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Abstract: Locating petroleum-productive wells using informed geological data, a conventional means,
has proven to be tedious and undesirable by reservoir engineers. The former numerical simulator
required a lengthy trial-and-error process to manipulate the variables and uncertainties that lie on the
reservoir to determine the best placement of the well. Hence, this paper examines the use of a global
genetic algorithm (GA) to optimize the placement of wells in complex reservoirs, rather than relying
on gradient-based (GB) methods. This is because GB approaches are influenced by the solution’s
surface gradient and may only reach local optima, as opposed to global optima. Complex reservoirs
have rough surfaces with high uncertainties, which hinders the traditional gradient-based method
from converging to global optima. The explicit focus of this study was to examine the impact of
various initial well placement distributions, the number of random solution sizes and the crossover
rate on cumulative oil production, the optimization of the synthetic reservoir model created by CMG
Builder, CMOST, and IMEX indicated that using a greater number of random solutions led to an
increase in cumulative oil production. Despite the successful optimization, more generations are
required to reach the optimal solution, while the application of GA on our synthetic model has proven
efficient for well placement; however, different optimization algorithms such as the improved particle
swarm (PSO) and grey wolf optimization (GWO) algorithms could be used to redefine well-placement
optimization in CMG.

Keywords: well deployment; genetic algorithms; CMG; global optimization; reservoir

1. Introduction

Well physical location is very crucial as the key parameter in the success of a new well.
However, the optimization of well placement is a very challenging task [1,2]. Reservoir
engineers deal with a wide range of variables, such as geochemical variables [3–5], produc-
tion variables, monetary variables, etc. Moreover, the addition of reservoir uncertainties
along with the variables has contributed to the limitations in determining the optimization
of well placement.

Conventionally, a numerical multiphase flow simulator is the primary tool to define the
optimum production strategy in complex fields. However, the optimization approach using a
numerical multiphase flow simulator is time-consuming and requires tremendous manual trial
and error. Furthermore, traditional gradient-based search algorithms such as line-search and
trust-region strongly depend on the initial guessed solution as the size of the problem increases.
The objective function (cumulative oil production) in well placement optimization will be
on a high-dimensional and rough surface. Thus, the traditional gradient-based optimization
methods were not relevant.

New alternatives and approaches [6,7] need to be developed to allow optimum reser-
voir performance gained from well placement, as many global-producing provinces are
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reaching maturity. Therefore, a general procedure for optimal deployment of wells by
artificial intelligence methods such as genetic algorithms is introduced to automate this
process. Genetic algorithms have been used widely in mathematical research, especially to
solve complex optimization problems [8,9]. In petroleum engineering, it has been applied
for reservoir development, such as well placement optimization.

Studies of well placement optimization using genetic algorithms (GAs) [10–12] as
optimization algorithms have been carried out by several researchers using a variety
of methods. A methodology is developed to deploy high-deviation wells and horizontal
wells [13]. Their goal is to determine the most feasible good types, locations, and trajectories
to access the highest productive zones of the reservoir. By numerically simulating several
wells, they then order it based on GA criteria. The well placement for multiple horizontal
and vertical wells can be optimized by using hybrid algorithms consisting of GAs and
integrated with a numerical reservoir simulator [14].

GAs are applied in automatic well placement estimation algorithms [15]. They include
oil displacement recovery factors as the cost function in their studies. They identified
the grid blocks that satisfied potential production requirements and their petro-physical
property constraints prior to generating all feasible production wells on the grid blocks.
Then, they implemented definite optimization using GAs to eliminate many possible solu-
tions. GAs are utilized in a hybrid optimization algorithm that includes a neural network
accelerator algorithm in conjunction with a reservoir simulator [16]. They optimized the
well placements for vertical water injection for a water flood field project. GAs are used to
optimize the locations of their vertical injector and producer wells [17].

Genetic algorithms (GAs) have stochastic search algorithms that optimize as per the
principle of natural selection from the Darwinian theory of evolution. They propose a
population of solutions, selecting parameters from specified user constraints, evaluating
them, and combining the fittest ones to generate better candidates. GAs were first attempted
to solve complex problems in the seventies by biologists. The formulation of basic theory
was carried out, whereby complex problems were represented as bit chains. It was studied
that simple transformations can improve chains. A tiny fragment of the population is
enough to find the optimized individual [18]. This is because GA uses a probabilistic
transition system that imitates the differential reproduction of individuals during the
optimization [19]. GAs are different compared to the traditional gradient-based algorithms
because they compute the parameter code set rather than the parameters themselves. GAs
are suited to handling discrete parameter values such as the number of wells. Meanwhile,
ref. [20] described that traditional methods are limited by the complexity and uncertainty of
the oil field optimization problem. They search for a set of parameters instead of searching
for the parameter itself. Further, instead of referring to the next individual as the solution
for merging, they merge two already-fit individuals to produce another stronger one [21].
All these differences cause GA to be able to surpass the traditional methods in terms of
limitation, continuity, and derivability of the objective function.

The problem variables are represented in the form of chromosomes in this first step
of GA structures. In other words, unknowns or parameters can be represented by each
set of bits. Individual chromosomes are represented by the overall string. Here, every
individual could be a potential solution to the optimization problem. The initial population
is generated either randomly or intuitively to ensure suitable coverage of the population.
The process of evolution starts by creating random individuals to form an initial population.
The newly generated individuals are then inserted into the population randomly which
then removes the less fitted individuals from the previous generation. The process of
evolving the population from the current generation until the next one can be referred to as
the number of iterations in the optimization [22]. The stopping condition for the evolution
is the maximum number of generations selected by the user.

The reproduction step is the most complicated step, with the highest number of
variations. During the selection process, the fitter individuals are preferentially selected
for reproduction. There are several approaches used to select the parent chromosomes.
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The first method is a deterministic method whereby the chromosomes chosen to mate are
just per their order of ranking. On the other hand, the parent chromosomes are heuristically
selected at random so that the fittest one has the highest probability of being reproduced.
In this project, the rank-based selection criterion is used whereby the rank of the individual
will determine the probability of the individual being selected in the population. Thus,
the weaker individuals in the population have less probability of being selected and will
not survive [23]. In this step, parent chromosomes are selected to form a new generation.
There are three processes used to create a new generation from the parent chromosomes:
crossover (mating), mutation, and elitism.

Crossover is a binary reproduction operator that randomly selects an index on the
chromosome string. The children’s chromosomes are created by taking the content of the
string before the index from one parent and then combining it with the content of the
string after the index of another parent [23]. Therefore, children of higher fitness than their
parents will have the potential to be formed. However, even though the probability of the
crossover is normally close to 1, there is still a finite probability that the parents will remain
unchanged into the next generation. In this project, crossover means considering new cases
in the optimization process where part of the well of the initial chromosomes is mated
with the next well of chromosomes. Montes et al. [19] described that due to the random
crossing point, the new chromosomes can be either a mix of injector wells from the first
chromosome or producer wells from the second chromosome. Moreover, there could also
be a few producers from the second chromosome and the rest from the first chromosome,
and vice versa. The most crucial part of the crossing is that it could create new scenarios if
a crossover of completely two different chromosomes occurred at their middle point.

Mutation is another operator of reproduction that can influence all genes in children
and mutate them with a certain probability. A small allowance of mutation is allowed for
new genetic material to be introduced. This is to consider that, in the case of reaching the
stopping criterion or local maximum, the process can proceed to other local maximums
if the mutation is happening. Mutation occurs either before crossover or after crossover.
In this project, the mutation is just a small adjustment of parameters because only one
of the randomly selected wells will have its position changed. Montes et al. [19] again
stated that crossing has a significant impact on the first evaluation when the population is
still in the stage of heterogeneity. However, mutation has become more crucial when the
chromosomes are close to reaching similarity.

This study while introducing a synthetic model for well optimization has the potency
of guiding new petroleum field developers, operators, and reservoir engineers planning
to maximize oil and gas well productivity. Understanding the importance of numerical
modeling algorithms, this current study was influenced to present globally accepted models
for simulating well placement distribution.

However, noticing the deficiency in gradient-based algorithm, the primary objective
of the study was to introduce to non-programmers the steps involved to achieving an
optimum well placement through genetic algorithm and propose possible algorithms that
could be further integrated into CMG for heterogeneous reservoirs.

2. Materials Furthermore, Methods
2.1. Synthetic Reservoir Model

Figure 1 shows a synthetic reservoir model that was developed using CMG Builder
2015.10 and IMEX 2015.10 as the testing models for the well placement optimization prob-
lem. The reservoir model data were obtained from the CMG Black Oil Training Module
website, prepared by Shaho Bazrafkan with modifications by Philipp Lang. An orthogo-
nal corner point grid was created with the provided geological contour maps and layer
thickness data. This model is a 4-layer model and has 25 (i-direction) × 35 (j-direction)
× 4 (k-direction) grid blocks with 2640 active blocks. The columns in the i-direction are
360 ft. in length, while the columns in the j-direction are 410 ft. in length. The porosity and
permeability maps given were used to populate the reservoir model with its poro-perm
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properties. The required black oil data were brined in with the provided PVT data, relative
permeability data, and initial conditions of the reservoir, such as oil–water contact and
reservoir pressure. The initial well paths and placement of 8 producers were imported
into the completion data, and the initial well placement will later be used as the base case
for the optimization problem. IMEX was used to run the data set and the cumulative oil
production of the field was used as the base case objective function in optimization later.

Figure 1. A 3Dview grid top of synthetic model.

2.1.1. Well Placement/Deployment Parameterization

The validated reservoir data set from the IMEX simulator was then edited by using
CMG CMOST, which is the integrated optimization engine in the CMG 2015.10 package
to select the respective well placement index (i-direction, j-direction, k-direction) as the
parameter to be optimized. There were 2 base data sets edited in the CMOST in which
the first data set has the default well placement (Placement A) and the second data set
well placement has been randomly modified (Placement B) by the author. The number
of wells in Placement B was set to 8 to follow the default number of wells in Placement
A. Both data sets have been validated by the IMEX simulator, and each has its respective
initial cumulative oil production values. Since there were 8 producer wells, the number
of parameters to be optimized was 24 due to there being 3 parameters (i-direction, j-
direction, k-direction) per well. These parameters will be optimized automatically by the
CMOST genetic algorithm optimization engine until the objective function or cumulative
oil production reaches the optimum solution. The optimization of the parameters was
constrained to index 5 to 16 for the i-direction, index 5 to 32 for the j-direction, and index 1
to 4 for the k-direction. This was to avoid the engine searching for grid blocks beyond the
fault structure of the reservoir and to reduce the number of grid blocks to be evaluated to
1188 blocks.

2.1.2. Different Initial Well Placement Distribution

If the initial well position is distributed close to the optimum objective function or
maximum fitness value (i.e., cumulative oil production), the duration of the convergence to
the global optimal objective function will be shorter. Therefore, if the initial well position is
distributed far from the optimum objective function, it will take more iterations (i.e., num-
ber of generations) to reach the convergence. For this analysis, there were 2 cases (Case
1 and 2) with different initial well placement distributions with 10 population sizes and
50 generations. Case 1 used data set Placement A as the initial well placement distribution,
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while Case 2 used data set Placement B as the initial well placement distribution. The objec-
tive of this analysis is to observe how the different initial well placement distributions will
affect the cumulative oil production within 50 generations and 10 population sizes.

2.1.3. Random Solutions Size

The analysis of using different random solutions or population sizes for the objective
function represents the effect of the number of possible well placement solutions generated
in one population on the cumulative oil production. In this analysis, 2 cases (Case 3 and 4)
were used where different random solution sizes were set up in the CMOST optimization
engine. Case 2 used 20 random solution sizes, while Case 3 used 30 random solution
sizes, where both optimizations were simulated based on Placement B well placement
distribution. Theoretically, the greater the number of possible well placement solutions
used, the greater the number of potential solutions (genetic richness) which indicates that
the probability of convergence towards the global optima is higher compared to the local
optima. However, the larger number of random solutions used means more iteration or
generation needed to be run, and it takes more time which could limit the convergence
up until the local optima only. Moreover, it also brings a higher range of wells with low
cumulative production (weak individual) which could be a hindrance for the optimization
to reach the maximum cumulative oil production (global optima).

2.1.4. Crossover Rate

To analyze the effect of crossover rate on the cumulative oil production, 2 cases (Case 5
and 6) based on the Placement B initial well placement distribution with different crossover
rates were used. Case 5 was set with a 0.7 crossover rate, meanwhile, Case 6 was set with
a 0.9 rate. The random solution size or population size for both cases was fixed to 30;
meanwhile, the maximum generations were set to 120 generations. If the crossover rate in
the algorithms is high, the homogenization of the population (i.e., genetic richness) would
cause the iteration to take much longer because a new bit (cases of scenarios considered) is
introduced each time a new individual is generated. Thus, a high crossover rate induces the
continuity of iterations or generations, which leads to a higher probability of converging to
the global optima.

3. Results and Discussion

From the result obtained in Figure 2a, the base case cumulative oil production for
Case 1 was 17,484 MBBL, and it reached its optimum solution at the 44th generation with
18,130 MBBL of cumulative oil production. The cumulative oil production has increased
by 3.6% compared to the initial cumulative oil production before optimization. Figure 2b
shows that Case 2 initially had 17,562 MBBL of cumulative oil production, which increased
by 2.88% to the optimum value of 18,068 MBBL at the 49th generation.

However, the difference between the optimized value of Case 1 and 2 was only
0.81%. This indicates that the different initial well placement distribution did not have a
significant impact on GA performance and the cumulative oil produced over 50 generations.
The assumption for this result was because of GA’s stochastic nature of randomly searching
for random solutions, and hence, the initial well placement distribution did not significantly
have an impact on the cumulative oil produced.

In Case 1, Figure 3a (i) illustrates the optimization of the i-direction index for all
8 producers. The range of index values considered for optimization was between 5 and
16, in order to reduce the number of cells that needed evaluation. Initially, the i-direction
indexes were dispersed randomly across the first 10 generations, ranging from a minimum
of 5 indexes to a maximum of 16 indexes. However, as the generations progressed, these
values gradually decreased. By the 40th generation, a more consistent pattern emerged,
with the optimum i-direction indexes observed at the 44th generation, coinciding with the
peak cumulative oil production.
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Figure 2. Optimization, for different initial well placement distribution. (a) Case 1. (b) Case 2.

Figure 3. i-j index optimization. (a) Case 1. (b) Case 2.

In Figure 3a (j), the optimization of the j-direction index for all 8 producers is depicted.
Similarly, the index values for the j-direction were optimized within the range of 5 to
32, in order to limit the number of cells to be evaluated. In the initial 20 generations,
the j-direction indexes were scattered randomly, with a minimum of 5 indexes and a
maximum of 32 indexes involved. Gradually, the intervals of decrease became smaller
as the generations progressed, peaking at the 50th generation. From the 42nd generation
onward, there was a noticeable trend in the graph pattern, with the j indexes displaying
greater consistency. The optimal j indexes were observed at the 44th generation, coinciding
with the achievement of the optimal cumulative oil production.

In Figure 3a (k), the optimization of the k-direction index for all eight producers
in Case 1 is depicted. Since the synthetic reservoir model consisted of only four layers,
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the k-direction indexes for the eight producers were optimized within the range of indexes
1 to 4. Initially, in the first 20 generations, the graph showed a random scattering of k
indexes, with a minimum of one and a maximum of four k-direction indexes. However,
starting from the 20th generation, the graph pattern indicated a growing consistency in the
k indexes. The optimal k indexes were achieved at the 44th generation, aligning with the
attainment of the optimal cumulative oil production.

In Case 2, Figure 3b (i) illustrates the optimization of the i-direction index for all
eight producers. The range of optimization falls between index 5 and 16, effectively
reducing the number of cells to be evaluated. Initially, the i-direction indexes were scattered
randomly in the first 10 generations, ranging from a minimum of 5 to a maximum of 16.
However, as the generations progressed up to a maximum of 50, these indexes gradually
decreased at intervals. Notably, by the 40th generation, the graph pattern indicated a greater
consistency in the I indexes, with the optimal indexes observed at the 49th generation
coinciding with the optimal cumulative oil production.

Similarly, Figure 3b (j) demonstrates the optimization of the j-direction index for all
8 producers in Case 2. The optimization range for the j-direction indexes spans from index
5 to 32, effectively limiting the number of cells to be evaluated. In the initial 20 genera-
tions, the j-direction indexes were scattered randomly, ranging from a minimum of 5 to a
maximum of 32.

The generations saw a gradual decrease in intervals, with a maximum of 50 generations.
At the 40th generation, the graph displayed a more consistent pattern for the j indexes,
reaching optimal values at the 49th generation when the cumulative oil production was at
its peak.

In Figure 3b (k), the optimization of the k-direction index for all eight producers is
depicted for Case 2. As the synthetic reservoir model consisted of only four layers, the k-
direction indexes for the eight producers were optimized within the range of 1 to 4. Initially,
the graph showed a random scattering of k indexes for the first 20 generations, ranging
from a minimum of one to a maximum of four. However, starting from the 21st generation,
the k indexes became more consistent, reaching their optimal values at the 49th generation
when the cumulative oil production was at its peak.

In Figure 4a, it was observed that Case 3 achieved the optimal solution after 74 gener-
ations, resulting in a cumulative oil production of 18,169 MBBL. This represents a 3.46%
increase compared to the initial cumulative oil production before optimization.

Moving on to Case 4, Figure 4b illustrated that the cumulative oil production increased
by 3.63% to reach a value of 18,200 MBBL at the optimum point. This was achieved after
111 generations. Comparing Case 4 to Case 3, there was a slight improvement of 0.17%.

These findings suggest that increasing the number of potential well placement solu-
tions leads to a greater genetic richness, which in turn increases the likelihood of converging
towards the optimal cumulative oil production. However, it is important to note that a
larger number of random solutions requires more iterations or generations, as seen in Cases
3 and 4. Specifically, Case 3 reached the optimum solution in just 74 generations, while
Case 4 required 111 generations. In conclusion, employing a larger number of random
solutions enhances the probability of reaching the optimal solution, albeit at the cost of
additional generations. The optimized well placements for Cases 3 and 4 can be observed
in Figure 4a and Figure 4b, respectively.

For Case 3, the optimization of each of the eight manufacturers’ i-direction index is
displayed in Figure 5a (i). To reduce the number of cells that need to be assessed, all eight
producers’ i-direction indexes were optimized in the range between index 5 and index 16.
The graph demonstrated how, over the first 22 generations, the direction I indexes were
dispersed at random, with a minimum of 5 and a maximum of 16 i-direction indexes. Yet,
they steadily dropped off as the generations increased to a maximum of 80. The graph
pattern demonstrated that the I indexes started to become more consistent at generation
55. As the optimum cumulative oil production achieved an optimal solution, generation
74 saw the observation of the optimum I indexes.
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Figure 4. Optimization for different random solutions sizes. (a) Case 3. (b) Case 4.

Figure 5. i-j index optimization. (a) Case 3. (b) Case 4.

The optimization of the j-direction index for Case 3 across all eight producers is dis-
played in Figure 5a (j). To reduce the number of cells to be assessed, all eight manufacturers’
j-direction indexes were optimized between index 5 and index 32. With a minimum of 5 and
a maximum of 32 j-direction indexes involved, the graph demonstrated how the direction j
indexes were randomly dispersing throughout the first 20 generations. Nevertheless, when
the generations increased to a maximum of 80, they progressively reduced at intervals.
The j indexes started to become more consistent at the 60th generation, according to the
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graph pattern, and the optimum j indexes were found to be at the 74th generation when
the optimum cumulative oil production achieved an optimal solution.

The optimization of each of the eight producers’ k-direction index for Case 3 is dis-
played in Figure 5a (k). Since the artificial reservoir model was limited to four layers, all
k-direction indexes for eight producers were optimized in the range between indexes 1 and
4. The graph demonstrated how, over the first 40 generations, the direction k indexes
were randomly dispersed, with a minimum of one k-direction index and a maximum of
four k-direction indexes. The graph pattern indicated that the k indexes started to become
consistent at generation 41, and the optimum k indexes were found to be at generation
74 when the optimum cumulative oil production achieved an optimal solution.

Figure 5b (i) shows the optimization of the i-direction index of all eight producers
for Case 4. All i-direction indexes for eight producers were optimized in the interval
between index 5 to 16 to limit the number of cells to be evaluated. The graph shows that
the direction I indexes were scattered randomly in the first 50 generations with a minimum
of 5 i-direction indexes and a maximum of 16 i-direction indexes. Still, they gradually
decreased in intervals as the generations reached a maximum generation of 120. Starting
at the 80th generation, the graph pattern showed that the I indexes began to be more
consistent, and the optimum I indexes were observed to be at the 111th generation as the
optimum cumulative oil production reached an optimal solution.

Figure 5b (j) shows the optimization of the j-direction index of all eight producers
for Case 4. All j-direction indexes for eight producers were optimized in the interval of
between index 5 to 32 to limit the number of cells to be evaluated. The graph showed the
direction j indexes were scattering randomly in the first 30 generations with a minimum
of 5 j-direction indexes and a maximum of 32 j-direction indexes. Still, they gradually
decreased in intervals as the generations reached a maximum generation of 120. Starting
at the 90th generation, the graph pattern showed that the j indexes began to be more
consistent, and the optimum j indexes were observed to be at the 111th generation as the
optimum cumulative oil production reached an optimal solution.

Figure 5b (k) shows the optimization of the k-direction index of all eight producers
for Case 4. All k-direction indexes for eight producers were optimized in the interval
between indexes 1 to 4 because the synthetic reservoir model was only a four-layered
model. The graph shows that the direction k indexes were scattering randomly in the
first 60 generations with a minimum of one k-direction index and a maximum of four
k-direction indexes. Starting at the 61st generation, the graph pattern showed that the k
indexes began to be consistent and the optimum k indexes were observed to be at the 111th
generation as the optimum cumulative oil production reached an optimal solution.

From the result obtained in Figure 6a, Case 5 reached the optimum solution at the 101st
generation with 18,189 MBBL of cumulative oil production. The cumulative oil production
has increased by 3.57% compared to the initial cumulative oil production before optimization.
For Case 6, cumulative oil production increased also by 3.57% at an optimum value of
18,188 MBBL with 96 generations, as shown in Figure 6b.

The findings demonstrated that despite using various crossover rates, Cases 5 and
6 did not differ significantly in terms of the total amount of oil produced. According to
theory, a higher crossover rate causes generations or iterations to continue, increasing the
likelihood that they will converge to global optima. Even still, Case 6’s 0.9 crossover rate
resulted in less cumulative oil production than Case 4’s 0.8 crossover rate. Figure 6a,b
display the optimized well placement that was achieved for Cases 5 and 6.

Figure 7a (i) shows the optimization of the i-direction index of all eight producers for
Case 5. All i-direction indexes for eight producers were optimized in the interval between
index 5 and 16 to limit the number of cells to be evaluated. The graph shows that the
direction I indexes were scattered randomly in the first 40 generations with a minimum
of 5 i-direction indexes and a maximum of 16 i-direction indexes. Still, they gradually
decreased in intervals as the generations reached a maximum generation of 120. Starting
at the 90th generation, the graph pattern showed that the I indexes began to be more
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consistent, and the optimum I indexes were observed to be at the 101st generation as the
optimum cumulative oil production reached an optimal solution.

Figure 6. Optimization for different random solutions sizes. (a) Case 5. (b) Case 6.

Figure 7. i-j index optimizations. (a) Case 5. (b) Case 6.

Figure 7a (j) shows the optimization of the j-direction index of all eight producers for
Case 5. All j-direction indexes for eight producers were optimized in the interval between
index 5 and 32 to limit the number of cells to be evaluated. The graph shows that the
direction j indexes were scattering randomly in the first 30 generations, with a minimum
of 5 j-direction indexes and a maximum of 32 j-direction indexes. Still, they gradually
decreased in intervals as the generations reached a maximum generation of 120. Starting
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at the 90th generation, the graph pattern showed that the j indexes began to be more
consistent, and the optimum j indexes were observed to be at the 101st generation as the
optimum cumulative oil production reached an optimal solution.

Figure 7a (k) shows the optimization of the k-direction index of all eight producers
for Case 5. All k-direction indexes for eight producers were optimized in the interval
between indexes 1 and 4 because the synthetic reservoir model was only a four-layered
model. The graph shows that the direction k indexes were scattering randomly in the
first 60 generations, with a minimum of one k-direction index and a maximum of four
k-direction index involved. Starting at the 61st generation, the graph pattern shows that
the k indexes began to be consistent, and the optimum k indexes were observed to be at the
101st generation as the optimum cumulative oil production reached an optimal solution.

Figure 7b (i) shows the optimization of the i-direction index of all eight producers
for Case 6. All i-direction indexes for eight producers were optimized in the interval
between index 5 to 16 to limit the number of cells to be evaluated. The graph shows that the
direction I indexes were scattered randomly in the first 50 generations, with a minimum of 5
i-direction indexes and a maximum of 16 i-direction indexes. Still, they gradually decreased
in the interval as the generations reached a maximum generation of 120. Starting at the
90th generation, the graph pattern showed that the I indexes began to be more consistent,
and the optimum I indexes were observed to be at the 96th generation as the optimum
cumulative oil production reached an optimal solution.

Figure 7b (j) shows the optimization of the j-direction index of all eight producers
for Case 6. All j-direction indexes for eight producers were optimized in the interval
between index 5 and 32 to limit the number of cells to be evaluated. The graph showed the
direction j indexes were scattering randomly in the first 30 generations, with a minimum
of 5 j-direction indexes and a maximum of 32 j-direction indexes. Still, they gradually
decreased in intervals as the generations reached a maximum generation of 120. Starting
at the 90th generation, the graph pattern showed that the j indexes began to be more
consistent, and the optimum j indexes were observed to be at the 96th generation as the
optimum cumulative oil production reached an optimal solution.

Figure 7b (k) shows the optimization of the k-direction index of all eight producers
for Case 6. All k-direction indexes for eight producers were optimized in the interval
between indexes 1 and 4 because the synthetic reservoir model was only a four-layered
model. The graph shows that the direction k indexes were scattering randomly in the
first 60 generations, with a minimum of one k-direction index and a maximum of four
k-direction index involved. Starting at the 61st generation, the graph pattern showed that
the k indexes began to be consistent, and the optimum k indexes were observed to be at the
96th generation as the optimum cumulative oil production reached an optimal solution.

In light of the expounded methods for GA application in well placement, a compar-
ative analysis is discussed even from a wider field of research, Zingg et al. [24] made
an emphatic claim that GA and GB algorithms are most synonymous and reliable when
converging under several aerodynamic shape optimization problems. That being said
Ahmad et al. [25] object to the convergence similarities when it comes to comparing GA
and GB with a benchmark of a cancer and diabetes dataset trained from artificial neural
network architecture. However, when it comes to the GA algorithm, we noticed from our
simulation, as shown in Table 1, that the best optimum solution came from case 4 with the
111st generation, which clearly indicates that for a higher generation with an effective base,
you will obtain the optimum production solution.

Despite the above solutions, Figure 8 provides a comparative analysis of GA and PSO
work conducted by Minton and Archer [26]. Their work iterated that the performance of
PSO was considered better than all other algorithms tested. However, they recommended
the use of objective function approximations when initializing seeding which should be
further exploited. The combination of particle swarm and simulated annealing could be in
a sequential manner for better optimization.
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Table 1. Case Comparative analysis for cumulative oil production.

Cases Base, (MBBL) Optimum,
(MBBL)

Production
Increment Case Change

Case 1, 4th generation 17,484 18,130 3.69% 0.81%
Case 2, 49th generation 17,562 18,068 2.88%
Case 3, 74th generation 17,561 18,169 3.46% 0.17%
Case 4, 111st generation 17,562 18,200 3.63%
Case 5, 101st generation 17,562 18,189 3.57% 0%
Case 6, 96th generation 17,561 18,188 3.57%

Figure 8. Performance comparison of GA and PSO for net present value (NPV) real case in (a) two
dimensions (2D) and (b) three dimensions (3D) adapted from Minton [26].

Though this study has pronounced a GA with a benchmark reservoir dataset from the
IMEX simulator as the best performing algorithm for well placement, we agree with Minton
and Archer to further explore the use of improved PSO algorithms and the integration of
the same CMG modeling tool.

4. Conclusions

GAs were still able to optimize the cumulative oil production to an optimum solution
even though different initial well placement distributions were used. The assumption
made for this result was because of the stochastic nature of genetic algorithms, it randomly
searched for random solutions instead of guessing on the initial solutions, and hence, the
cumulative oil produced will still be optimized with no dependency on the initial well
placement distribution.

A higher number of random solutions was used, resulting in higher cumulative
oil production. A greater number of possible well placement solutions used induced a
greater number of potential solutions (genetic richness), which eventually led to a higher
probability of convergence towards optimum cumulative oil production. However, a larger
number of random solutions required more iterations or generations, as observed in Cases
3 and 4. It can be concluded that a larger number of random solutions used increases the
probability of reaching the optimum solution, but it will take more generations. A higher
crossover rate improved the homogenization of the population. However, a larger number
of random solutions size is needed to see a more significant effect of the crossover rate on
the cumulative oil production.

The genetic algorithm optimization engine in CMOST demonstrated a powerful
search methodology that is recommended to be applied in complex oil fields. Genetic
algorithms overcome the limitations and deliver the desired optimum objective function
compared to traditional methods that are limited by the non-linearity and non-continuity
of the reservoir’s geological behavior. The optimization methodology in this project is
recommended to be modified by combining it with other accelerating algorithms such as
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artificial neural networks [27,28], hill climbing, and upscaling to reduce its computing time
and increase stability.
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