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Abstract: The Weibull algorithm is one of the most accurate tools for forecasting and estimating wind
energy potential. Two main parameters of the Weibull algorithm are the ‘Weibull shape’ and ‘Weibull
scale’ factors. There are six different numerical methods to estimate the two Weibull parameters.
These six methods are the empirical method of Justus (method 1), the empirical method of Lysen
(method 2), the maximum likelihood method (method 3), the modified maximum likelihood method
(method 4), the energy pattern factor method (method 5) and the graphical method (method 6). Many
commercial wind energy software programs use the Weibull algorithm, and these six methods are
used to calculate the potential wind energy at a given site. However, their accuracy is rarely discussed,
particularly regarding wind data height. For this purpose, wind data measured for a long period
(six years) at real sites are introduced. The wind data sites are categorized into three levels, i.e., low,
medium, and high, based on wind data measurement height. The analysis shows that methods 1 and
2 are the most accurate methods among all six methods at low and medium heights. The number of
errors increases with the height of these two methods. Methods 3 and 4 are the most suitable options
for larger heights, as these scenarios have minimal error. The present study’s findings can be used in
various fields, e.g., wind energy forecasting and wind farm planning.

Keywords: wind data height; forecasting; error and accuracy; Weibull methods; measured data

1. Introduction

Wind energy is one of the most promising renewable sources due to its abundant
availability, long-term sustainability, and almost zero emissions of pollutants harming the
earth’s environment. That is why the installed global capacity of wind farms is increasing
rapidly [1]. However, along with economic issues, e.g., high costs of power production,
some technical constraints, such as the non-availability of measured wind data and complex
terrains, offer serious challenges to wind energy progress [2]. The most fundamental and
foremost step of designing a wind farm is to analyze the potential of wind energy available
at the proposed wind farm site [3,4]. The ideal approach would be to analyze the locally
measured long-term wind data, but such data sets are rarely available at each planned wind
farm site. In order to address this challenge, wind potential forecasting and estimation
algorithms are used frequently. So far, the most accurate and robust technique used to
analyze the wind energy potential of a site is the Weibull model of wind energy [5].

Several studies have been conducted recently to analyze the wind conditions of a
specific site using the Weibull algorithm. Of these numerous studies, only a few notable
works will be mentioned here. For instance, Ali et al. [6] used a two-variable Weibull
function to analyze the wind energy potential of a city in Iran called the Binalood. The
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real-time wind data were measured at anemometer heights of 10, 30, and 40 m from 2007 to
2010. The authors used the most common method, i.e., the empirical method, to estimate
the Weibull shape and scale parameters. The accuracy of the empirical method and how it
affects the results should have been mentioned. The authors concluded that Binalood has
good wind energy and power generation potential. Wen et al. [7] used fifty-five years of
wind data to estimate the offshore wind energy potential in China’s south and southeast
coast, including Taiwan and near the Philippines. The authors selected 19 sites in the
studied area, with wind data measured between 20 and 58.2 m. They used a two-variable
Weibull function with an empirical method to determine the Weibull shape and scale
parameters. One of the main outcomes of this study was to identify a potential future
offshore wind farm site with an annual power production capacity of approximately 35.36
MWh. Emmanuel et al. [8] determined the wind farm construction feasibility at the Great
Cumbrae Island near the coast of Ayrshire in the United Kingdom (UK). They used wind
data measured over ten years at 50 m in height. The authors used empirical and moment
methods to determine the Weibull shape and scale parameters and stated that the moment
method was relatively more accurate at this height. They concluded that there is a potential
to generate 4.5 GWh of electricity per annum from the studied site if the GE 2.0 wind
turbine model is installed.

Similarly, Arian et al. [9] estimated the wind energy potential at seventeen sites in
Uzbekistan using wind data measured at 10 m in height. The mean wind speed ranged
between 0.61 and 3.98 m/s, considered medium-level wind energy potential. The authors
used a two-variable Weibull function to estimate the wind energy potential, and an em-
pirical method was used to determine the two variables, i.e., Weibull shape and scale
parameters. Some studies also investigated the accuracy and error of different methods
used to calculate the shape and scale parameters of the two-variable Weibull function.
For instance, Talama et al. [10] tested the accuracy of ten different methods using wind
data measured at two sites in Tuvalu (near Fiji) over 20 and 34 m, respectively. They used
error-predicting terms such as root mean square error (RMSE), mean absolute error (MAE),
and coefficient of efficiency (COE) to evaluate the accuracy performance of each method.
Out of the ten methods, the empirical method of Justus (EMJ) was the most accurate, and
the moment method (MM) produced the highest amount of errors. The authors recom-
mended using the EMJ for wind data measured at low heights, but they did not mention
any suitable method for large heights. Kidmo et al. [11] evaluated the performance of six
different methods used to estimate the Weibull shape and scale parameters. The authors ob-
tained the measured wind data sets from the met-mast installed at the Garoua International
Airport in Garoua, Cameroon. The wind data were recorded between 2007 and 2012 at 10
m above ground level (AGL) and 242 m above sea level (ASL). Out of the six methods, the
energy pattern factor (EPF) and moment method (MM) were the most accurate methods,
whereas the least accurate was the graphical method (GP). The authors evaluated the accu-
racy performance of each method by using error indicators such as RMSE and correlation
coefficient (R). T. P. Chang [12] conducted a similar but more comprehensive study in the
coastal areas of Taiwan. In this study, the author used measured data sets and considered
Monte Carlo simulation to evaluate the performance of six methods. The GP was the most
reliable method according to the analysis of the measured data. In contrast, the maximum
likelihood method (MLM) outperformed all other methods in the case of simulation wind
data. The authors also briefly mentioned that increasing the number of wind data improved
the accuracy level of all six methods. The study conducted by S. A. Ahmed [13] emphasized
the importance of wind data number, and other parameters such as sample data format,
sample data distribution, and fit tests were also given due importance for determining the
accuracy of each method used to calculate Weibull parameters. In the study, the author
used four years (2001–2004) of wind data sets obtained from a meteorological station in
Halabja, Iraq, to evaluate the performance of four methods. The rank regression method
(RRM) was the most accurate way to estimate both Weibull shape and scale parameters. F.
George [14] from Florida International University conducted a study in 2014 to evaluate
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the performance of five methods using only simulated wind data. The author generated
simulated wind data sets with different sample sizes of 5, 10, 20, 30, 50, and 100. The
MLM produced the lowest errors, such as bias, mean square error, and variance, which
T. P. Chang [12] also concluded. K. Mohammadi and A. Mostafaeipour [15] considered
only two methods, the standard deviation method (SDM) and the power density method
(PDM), to accurately analyze the wind energy potential of Zarrineh, Iran. The authors used
wind data measured over six years (2004–2009) at a height of 10 m AGL. It was determined
that the PDM was more reliable than the SDM in estimating the accurate wind potential
at the reference site based on yearly, seasonal, monthly, and hourly wind data sets. F. A.
L. Jowder [16] considered three years (2003–2005) of wind data measured at 10 m AGL in
the Kingdom of Bahrain to evaluate the performance of two methods named GP and AM
(approximation method) used to calculate shape and scale parameter of the two-variable
Weibull density function. By analyzing the monthly mean wind speed, mean wind power
density, and wind speed frequency, the author stated that the approximation method was
relatively more accurate due to the low error term in predicting wind speed.

In previous literature, most studies considered very specific conditions to evaluate the
accuracy of a particular method(s) used to estimate the shape and scale parameters of the
two-variable Weibull function. The outcomes of these studies cannot be generalized and are
not robust, so each new study in this area has to repeat the same procedure again and again.
The present study attempts to generalize the accuracy performance of different methods
used to calculate Weibull parameters. The present study will introduce a wide range of
wind data conditions measured at different heights, which will be analyzed for error and
accuracy using a comprehensive framework of error analysis techniques. The most common
and important Weibull methods are considered in the present study, which are the empirical
method of Justus (method 1), the empirical method of Lysen (method 2), the maximum
likelihood method (method 3), the modified maximum likelihood method (method 4), the
energy pattern factor method (method 5), and the graphical method (method 6). These
methods have been selected for the present study due to their robustness and applicability
to a variety of geo-environmental conditions. These six methods have been recommended
for wind energy analysis by many previous studies [12–14]. The accuracy performance of
each of these six methods will be evaluated using a series of error-indicating parameters.
The wind data used in the present study are long-term measured wind data collected from
different heights above sea level (ASL) from low to medium and larger heights.

Many commercial wind energy software types use the Weibull algorithm and these
six methods to estimate the wind energy potential at a specific site. However, the accuracy
of these methods is rarely mentioned, especially regarding wind data height. The method-
ology to evaluate ‘the wind data prediction accuracy’ performance of each method can be
described as follows. The first step is to predict the most basic yet important parameters
related to wind potential, e.g., mean wind speed, wind power density, and wind speed
frequency via the Weibull function for each method. The second step is to calculate the same
wind potential parameters using real-time measured wind data at the same conditions.
The third step is to select and fix the same analysis conditions at which both results will
be compared. In the present study, wind data height, data recording time period, number
of wind data, and data recording interval have been chosen as analysis conditions after
surveying previous literature [12–16]. The fourth step is to define the error-indicating
factors which can comprehensively consider the maximum details of data and analysis
involved in evaluating all six methods. The present study considers the absolute relative
difference (ARD), mean absolute bias error (MABE), root mean square error (RMSE), and
correlation coefficient (R) as error indicators in mean wind speed, wind power density, and
wind speed frequency at all afore-mentioned analysis conditions. The lower the values of
ARD, MABE, RMSE, and R, the more recommended the method for the accurate analysis
of wind energy potential.

The present study investigates the maximum possible combinations and scenarios of
analysis conditions, error indicators, each of six methods, wind data, and wind potential-
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indicting parameters such as mean wind speed, wind power density, and wind speed
frequency. One of the key strong points of the present study is that it uses real-time
and long-term measured wind data unlike most of the previous studies, in which either
simulated or predicted wind data were used to evaluate the accuracy performance of each
method. Predicting the wind speed frequency by each method and comparing it with real
wind speed frequency also distinguishes this study from the rest. Such a comprehensive
and multi-dimensional analysis will help to draw more robust and general conclusions,
especially compared to past studies. The outcomes of the present study can be used by
anyone involved in the planning and forecasting of the wind energy potential of wind
farms planned for the future.

2. Methodology and Methods

The fundamental principle of the Weibull algorithm is to use some of the measured
wind data to predict the new wind data, and then both data sets can be compared. This
is similar to machine learning data prediction techniques in which two data sets exist,
i.e., training and testing data. Wind speed frequency, known as the Weibull probability
density function (PDF) ( f (v)), and total wind speed frequency, known as the cumulative
distribution function (CDF) (F(v)), as given in Equations (1) and (2), can be mathematically
defined as follows [17]:

f (v) = (k/c)(v/c)k−1exp
[
−(v/c)k

]
(v > 0; k, c > 0) (1)

F(v) = 1 − exp
[
−(v/c)k

]
(v > 0; k, c > 0) (2)

where v is the instantaneous wind speed, and k and c are the Weibull distribution param-
eters known as the shape and scale factors. Unlike wind speed, Weibull shape and scale
factors cannot be directly measured, but complicated mathematical modeling of measured
wind speed is required to determine k and c. The accuracy of wind speed data predicted by
the Weibull algorithm largely depends on the method used to calculate it. Several analytical
and numerical simulation models have been devolved so far to produce estimates, but very
few models produce highly accurate results.

2.1. Methods to Estimate Weibull Parameters

The present study will evaluate the accuracy performance of the following six methods,
which are the most frequently used analytical models to determine k and c [17].

1. Empirical method of Justus;
2. Empirical method of Lysen;
3. Maximum likelihood method;
4. Modified maximum likelihood method;
5. Energy pattern factor method;
6. Graphical method.

2.1.1. Method 1: Empirical Method of Justus (EMJ)

The EMJ is the most frequently used and relatively simple method to determine k
and c [18,19]. It uses simple empirical equations comprising some statistical factors that
represent the characteristics of measured wind speed data. k and c can be defined as follows
in Equations (3) and (4), respectively:

k = (σ/v )−1.086 (1 ≤ k ≤ 10) (3)

c = (v )/(Γ(1 + 1/k)) (4)

where σ is the standard deviation of the mean wind speed (v ) of measured wind speed
data and Γ is the gamma function.
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2.1.2. Method 2: Empirical Method of Lysen (EML)

In the EML, k is determined similarly as for the EMJ, i.e., using Equation (3). However,
c is determined through a slightly different method shown in Equation (5), as mentioned
below [20].

c = v (0.568 + 0.433/k)
− 1/k (5)

2.1.3. Method 3: Maximum Likelihood Method (MLM)

The MLM is a relatively more complex and detailed algorithm as compared to the
EML or EMJ. In the MLM, k is determined through a rigorous interpolation and recycling
loop applied to the original wind data series. The equation for determining k is shown
below. This is an iterative equation in which the exact value of k is determined after a
certain number of iterations so that both sides of this equation result in almost identical
numbers [21,22]. Once k is determined via Equation (6), c can be determined through a
relatively straightforward Equation (7).

k =

[
∑n

i=1 vi
kln(vi)

∑n
i=1 vi

k − ∑n
i=1 ln(vi)

n

]−1

(6)

c =

[
∑n

i=1 vi
k

n

] 1
k

(7)

In Equations (6) and (7), n is the total number of wind speed data in a particular wind
speed series, whereas vi is the ith wind speed data in the same series.

2.1.4. Method 4: Modified Maximum Likelihood Method (MMLM)

The MMLM, as the name suggests, is a slightly different version of the MLM [23].
The exact difference is that the MMLM uses wind speed frequency f (v) in the equation,
whereas n is used in the MLM, as is apparent from Equations (8) and (9).

k =

[
∑n

i=1 vi
kln(vi) f (vi)

∑n
i=1 vi

k f (vi)
− ∑n

i=1 ln(vi) f (vi)

f (v ≥ 0)

]−1

(8)

c =
[

1
f (v ≥ 0)∑

n
i=1 vi

k f (vi)

] 1
k

(9)

2.1.5. Method 5: Energy Pattern Factor Method (EPF)

The EPF method is very similar to other empirical methods such as the EMJ and
EML [24]. In the EPF method, k is determined using Equations (10) and (11), whereas c can
be determined through any of the above equations.

k =

(
1 +

3.69
EPF2

)
(10)

EPF =
Γ(1 + 3/k)
Γ3(1 + 1/k)

(11)

2.1.6. Method 6: Graphical Method (GP)

In the GP method, the wind data series is plotted on a two-axis graph for interpo-
lation [12,25]. But the wind data are not plotted straightforwardly; a small prior step
is followed initially. In this process, the Weibull CDF function (F(v)), as mentioned in
Equation (2), is used. Taking the double natural algorithm of Equation (2) will result in
Equation (12).

kln(v)− kln(c) = ln{−ln[1 − F(v)]} (12)
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Equation (12) is basically a linear equation with ln(v) on the x-axis and ln{−ln[1− F(v)]}
on the y-axis. This will result in a straight line on the graph in which the slope is considered
to be k, whereas −kln(c) will be the y-intercept. As k is already known at this stage, from
−kln(c), c can also be determined.

2.2. Wind Data Measured at Different Heights

In order to evaluate the accuracy of each of the six methods in robust conditions, wind
data sets measured at different heights are introduced. By varying the wind data height,
each method’s accuracy performance in predicting the Weibull parameters can be tested in
more general operating conditions. For this purpose, four different sites have been selected
in the western sea of South Korea, near Incheon. All four sites are small islands within a
circle with an area of 10 km². It is very important to select wind data sites near each other
to eliminate the effects of geographical and terrain characteristics of local sites. Table 1
shows the details of sites, wind data measurement heights, and data recording periods. The
data sets are collected from the Korean Meteorological Administration (KMA) [26]. The
international electro technical commission (IEC) recommends wind data sets be measured
for at least five years for research purposes.

Table 1. Field wind data sites [26].

Site
Number Site Name Site Latitude

(◦)
Site Longitude

(◦)

Wind Data
Height AGL

(m)

Wind Data
Recording Time

Wind Data
Measurement Time

Interval (h)

1 Jaawal-do 37.25 126.31 10 2015–2020 1
2 Song-do 37.34 126.61 20 2015–2020 1
3 Ann-do 36.95 126.16 30 2015–2020 1
4 Mokdeok-do 36.92 125.78 60 2015–2020 1

Figure 1 shows the equipment installed at all four sites used to measure wind speed
and direction. A cup-type anemometer and anemoscope are installed on each vertical
tower to measure wind speed and direction. Apart from wind conditions, sensors are also
installed in these vertical towers to record other weather conditions, such as temperature
and humidity.
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Figure 1. Met-masts at all sites: (a) 10 m, (b) 20 m, (c) 30 m, (d) 60 m [26].

In order to provide a reference of wind speed strength and conditions at all four
sites, Figure 2 has been prepared. These images (wind roses) show the wind direction
and potential at a particular site for the total period. As can be observed in the wind rose
diagrams, wind speed strength increases with height. The more wind speed strength there
is, the more difficult it becomes to accurately measure and predict wind speed due to large
fluctuations around the mean value. Therefore, it will be interesting to know which method,
out of the six methods, predicts the wind speed at 60 m height with the most accuracy.
Northeast is the prevailing wind direction at all sites except the 20 m height site.

Figure 3 shows the frequency of different wind speed bins at all four sites for six
years. The wind speed frequency at the four sites is nearly a perfect Weibull probability
density function curve with different Weibull shape and scale parameters. The greater
the resemblance between the measured wind speed frequency and the predicted wind
speed frequency by the Weibull function, the more accurate results can be predicted by
the Weibull algorithm. The magnitude of the most frequent wind speed increases with
height as it is 2 m/s at a 10 m height, whereas it is 5, 5, and 10 m/s in the case of 20, 30,
and 60 m heights, respectively. The total number of wind speed bins also increases with
anemometer height, requiring more computational time and cost to predict the wind data
using the Weibull algorithm.
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2.3. Error Estimation in Weibull Parameter Prediction Models

The accuracy of the six methods in determining Weibull parameters cannot be di-
rectly evaluated. For this purpose, wind potential indicators such as mean wind speed,
wind power density (WPD), and wind speed frequency are estimated using the Weibull
parameters k and c. Then, the same terms are also calculated using real-time measured
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wind data, and both values are compared to determine the relative error. Wind potential
indicators should be chosen to be determined in both cases, i.e., measured wind data and
Weibull-predicted wind data.

The mean wind speed ( v) measured, predicted by Weibull and absolute relative error
in a specific Weibull method, can be defined mathematically as shown in Equations (13)–(15).

vmeasured =
1
n

[
∑n

i=1 vi

]
(13)

vweibull = cΓ(1 + 1/k) (14)

|Errorv| =
∣∣∣∣vmeasured − vweibull

vmeasured

∣∣∣∣ (15)

The measured WPD and that predicted by Weibull, as well as the absolute rela-
tive error in a specific Weibull method, can be defined mathematically as follows, in
Equations (16)–(18).

WPDmeasured =
1
2

ρvreal
3 (16)

WPDweibull =
1
2

ρc3Γ(1 + 3/k) (17)

|ErrorWPD| =
∣∣∣∣WPDmeasured − WPDweibull

WPDmeasured

∣∣∣∣ (18)

Wind speed frequency ( f ) is the probability of occurrence of a specific wind speed
bin in a time-series-based wind data set. Both measured wind data and wind data sets
predicted by the Weibull algorithm can be used. In order to assess the accuracy performance
of each of the six methods in predicting the wind speed frequency, three different error
terms are introduced. These error-indicating terms are MABE, RMSE, and R. Each of these
error terms can be mathematically defined as follows in Equations (19)–(21).

MABE f =
1
n∑n

i=1

∣∣ fi, measured − fi, weibull
∣∣ (19)

RMSE f =

√
1
n∑n

i=1( fi, measured − fi, weibull)
2 (20)

R f =
∑n

i=1

(
fi, weibull − fweibull

)(
fi, measured − fmeasured

)
√[

∑n
i=1

(
fi, weibull − fweibull

)2
][

∑n
i=1

(
fi, measured − fmeasured

)2
] (21)

Figure 4 describes the overall process of evaluating the accuracy performance of each
of the six methods for all four sites where wind data are measured at different heights.
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3. Analysis and Results
3.1. Mean Wind Speed

Mean wind speed is one of the most basic and few parameters that can be determined
through measured and Weibull-predicted wind data sets. The Weibull mean wind speed
is not directly calculated but determined through Weibull shape and scale parameters.
Figure 5 shows the absolute magnitude of relative error between two mean wind speeds, i.e.,
calculated by measured wind speed and estimated by the Weibull algorithm. Equation (15)
shows the exact definition of error in mean wind speed.

Two important and distinct phenomena can be observed in Figure 5. The first one is
the effect of wind data height on the accuracy of the results, and the second is the relevance
of each method at different wind data heights. No single method is the most accurate at any
wind data height. At low heights (10 and 20 m), the EPF and GP methods show the worst
accuracy performance, whereas the EMJ and EML are the optimum choices. Meanwhile, at
medium and large wind data heights (30 and 60 m), the MLM and MMLM show the least
error in mean wind speed. Like low wind data heights, the EPF and GP methods again
show the worst accuracy performance at medium and large wind data heights, respectively.
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The accuracy performance of each of the six methods is largely due to the type of
internal algorithm and mathematical approximations used to estimate the mean wind
speed. For example, due to relatively simple algorithms with less complexity and the
straightforward nature of the EMJ and EML (as described in Sections 2.1.1 and 2.1.2,
respectively), these methods are the best fit for wind data measured at low heights where
fluctuations in the wind speed are not that high. As the wind data height increases, these
two methods (EMJ and EML) become less effective because of the less robust algorithm.
However, for the medium and large wind data heights (30 and 60 m), the MLM and MMLM
are the best fit because of the robust and thorough iterative process used to reach the final
results (as described in Sections 2.1.3 and 2.1.4, respectively). The choice of each method
also depends on the computational time and resource availability. Although the EMJ and
EML are computationally cheaper than the MLM and MMLM, the accuracy of the predicted
results is also one of the main criteria that should be considered while selecting a specific
Weibull method to predict the wind data at a specific site. The EPF and GP methods
show the worst performance in the present scenario, as also stated by Kidmo et al. [6] and
Chang [7], respectively. The EPF method is a simple approximation method that cannot
handle complex data sets. Similarly, the GP method uses graphical approximation, which
makes it very hard to match accurately for different types of wind data sets collected at
different heights and in different complex terrains.

Figure 6 shows the absolute relative error in mean wind speed for each of the six
Weibull methods according to the wind data measurement height. Generally, the amount
of error increases linearly with height for all six methods. However, the magnitude of
error is quite different in different scenarios. The EMJ and EML are quite effective at low
wind data heights, whereas the MLM and MMLM show superior accuracy performance
at medium and large heights. For example, at a 60 m wind data height, the mean wind
speed, as predicted by the EMJ, has a relative deviation of 8% from the actual mean wind
speed. In contrast, this difference is quite low in the MLM and MMLM, corresponding to
nearly 2%. On the other hand, at a 20 m wind data height, the lowest error is produced by



Energies 2024, 17, 2173 12 of 19

the EML (nearly 0.1%), whereas at the same height, the MLM and MMLM produce error
magnitudes of 0.75% and 1.4%, respectively. Therefore, the choice of the Weibull parameter
prediction method largely depends on the wind data height, and this process should be
carefully adapted to obtain accurate results.
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3.2. Wind Power Density

Wind resource availability at a potential site can be assessed using the WPD. The
energy available at the site for conversion by a wind turbine is indicated by the WPD,
expressed in watts per square meter. A site’s WPD is another factor that can be used to
compare and choose the best sites for wind turbines and vice versa. Wind turbines placed
at sites with higher WPDs typically produce more electricity. Therefore, it is very important
to estimate the WPD of a site accurately for more efficient wind turbine selection and
power production.
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Table 2 shows the absolute difference between the actual or measured WPD and those
estimated by all six methods. The wind power values computed using the six Weibull
distributional approaches and those produced using data on measured wind speed are first
described. For this purpose, some significant descriptive statistics are first calculated for
the four stations under examination, including minimum, maximum, and mean values,
standard deviation, and range of values. The distribution of the WPD computed using
six different approaches and those computed using measured wind speed data can be
compared using this analysis.

Table 2. Error in WPD.

WPD (Watt/m2) Absolute Relative Difference in WPD (%)

Height
(m) MeasuredEMJ EML MLM MMLM EPF GP EMJ EML MLM MMLM EPF GP

10 1.58 1.59 1.57 1.56 1.56 1.54 1.53 0.15 0.57 1.28 1.57 2.97 3.21
20 14.00 14.21 13.60 13.59 13.57 13.43 13.36 1.52 2.88 2.92 3.07 4.10 4.62
30 159.04 154.02 153.48 163.76 163.96 165.81 166.62 3.15 3.50 2.97 3.09 4.26 4.77
60 253.78 264.50 265.75 261.94 263.21 267.03 269.65 4.23 4.72 3.22 3.72 5.22 6.25

It is noted that the descriptive statistics of the WPD computed using the EMJ and
EML are closer to the wind power calculated by observed data at low wind data heights.
The descriptive statistics of the WPD obtained by the MLM and MMLM are substantially
closer to the wind power calculated by the measured data at medium and large wind data
heights. It is important to note that the parameter k is calculated using the same equation in
both approaches and that the only difference in the computation of the parameter c is why
the descriptive statistics of the EMJ and EML methods are so similar. The error analysis
conclusions drawn from the analysis of WPD are consistent with the mean wind speed
error results.

Therefore, when the MLM and MMLM are being used to calculate the Weibull param-
eters, a better distributional fitting between the estimated WPD by the Weibull function
and that calculated by measured wind data would be achieved for medium and large wind
data height sites. At the same time, more precise fitting curves are obtained for the stations
with low wind data heights when the EMJ and EML are used to calculate the Weibull
parameters. Notably, when the GP and EPF methods are used to determine the k and c
parameters, the biggest distributional disparities between the WPD calculated by observed
data and that derived by the Weibull function are produced.

3.3. Wind Speed Frequency

Even though the presented descriptive statistics provide insightful statistical informa-
tion, particularly regarding the distribution of the WPD, they cannot be used exclusively
to assess the level of precision of the six methods for calculating parameters such as wind
speed frequency. As a result, the six selected parameter estimation methods are evaluated
using the statistical indicators described in Section 2.3. The performance evaluation results
of the six chosen methods are shown in Figures 7–9 regarding MABE, RMSE, and R error
for each of the four sites.

It is important to mention that each statistical parameter, i.e., MABE, RMSE, and R
error, offers several helpful perspectives to contrast the approaches. In order to examine
the disparities between the calculated wind power by observed data and that of the
Weibull density function within different viewpoints with much higher confidence, all of
these statistical indicators have been combined. The findings demonstrate that when the
parameter estimation methods are altered, the computed wind speed frequency values
lose accuracy. The calculated wind speed frequency values by the Weibull density function
are in good agreement with the wind speed frequency values computed by the observed
wind data for all four stations when the four methods of EMJ, EML, MLM, and MMLM
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are employed to compute the Weibull parameters at low and large wind data heights,
respectively, as also concluded in previous sections.
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Due to the low values of error terms (such as MABE and RMSE) and high values
of R, this conclusion has been reached. On the other hand, it has been discovered that
when the GP and EPF approaches are used to determine the k and c parameters, the lowest
agreements are reached. The EMJ or EML is most effective for determining the wind speed
frequency for two stations (10 and 20 m wind data height), according to the statistical
findings of Figures 7–9, when the k and c parameters are computed. The MLM or MMLM
approach yields the most accurate wind speed frequency results for stations with medium
or large wind data heights.

3.4. Temporal Wind Speed Series

The accuracy results presented here are based on full-period data sets of six years
(2015–2020) for all sites. Although the mean values of wind speed and WPD can also lead
to conclusive results, time-dependent wind data error results can increase confidence in
selecting a suitable Weibull method for any given wind data site. Time-series wind error
results are also important because they can help suggest a minimum and suitable number
of wind data measurements required to accurately analyze the wind potential at a site.
At some sites, the numbers of measured wind data are very small, which offers a great
challenge for wind farm developers and researchers to choose an appropriate Weibull
method according to the local availability of several wind data sets.

Figure 10 shows the relative error in mean wind speed according to several measured
wind data using all six methods at four sites. In order to make calculations easy and
understandable, a sample of wind data from one year on an hourly basis is selected from
all sites. In Figure 10, each wind data point represents the average values during one hour
of wind data measurements, and it is assumed that wind characteristics remain the same
during that hour. One general phenomenon that can be observed in all graphs of Figure 10
is that the relative error in mean wind speed is on the downfall as the number of wind
data measurements increases for all methods and sites. The second point to be noted is
that the GP method yields the maximum amount of error in mean wind speed estimation.
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This conclusion is in line with previous observations established in the present study. The
third observation that is very clear in Figure 10 is the magnitude of relative error increase
with wind data height for all six methods. The fourth noticeable conclusion that can be
drawn from Figure 10 is that after almost 8000 wind data measurements, the relative error
in mean wind speed is so significantly low that it can be ignored for all wind data heights
and methods considered in the present study. From Figure 10, it can be concluded that
the EMJ and EML are best suited for sites with wind data measured at low heights and
vice versa for the MLM and MMLM at large wind data heights. The last-mentioned point
matches the conclusions drawn previously in the present study very well.
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It should be noted that the total number of days for analysis is fixed at 2130 because six
years’ worth of wind speed data were used in this study to calculate daily WPD (determined
after data filter analysis). The actual total number of effective wind data availability days
is different for each site, i.e., it is 2139 for site 1 (10 m), 2145 for site 2 (20 m), 2151 for site
3 (30 m), and 2146 for site 4 (60 m). According to the time-series analysis criterion, the
results of earlier statistical indicators and previous time-series analyses are highly coherent.
The EMJ or EML approach produces the best results for two stations with low wind data
measurement height, according to statistical findings of Figure 10 when used to compute
the k and c parameters. At the same time, the MLM or MMLM approach provides more
accuracy for places with medium to large wind data heights.

4. Discussion

The variance in regional wind characteristics may cause the more effective strategy
to differ for each place. Figures 2 and 3 show that the magnitude of mean wind speeds is
noticeably higher at site 4 than at site 1, which is one of the key distinctions in the wind
characteristics. It could explain why the MLM or MMLM approach worked better for sites
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3 and 4 (particularly for site 4), whereas the EMJ or EML performed better for sites 1 and
2. Future studies might examine this topic in more detail. It is also crucial to note that all
statistical indicators show that the EMJ and EML work similarly. However, with a small
difference, the EMJ approach achieves a better level of accuracy. Each table shows the
most precise approach for each place in bold. The GP and EPF methods, which have quite
large differences compared to other chosen ways, rank in the final two sites as the weakest
methods (methods with the largest error), meaning that their use results in significantly
more errors than other methods.

Although each region has unique wind power characteristics, it is important to note
that the obtained results regarding the effectiveness of the approaches for estimating the
parameters of the Weibull distribution function can be applied to regions with similar wind
distributions. The results can only be generalized to areas with comparable wind power
characteristics. It is also observed that for all stations, the c parameter values from all
approaches are very similar, with the GP method showing the largest differences overall.
Nevertheless, the k parameter values for the EMJ, EML, MLM, and MMLM are consistent
over all months, whereas the k values for the GP and EPF methods are larger than those
of the other methods. The calculated values of WPD fluctuate significantly more due to
these variations in the k and c values for these approaches. Accurately estimating Weibull
parameters is one of the most important aspects of wind energy potential estimating
algorithms and software. The present study provides basic guidelines for choosing an
appropriate method for estimating Weibull parameters according to wind data height. The
results of the present study have been formulated through a robust error analysis. The
results of the present study can also be used in interpolation for wind data heights in
between or higher than what is presented in the present study. It is worth mentioning
that the characteristics of a site terrain do not have any effects on the presented results
because the wind data used in our study were measured experimentally, which already
incorporates the site-specific parameters such as surface roughness, wind shear, etc.

5. Conclusions

The present study evaluates the accuracy performance of six different numerical
methods used to estimate Weibull shape and scale parameters. The six considered methods
are the empirical method of Justus (method 1), the empirical method of Lysen (method 2),
the maximum likelihood method (method 3), the modified maximum likelihood method
(method 4), the energy pattern factor method (method 5), and the graphical method
(method 6). The accuracy performance of each method is evaluated for different heights of
measured wind data categorized as low, medium, and high.

The analysis of mean wind speed, wind power density, wind speed frequency, and
temporal wind series showed that methods 1 and 2 are the most accurate for low and
medium wind data heights. Methods are simple mathematical tools that can only produce
accurate results for low-wind-speed prediction but fail to produce the most accurate results
at high wind speed. Methods 3 and 4 produced the most accurate results when applied
to wind data measured at relatively larger heights (60 m). Although both methods are
quite robust and iterative numerical algorithms that can produce accurate results for high-
wind-speed prediction, the computational time is also increased. Methods 5 and 6 are the
least suitable methods for wind energy analysis using the Weibull algorithm, as the error is
maximum in predicted mean wind speed, wind power density, and wind speed frequency
at all studied wind data heights.

The minimum relative error in mean wind speed is 0.01% at a 10 m height for method 1,
whereas its maximum value is 61% at a 60 m height for method 6. Similarly, the minimum
and maximum values of relative error in WPD are 0.15% (10 m, method 1) and 6.25% (60 m,
method 6), respectively. Wind speed frequency prediction also shows a similar pattern with
a minimum and maximum error occurring using method 1 and method 6, respectively. For
all methods and heights, the absolute relative error in mean wind speed tends to lower
significantly with several wind speed measurements.



Energies 2024, 17, 2173 18 of 19

Author Contributions: Conceptualization, S.A. and A.A.N.; methodology, S.A.; software, S.A.;
validation, S.A., H.P., and A.S.; formal analysis, S.A.; investigation, S.A.; resources, S.A.; data curation,
A.A.N.; writing—original draft preparation, S.A.; writing—review and editing, A.A.N.; visualization,
A.S.; supervision, D.L.; project administration, D.L.; funding acquisition, D.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Human Resources Development of the Korea Institute
of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government
(Ministry of Trade, Industry, and Energy) (no. 20214000000180) and the Korea Institute of Energy
Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (no.
20224000000220, Jeonbuk Regional Energy Cluster Training of human resources).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Amjith, L.; Bavanish, B. A review on biomass and wind as renewable energy for sustainable environment. Chemosphere 2022, 293,

133579. [CrossRef] [PubMed]
2. Thapar, S. Renewable Energy in India—Policy and Regulatory Framework. In Renewable Energy: Policies, Project Management and

Economics: Wind and Solar Power (India); Springer: Singapore, 2024; pp. 13–42.
3. Jordi, Z.J.; Erasmo, C.; Rafael, C.-A. Multi-criteria optimal design of small wind turbine blades based on deep learning methods.

Energy 2024, 293, 130625. [CrossRef]
4. Akpan, A.E.; Ben, U.C.; Ekwok, S.E.; Okolie, C.J.; Epuh, E.E.; Julzarika, A.; Othman, A.; Eldosouky, A.M. Technical and

performance assessments of wind turbines in low wind speed areas using numerical, metaheuristic and remote sensing procedures.
Appl. Energy 2024, 357, 122503. [CrossRef]

5. dos Santos, F.S.; do Nascimento, K.K.F.; da Silva Jale, J.; Júnior, S.F.A.X.; Ferreira, T.A. Brazilian wind energy generation potential
using mixtures of Weibull distributions. Renew. Sustain. Energy Rev. 2024, 189, 113990. [CrossRef]

6. Mostafaeipour, A.; Sedaghat, A.; Ghalishooyan, M.; Dinpashoh, Y.; Mirhosseini, M.; Sefid, M.; Pour-Rezaei, M. Evaluation of
wind energy potential as a power generation source for electricity production in Binalood, Iran. Renew. Energy 2013, 52, 222–229.
[CrossRef]

7. Wen, Y.; Kamranzad, B.; Lin, P. Assessment of long-term offshore wind energy potential in the south and southeast coasts of
China based on a 55-year dataset. Energy 2021, 224, 120225. [CrossRef]

8. Kombe, E.Y.; Muguthu, J. Wind energy potential assessment of Great Cumbrae Island using Weibull distribution function. J.
Energy Res. Rev. 2019, 2, 1–8. [CrossRef]

9. Bahrami, A.; Teimourian, A.; Okoye, C.O.; Shiri, H. Technical and economic analysis of wind energy potential in Uzbekistan. J.
Clean. Prod. 2019, 223, 801–814. [CrossRef]

10. Talama, F.; Kutty, S.S.; Kumar, A.; Khan, M.G.; Ahmed, M.R. Assessment of wind energy potential for Tuvalu with accurate
estimation of Weibull parameters. Energy Explor. Exploit. 2020, 38, 1742–1773. [CrossRef]

11. Kaoga, D.K.; Danwe, R.; Doka, S.Y.; Djongyang, N. Statistical analysis of wind speed distribution based on six Weibull Methods
for wind power evaluation in Garoua, Cameroon. Rev. Des Energ. Renouvelables 2015, 18, 105–125.

12. Chang, T.P. Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application.
Appl. Energy 2011, 88, 272–282. [CrossRef]

13. Ahmed, S.A. Comparative study of four methods for estimating Weibull parameters for Halabja, Iraq. Int. J. Phys. Sci. 2013, 8,
186–192.

14. George, F. A comparison of shape and scale estimators of the two-parameter Weibull distribution. J. Mod. Appl. Stat. Methods
2014, 13, 3. [CrossRef]

15. Mohammadi, K.; Mostafaeipour, A. Using different methods for comprehensive study of wind turbine utilization in Zarrineh,
Iran. Energy Convers. Manag. 2013, 65, 463–470. [CrossRef]

16. Jowder, F.A. Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain. Appl. Energy 2009, 86,
538–545. [CrossRef]

17. Mohammadi, K.; Alavi, O.; Mostafaeipour, A.; Goudarzi, N.; Jalilvand, M. Assessing different parameters estimation methods of
Weibull distribution to compute wind power density. Energy Convers. Manag. 2016, 108, 322–335. [CrossRef]

18. Justus, C.G.; Hargraves, W.R.; Mikhail, A.; Graber, D. Methods for estimating wind speed frequency distributions. J. Appl.
Meteorol. (1962-1982) 1978, 17, 350–353. [CrossRef]

19. Adaramola, M.S.; Agelin-Chaab, M.; Paul, S.S. Assessment of wind power generation along the coast of Ghana. Energy Convers.
Manag. 2014, 77, 61–69. [CrossRef]

20. Diaf, S.; Belhamel, M.; Haddadi, M.; Louche, A. Assessment of wind energy resource in southern Algeria. J. Renew. Energ. 2007,
10, 321–333. [CrossRef]

https://doi.org/10.1016/j.chemosphere.2022.133579
https://www.ncbi.nlm.nih.gov/pubmed/35026196
https://doi.org/10.1016/j.energy.2024.130625
https://doi.org/10.1016/j.apenergy.2023.122503
https://doi.org/10.1016/j.rser.2023.113990
https://doi.org/10.1016/j.renene.2012.10.030
https://doi.org/10.1016/j.energy.2021.120225
https://doi.org/10.9734/jenrr/2019/v2i229734
https://doi.org/10.1016/j.jclepro.2019.03.140
https://doi.org/10.1177/0144598720940874
https://doi.org/10.1016/j.apenergy.2010.06.018
https://doi.org/10.22237/jmasm/1398916920
https://doi.org/10.1016/j.enconman.2012.09.004
https://doi.org/10.1016/j.apenergy.2008.08.006
https://doi.org/10.1016/j.enconman.2015.11.015
https://doi.org/10.1175/1520-0450(1978)017%3C0350:MFEWSF%3E2.0.CO;2
https://doi.org/10.1016/j.enconman.2013.09.005
https://doi.org/10.54966/jreen.v10i3.765


Energies 2024, 17, 2173 19 of 19

21. Chang, T.J.; Chen, C.L.; Tu, Y.L.; Yeh, H.T.; Wu, Y.T. Evaluation of the climate change impact on wind resources in Taiwan Strait.
Energy Convers. Manag. 2015, 95, 435–445. [CrossRef]

22. Rocha, P.A.C.; de Sousa, R.C.; de Andrade, C.F.; da Silva, M.E.V. Comparison of seven numerical methods for determining
Weibull parameters for wind energy generation in the northeast region of Brazil. Appl. Energy 2012, 89, 395–400. [CrossRef]

23. Khahro, S.F.; Tabbassum, K.; Soomro, A.M.; Dong, L.; Liao, X. Evaluation of wind power production prospective and Weibull
parameter estimation methods for Babaurband, Sindh Pakistan. Energy Convers. Manag. 2014, 78, 956–967. [CrossRef]
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