSA training process are carefully
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recorded and analyzed, with the resulting statistics presented in Figure 6. Figure 6 clearly
demonstrates that the SEMLP model has a remarkably fast convergence rate and produces
highly accurate evaluation results.
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To evaluate the effectiveness of the proposed SEMLP method, a comparative analysis
is conducted with various other machine learning and deep learning models. Specifically,
SVM, random forest (RF), SAE, CNN, and DBN models are trained using the same sample
set for comparison with the SEMLP model. The accuracy results of each model are presented
in Table 3 for reference.

Table 3. Performance of different TSA models.

RF SVM CNN SAE DBN SEMLP

Acc/% 89.92 93.55 94.56 95.95 96.24 98.55
TPR/% 90.42 94.94 95.80 97.33 97.61 98.64
TNR/% 87.02 91.45 92.68 94.00 94.83 98.45

Gmean/% 88.70 93.18 94.23 95.65 96.21 98.54

As depicted in Table 3, the test results show that the proposed SEMLP has more
obvious advantages than other models in Acc and Gmean. The Acc of SEMLP is 5% higher
than that of SVM, and Gmean is 3.52% higher. This suggests that the machine learning
models (RF, SVM) demonstrated limited accuracy due to their relatively simple model
architectures and restricted feature learning capabilities. Similarly, the Acc and Gmean of
deep learning models (SAE, CNN, DBN) are also higher than those of machine learning
models. This suggests that deep learning models with their deeper network structures
exhibit superior performance, being largely better at mining the intrinsic features of the
data. However, the Acc of CNN, SAE, and DBN are 3.99%, 2.60%, and 2.31% lower than that
of SEMLP, respectively. This shows that the proposed SEMLP model underwent further
improvements to achieve even higher accuracy than those of the deep learning models.

TPR shows the ability of TSA models to identify stable samples. TNR denotes the
ability to identify unstable samples. It is easy to overlook unstable samples because there
are typically fewer of them than stable samples. Therefore, TNR is always lower than TPR.
The value of ∆TR = TPR − TNR can reflect the TSA model’s ability to handle imbalanced
samples. The smaller the value of ∆TR, the better the TSA model’s performance. As Table 3
shows, each ∆TR value of RF, SVM, SAE, CNN, and DBN is maintained above 2.78%.
However, the ∆TR value of SEMLP is only 0.19%. In this case study, only the SEMLP model
uses a weighted cross-entropy loss function. Thus, the imbalance between the number of
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stable and unstable samples can be resolved by using the proposed SEMLP model with
improved loss function.

4.2.2. Comparison between SEMLP and MLP Sub-Model

To ascertain the efficacy of the proposed SEMLP model, a comparison analysis was
carried out to evaluate the accuracy of TSA among both the individual base classifiers and
SEMLP within the framework of this research. The 10-fold cross-validation technique was
utilized and repeated three times to demonstrate the average performance of the algorithms.
The results of each sub-model and the SEMLP model were systematically summarized and
displayed in box plots, as shown in Figure 7.
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plots show the middle 50% of each data distribution).

Observably, the SEMLP model stands out among the other individual sub-models
with optimal performance, as reflected by its higher mean and median values. Such
results effectively illustrate the superiority of the integrated model over the individual
MLP models, thus attesting to the efficacy of the proposed SEMLP model in enhancing the
accuracy of the underlying model.

4.3. Sensitivity Analysis

According to Section 2.5, the sensitivity of the active power of each generator with
respect to TSI can be calculated. The result is shown in Figure 8. Positive sensitivities are
indicated with red colors, while negative sensitivities are depicted in blue. The closeness of
the colors to the color scale’s limits denotes the degree of sensitivity of the generator to TSI.

The sensitivity of each generator towards TSI exhibits a considerable disparity. Genera-
tors with high sensitivity are suitable for regulation during generation rescheduling. When
SGi > 0, increasing the output power of the generator can reduce the degree of instability.
Reversely, SGi < 0 means that decreasing the output power of the generator can reduce the
degree of instability. The projection of the surface onto the XY-plane can be observed in
Figure 8. It is obvious that generators 5, 6, and 7 possess the highest sensitivity (absolute
value) among all 10 generators, as indicated by their blue projections, thereby placing them
within the negatively adjusted generator sequence. According to (9)~(14), the positive and
negative adjustment sorts can be formed and incorporated into the initial sample set as
prior knowledge for subsequent optimization algorithms.
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4.4. Analysis of SEMLP-Driven AFO TSPC Method’s Results

The contingency set of the test system in this research is shown in Table 4.

Table 4. Contingency set of IEEE 39-bus system.

Contingency No. Fault Line Fault Bus Stable State

1 2–3 2 or 3 Stable
2 3–4 3 or 4 Unstable
3 4–5 4 or 5 Stable
4 4–14 4 or 14 Stable
5 5–6 5 or 6 Stable
6 5–8 5 or 8 Stable
7 10–13 10 or 13 Stable
8 19–20 19 or 20 Stable
9 23–24 23 or 24 Stable
10 28–29 28 or 29 Unstable

As shown in Table 4, the system is found to be unstable at the selected insecure initial
operating point when encountering a 3-phase-ground fault on Fault Lines 3–4 or Fault
Lines 28–29.

In order to mitigate the adverse effects of contingencies and adjust the system to a
secure operating point, the SEMLP-based TSA is integrated into the AFO algorithm for
transient stability preventive control. A comparison of generators’ output before and after
TSPC is shown in Figure 9.

To further demonstrate the economic performance of the TSPC method proposed in
this research, Table 5 illustrates the control cost of TSPC.

Table 5 presents the total control cost amounting to USD 142.25. Notably, PG6 records
the maximum decrease in power output. Intriguingly, this does not translate to a high
control cost, a trend that is also evident for PG5, PG7, and PG9. This occurrence can
be attributed to the optimization algorithm’s efforts in minimizing the scheduling cost
during the generation scheduling process. This outcome demonstrates the economy of the
proposed TSPC method.
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Table 5. Cost of TSPC.

Generator Before
TSPC/MW

After
TSPC/MW

Output
Change/MW

Unit
Adjustment Cost Gen. Cost

1 249.57 254.72 5.15 1

142.425

2 687.28 685.74 −1.54 1
3 648.89 672.35 23.46 1
4 630.92 626.74 −4.18 0.5
5 507.13 478.73 −28.40 0.5
6 648.89 601.41 −47.48 0.5
7 559.04 531.04 −28 0.5
8 539.08 575.03 35.95 1
9 828.58 872.72 44.14 0.5
10 998.29 998.74 0.45 0.5

To further verify the effectiveness of the proposed TSPC method, PSASP7.50 software
is used to compare rotor angle trajectories before and after TSPC for unstable samples,
specifically for Fault Lines 3–4 and Fault Lines 28–29. Figures 10 and 11 demonstrate the
results of this analysis.
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Figure 11. Fault bus-28_bus-29’s rotor angle trajectories (a) before TSPC; (b) after TSPC.

The outcomes from the comparison indicate a significant improvement in stability
after implementing the TSPC method. Specifically, all previously divergent rotor angle
trajectories have now stabilized. This result serves as a compelling validation of the
effectiveness of the proposed model.

To showcase the superior convergence qualities of the SEMLP-AFO algorithm, this re-
search conducts experiments comparing SEMLP with several widely adopted optimization
algorithms. The detailed results of these experiments can be found in Figure 12.
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As Figure 12 shows, the fitness values of the traditional population intelligence meth-
ods PSO and GA eventually converge to about 3000, while the final fitness values of the
AFO algorithm and NSGA-II algorithm are close to the zero value. Furthermore, it is
noteworthy that the AFO algorithm demonstrates faster convergence when compared to
the NSGA-II algorithm. These results show the superior performance of the naturally
inspired optimization algorithm in terms of convergence.

This research introduces the SEMLP-driven AFO preventive control algorithm, which
addresses the need for rapidity in addition to ensuring effectiveness, stability, and economy.

Figure 13 provides clear evidence of the significant advantages of the proposed method
in terms of rapidity. NSGA-II with time-domain simulation takes up to 3320 s due to the
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need to solve nonlinear differential-algebraic equations. In other studies, NSGA-II with
a DBN-based TSA method takes 55 s. Additionally, a time reduction of 12 s is achieved
by replacing the TSA model with the SEMLP method proposed in this paper. Finally,
in this paper, AFO with SEMLP-based TSA algorithm only requires 35 s, demonstrating
superior performance. Additional improvements in rapidity can be achieved by including
sensitivity analysis.
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4.5. TSPC Experiment Based on IEEE 300-Bus System

The IEEE 69-machine 300-bus system, which represents a larger regional intercon-
nected grid, is employed for TSA in this research. PSASP software is utilized to generate
sample data through simulation experiments. The active power of the loads and generator
outputs is intentionally varied between 90% and 110%. A stochastic sampling technique
is employed to choose 5000 operating points from the available pool of power system
operating points. Two three-phase short circuit faults are selected to participate in the
sample generation process, called Fault 1 and Fault 2. The simulation lasts 5 s, with the
fault happening at t = 1 s and being resolved at t = 1.10 s. A comparison of generators’
output before and after TSPC is shown in Figure 14.
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To verify the effectiveness of the proposed TSPC method in the IEEE 300-bus system,
PSASP software is used to compare rotor angle trajectories before and after TSPC for
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unstable samples, namely Fault 1 and Fault 2. Figures 15 and 16 demonstrate the results of
the comparison.
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After conducting preventive control using the proposed model, it is evident that all
previously diverging rotor angle trajectories have been stabilized, thus demonstrating
the effectiveness of the model. The convergence of rotor angle trajectories after TSPC
is superior in the large system as compared to the IEEE 39-bus system, owing to the
robust grid structure of the former. The experiments based on the IEEE 39-bus system and
IEEE 300-bus system indicate that the proposed method can address stability concerns in
real-time applications in both small- and large-scale power systems.

5. Conclusions

In this paper, a novel TSPC method driven by naturally inspired optimization with
an improved transient stability assessment model is proposed. This method provides a
smooth reconciliation of stability, economy, and rapidity when generation rescheduling.
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• Stability. The stacking ensemble multilayer perceptron (SEMLP) approach is intro-
duced to determine the transient stability of the system. The two-layer integrated
model is designed in this paper to extract valuable information from diverse sys-
tem operational features, thereby enhancing the overall model’s generalizability and
accuracy. Based on this method, an online TSA model is developed and serves to
determine the transient stability for TSPC. Experimental validation has demonstrated
that the TSA model proposed in this paper possesses a significant advantage in terms
of accuracy.

• Economy. The TSPC method, AFO driven by SEMLP, is developed to minimize
generator adjustment costs. This method offers control strategies that are highly
effective in achieving near-optimal operational costs while ensuring optimal system
performance and operational economy.

• Rapidity. The rapidity of the TSPC method can be attributed to the sensitivity analysis
and the excellent performance of the SEMLP-AFO model. The sensitivity analysis
provides prior knowledge that aids in identifying and addressing issues promptly,
while the SEMLP-AFO model’s robust performance ensures that the method performs
effectively and efficiently.

There is still opportunity for refinement and enhancement of the methods imple-
mented in this work. Future work is summarized as follows:

• In future work, the proposed method will be tested using practical systems and data.
• An integrated assessment model for power system transient stability can be developed.

Power system transient stability can be classified into three categories: rotor angle
stability, frequency stability, and voltage stability. This paper focuses on rotor angle
transient stability. Future research is going to develop data-driven TSA methods
to perform more precise, quick, reliable, and useful stability assessments in voltage
stability and frequency stability.
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