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Abstract: The computational demand of neutron Monte Carlo transport simulations can increase
rapidly with the spatial and energy resolution of tallied physical quantities. Convolutional neural
networks have been used to increase the resolution of Monte Carlo simulations of light water reactor
assemblies while preserving accuracy with negligible additional computational cost. Here, we show that
a convolutional neural network can also be used to upsample tally results from Monte Carlo simulations
of sodium-cooled fast reactor assemblies, thereby extending the applicability beyond thermal systems.
The convolutional neural network model is trained using neutron flux tallies from 300 procedurally
generated nuclear reactor assemblies simulated using OpenMC. Validation and test datasets included
16 simulations of procedurally generated assemblies, and a realistic simulation of a European sodium-
cooled fast reactor assembly was included in the test dataset. We show the residuals between the
high-resolution flux tallies predicted by the neural network and high-resolution Monte Carlo tallies on
relative and absolute bases. The network can upsample tallies from simulations of fast reactor assemblies
with diverse and heterogeneous materials and geometries by a factor of two in each spatial and energy
dimension. The network’s predictions are within the statistical uncertainty of the Monte Carlo tallies in
almost all cases. This includes test assemblies for which burnup values and geometric parameters were
well outside the ranges of those in assemblies used to train the network.

Keywords: OpenMC; convolutional neural network; residual network; neutron Monte Carlo; sodium-
cooled fast reactors

1. Introduction

The significant computational demand associated with high-resolution Monte Carlo
simulations of nuclear reactor cores has motivated the development of CPU and memory-
efficient methods to increase the simulations’ fidelity. Monte Carlo codes, such as Ser-
pent [1], OpenMC [2], and MCNP [3], implement a variety of such methods, including
Functional Expansion Tallies (FETs) [4] and domain decomposition. FETs can increase the
resolution of neutron flux tallies by expanding the spatial and angle-dependent neutron flux
using orthogonal functions. Methods based on domain decomposition divide the workload
of a single compute node among several parallel nodes. This method is useful when the
simulation is too large to fit in memory and has been implemented in Serpent, as well as
in a developmental version of OpenMC [5,6]. Disjoint tallies have a basis in compressed
sensing methods and have also been shown to yield significant memory reductions in
neutron Monte Carlo simulations [7,8].

Machine learning approaches have also been used to increase neutron flux tallies’
spatial and energy resolution without any significant increase in CPU or memory require-
ments. Convolutional neural networks (CNNs) were used in [9,10] to upsample Monte
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Carlo neutron flux tallies in simulations of light water reactor (LWR) assemblies. The
low-resolution tallies were calculated at a spatial resolution of 64 × 64 pixels and with eight
neutron energy groups and were upsampled to 128 × 128 pixels and 16 groups. Although
the CNNs were able to upsample LWR tallies accurately over a diverse range of assembly
geometries, fuel enrichment, and burnup levels, their applicability to fast reactors was not
established. Here, we show that a CNN can be used to upsample neutron flux tallies from
Monte Carlo simulations of sodium-cooled fast reactor (SFR) assemblies. We constrained
the training data to heterogeneous hexagonal assemblies with one to five rings of pins
and with fuel burned up to 180 MWd/kgIHM. Fuel isotopics in the training data were
taken from depletion simulations of LWR assemblies fueled with uranium dioxide enriched
to 1.6%, as well as fresh fuel. The fresh-fueled assemblies in the training data included
uranium dioxide (UOX) and pure uranium metal enriched to 11%. To increase the diversity
of the training data, we also included samples with thermal spectra and training samples
with boron-shielded fuel and no coolant that produced very hard spectra. The validation
data consisted of SFR assemblies with 10 and 11 rings of pins and fuel with burnup levels
of up to 180 MWd/kgIHM. The test data included SFR assemblies with 10 and 11 rings
of pins and fuel with burnup levels of up to 400 MWd/kgIHM. Fuel isotopics in the test
and validation data originate from depletion simulations of LWR assemblies with UOX
enriched to 1.6% and 19.9%, as well as fresh fuel. Fuel in the testing and validation data
included UOX, mixed-oxide (MOX), and uranium–plutonium–zirconium (UPuZr) alloys.
All assemblies in the training and validation datasets were generated by randomly selecting
geometry, temperatures, and materials using Latin hypercube sampling. This was also
done to generate the test data, although this dataset also included a realistic assembly
simulation of the European sodium-cooled fast reactor (ESFR) [11].

The CNN topology was the same as in [10], which included three residual blocks and a
3 × 3 kernel in all convolutional layers. The CNN in this work, however, featured 256 filters
in each convolutional layer and exponential linear unit (ELU) activations. Inputs to the
CNN and ground truth quantities used to calculate the loss were low- and high-resolution
flux tallies, respectively, computed using OpenMC. The accuracy of the CNN was shown
by comparing the residuals between the predictions and ground truth with the standard
deviation in the ground truth tallies computed using OpenMC. We also calculated the
fraction of predictions made by the CNN that lie outside one and two standard deviations
of the ground truth. We found that a residual CNN can increase the resolution of 2-D
neutron flux tallies in simulated SFR assemblies by a factor of two in the spatial and energy
dimensions. The accuracy of the upsampled neutron flux tallies calculated using the CNN
was comparable to the uncertainty in the tallies computed using high-resolution Monte
Carlo simulations.

2. Methods
2.1. Data Generation

All datasets consisted of neutron flux mesh tallies and their uncertainties at low
and high resolutions generated using the OpenMC Monte Carlo code [2] and ENDF/B-
VIII.0 [12] nuclear data. The spatial resolution of the low- and high-resolution tallies was
0.1 × 0.1 cm and 0.05 × 0.05 cm, respectively. The energy grids of the low- and high-
resolution tallies consisted of 8 and 16 groups, respectively, with group boundaries in equal
logarithmic spacing between 100 eV and 20 MeV. Criticality eigenvalue simulations used
50 inactive cycles, 100 active cycles, and 100,000 source neutrons per cycle. Input decks for
OpenMC were created using the OpenMC Python API and an in-house Python code [13].
The Python code used Latin hypercube sampling to select the geometry and materials of
the assembly and individual fuel pins according to specified ranges and choices. Individual
fuel pin parameters that could be randomly selected were fuel radius, temperature and
burnup level, and cladding thickness. The sampling method could also randomly select
B4C or sodium for the contents of the pin. The randomly chosen assembly parameters
included coolant temperature, duct thickness, and the number of rings of pins. The ranges
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of all geometric parameters used in the generation of training, validation, and testing
datasets are given in Table 1.

Table 1. Ranges of geometric parameters in assembly simulations.

Parameter Range (Procedurally
Generated Assemblies)

Value (ESFR
Test Assembly)

Pin Diameter a 0.5 to 1.0 0.4715 cm
Pin Pitch [cm] 0.51 to 1.32 1.073 cm

Clad Thickness a 0.0633 to 0.0942 0.5 mm
Duct Thickness [cm] 0 to 0.24 0.45 cm

Coolant Temperature [K] 350 to 800 743
Fuel Temperature [K] 500 to 1428 1624

Assembly Rings 2 to 5 (training)
10 to 11 (validation and testing) 10

a Pin diameter and clad thickness are expressed as a fraction of the pin pitch for procedurally generated assemblies.

The training datasets were compiled from simulations of assemblies with 2 to 5 rings
of pins and fuel burnup levels ranging from 0 to 180 MWd/kgIHM. Validation and testing
datasets were compiled from simulations of assemblies with 10 or 11 rings of pins and
fuel burnup levels of up to 400 MWd/kgIHM. These values in the validation and test
datasets were chosen to show that the CNN could make accurate predictions in assemblies
with geometry and burnup well beyond those in the training data. The test dataset also
contained a simulation of an ESFR assembly to show that the CNN could accurately
upsample simulations of assembly models with realistic geometries and materials. The
geometry of the selected representative sample assemblies from the training data and
validation/test data are shown in Figure 1.

The assemblies in all datasets contained a mix of UPuZr, UOX, MOX, and pure metal
uranium fuel. Table 2 summarizes the main characteristics of the training (A-F), validation
(G-J), and test (K-O) datasets. The fuel isotopics in all datasets containing depleted assem-
blies (A, B, G-J, L-O) were determined using SFR pincell burnup simulations performed
in OpenMC. Figure 2 shows the geometry used in the SFR pincell burnup simulations.
Training datasets A, E, and D contained either UPuZr or MOX fuel with plutonium isotopics
originating from UOX enriched to 1.6% and burned to 17.44 MWd/kgIHM in an LWR.
The LWR depletion simulations had been performed previously in [10]. Training dataset B
contained UOX enriched to 11% and burned up to 180 MWd/kgIHM in the SFR pincell
depletion simulations. Training datasets C and F contained fresh UOX and fresh pure U,
respectively, enriched to 11% in both cases. Figure 3 shows a flow diagram indicating the
origin of all fuel types used in each training dataset.

Validation datasets G, H, and J contained either UPuZr or MOX fuel with plutonium
isotopics originating from UOX burned in an LWR. In datasets G and J, the UOX was
enriched to 1.6% and burned to 17.44 MWd/kgIHM. In the case of dataset H, the UOX
was enriched to 19.9% and burned to 216.91 MWd/kgIHM. Validation dataset I contained
UOX enriched to 11%. All MOX, UPuZr, and UOX fuels were then burned in SFR pincell
depletion simulations up to 180 MWd/kgIHM before being used in assembly simula-
tions. Figure 4 shows a flow diagram indicating the origin of all fuel types used in each
validation dataset.
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Figure 1. Representative sample assembly geometries. Assemblies are not shown to scale. (a) As-
sembly geometry in a sample from a training dataset. The assembly has 4 rings of pins containing 
fresh fuel (red pins), B4C (black pins), or sodium (yellow pins). (b) Assembly geometry in a sample 
from a validation dataset. The assembly has 10 rings of pins containing fuel with burnup values 
ranging from fresh (0 MWd/kgIHM) to 180 MWd/kgIHM. Darker shades of red represent fuel with 
higher burnup values. (c) Assembly geometry in a sample from a test dataset. The assembly has 11 
rings of pins with burnup values ranging from 220 to 400 MWd/kgIHM. (d) Assembly geometry in 
the ESFR test assembly. All pins contain fresh fuel. 

Table 2. Datasets used in training, validation, and testing. 

Dataset Number of 
Samples 

Data 
Type Fuel Type Plutonium Origin Spectrum Burnup Range 

[MWd/kgIHM] 
Fraction of B4C, 

Empty Pin Positions 
A 50 Training UPuZr a 1.6% UOX b LWR SFR 0 to 180 14%, 14% 

B 50 Training UOX b 
N/A (Fresh 11% UOX 

b in pincell sim) 
SFR (Softened, OX Fuel) 0 to 180 14%, 14% 

C 50 Training UOX b N/A (Fresh UOX b) SFR (Softened, OX Fuel) 0 
[0% or 14%],  
[14% or 17%] 

Figure 1. Representative sample assembly geometries. Assemblies are not shown to scale.
(a) Assembly geometry in a sample from a training dataset. The assembly has 4 rings of pins
containing fresh fuel (red pins), B4C (black pins), or sodium (yellow pins). (b) Assembly geometry in
a sample from a validation dataset. The assembly has 10 rings of pins containing fuel with burnup
values ranging from fresh (0 MWd/kgIHM) to 180 MWd/kgIHM. Darker shades of red represent fuel
with higher burnup values. (c) Assembly geometry in a sample from a test dataset. The assembly has
11 rings of pins with burnup values ranging from 220 to 400 MWd/kgIHM. (d) Assembly geometry
in the ESFR test assembly. All pins contain fresh fuel.
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Table 2. Datasets used in training, validation, and testing.

Dataset Number of
Samples Data Type Fuel Type Plutonium Origin Spectrum Burnup Range

[MWd/kgIHM]

Fraction of B4C,
Empty Pin
Positions

A 50 Training UPuZr a 1.6% UOX b LWR SFR 0 to 180 14%, 14%

B 50 Training UOX b N/A (Fresh 11%
UOX b in pincell sim)

SFR (Softened, OX
Fuel) 0 to 180 14%, 14%

C 50 Training UOX b N/A (Fresh UOX b)
SFR (Softened, OX

Fuel) 0 [0% or 14%],
[14% or 17%]

D 50 Training UPuZr a 1.6% UOX b LWR LWR d 0
[0% or 14%],

[0% or 14% or
17%]

E 50 Training UPuZr a 1.6% UOX b LWR Hard e 0

[0% or 14% or
17%],

[0% or 14% or
17%]

F 50 Training U b N/A (Fresh 11% U) Hard f 0 0%, 0%
G 2 Validation UPuZr a 1.6% UOX b LWR SFR 0 to 180 14%, 14%
H 2 Validation UPuZr a 19.9% UOX b LWR SFR 0 to 180 14%, 14%

I 2 Validation UOX b N/A (Fresh UOX b)
SFR (Softened, OX

Fuel) 0 to 180 14%, 14%

J 2 Validation MOX b,c 1.6% UOX b LWR
SFR (Softened, OX

Fuel) 0 to 180 14%, 14%

K 1 Test MOX b,c N/A (Fresh MOX b)
SFR (Softened, OX

Fuel) 0 0%, 0%

L 2 Test UPuZr a 1.6% UOXb LWR SFR 220 to 400 14%, 14%
M 2 Test UPuZr a 19.9% UOX b LWR SFR 220 to 400 14%, 14%

N 2 Test UOX b N/A (Fresh UOX b)
SFR (Softened, OX

Fuel) 220 to 400 14%, 14%

O 2 Test MOX b,c 1.6% UOX b LWR
SFR (Softened, OX

Fuel) 220 to 400 14%, 14%

a Fuel contained 10% Zr by weight. The fractions of U and Pu were 89% and 11% by weight, respectively. A 75%
smear density was used in all UPuZr-fueled pins. b U was enriched to 11% using atomic fraction. c The fractions
of U and Pu were 89% and 11% by weight, respectively. d LWR spectrum was achieved by replacing Na coolant
with water. e Hard spectrum was achieved using a combination of fuel pins clad with B4C and assemblies with
no coolant. f Hard spectrum was achieved using a combination of fuel pins clad with B4C and assemblies with no
coolant. All fuel was pure U metal.

Energies 2024, 17, x FOR PEER REVIEW 5 of 26 
 

 

D 50 Training UPuZr a 1.6% UOX b LWR LWR d 0 
[0% or 14%],   

[0% or 14% or 17%] 

E 50 Training UPuZr a 1.6% UOX b LWR Hard e 0 
[0% or 14% or 17%], 
[0% or 14% or 17%] 

F 50 Training U b N/A (Fresh 11% U) Hard f 0 0%, 0% 
G 2 Validation UPuZr a 1.6% UOX b LWR SFR 0 to 180 14%, 14% 
H 2 Validation UPuZr a 19.9% UOX b LWR SFR 0 to 180 14%, 14% 
I 2 Validation UOX b N/A (Fresh UOX b) SFR (Softened, OX Fuel) 0 to 180 14%, 14% 
J 2 Validation MOX b,c 1.6% UOX b LWR SFR (Softened, OX Fuel) 0 to 180 14%, 14% 
K 1 Test MOX b,c N/A (Fresh MOX b) SFR (Softened, OX Fuel) 0 0%, 0% 
L 2 Test UPuZr a 1.6% UOXb LWR SFR 220 to 400 14%, 14% 
M 2 Test UPuZr a 19.9% UOX b LWR SFR 220 to 400 14%, 14% 
N 2 Test UOX b N/A (Fresh UOX b) SFR (Softened, OX Fuel) 220 to 400 14%, 14% 
O 2 Test MOX b,c 1.6% UOX b LWR SFR (Softened, OX Fuel) 220 to 400 14%, 14% 

a Fuel contained 10% Zr by weight. The fractions of U and Pu were 89% and 11% by weight, respec-
tively. A 75% smear density was used in all UPuZr-fueled pins. b U was enriched to 11% using atomic 
fraction. c The fractions of U and Pu were 89% and 11% by weight, respectively. d LWR spectrum was 
achieved by replacing Na coolant with water. e Hard spectrum was achieved using a combination of 
fuel pins clad with B4C and assemblies with no coolant. f Hard spectrum was achieved using a com-
bination of fuel pins clad with B4C and assemblies with no coolant. All fuel was pure U metal. 

 
Figure 2. Pincell depletion simulation geometry. The fuel, cladding, and coolant are shown in red, 
gray, and yellow, respectively. Reflective boundary conditions are placed on the inner hexagonal 
duct surfaces. 

Figure 2. Pincell depletion simulation geometry. The fuel, cladding, and coolant are shown in red,
gray, and yellow, respectively. Reflective boundary conditions are placed on the inner hexagonal
duct surfaces.
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5 shows a flow diagram indicating the origin of all fuel types used in each test dataset. 

Figure 3. Fuel origin flowchart for training datasets. Fuel in datasets A, E, and D originate from
an LWR depletion simulation performed in [10]. The plutonium isotopics from the fuel burned to
17.44 MWd/kgIHM in an LWR spectrum are sampled and reformulated as UPuZr (A, E) and MOX
(D) fuel. The UPuZr is then burned in an SFR simulation up to 180 MWd/kgIHM in steps of 20
MWd/kgIHM (A) before being used in criticality eigenvalue assembly-level simulations. Datasets D
and E are imported directly into the assembly simulations as fresh MOX and UPuZr, respectively.
Dataset B is UOX fuel enriched to 11%, burned in an SFR simulation, and used in the assembly
simulations. Datasets C and F are fresh UOX and U imported directly into the assembly simulations
without being burned. Dataset D contains assembly simulations with water coolant to increase the
diversity of the neutron flux spectra in the training data. Quantities of U and Pu in UPuZr fuel are
percentages of total heavy metal.
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Figure 4. Fuel origin flowchart for validation datasets. Fuel in datasets G, J, and H originates from
LWR depletion simulations of UOX fuel enriched to 1.6% (G, J) and 19.9% (H) performed in [10].
The plutonium isotopics from the fuel burned to 17.44 MWd/kgIHM (G, J) or 216.91 MWd/kgIHM
(H) in an LWR spectrum are sampled and reformulated as UPuZr (G, H) and MOX (J) fuels. Fuel in
dataset I begins as fresh UOX enriched to 11%. All fuel types in validation datasets are then burned
in SFR pincell depletion simulations up to 180 MWd/kgIHM in steps of 20 MWd/kgIHM before
being used in criticality eigenvalue assembly-level simulations. Quantities of U and Pu in UPuZr fuel
are percentages of total heavy metal.



Energies 2024, 17, 2177 7 of 26

Test datasets M, N, and O contained either UPuZr or MOX fuel with plutonium
isotopics originating from UOX burned in an LWR. In datasets L and O, the UOX was
enriched to 1.6% and burned to 17.44 MWd/kgIHM. In dataset M, the UOX was enriched
to 19.9% and burned to 216.91 MWd/kgIHM. Test dataset N contained UOX enriched to
11%. All MOX, UPuZr, and UOX fuels in test datasets L, M, N, and O were then burned
in SFR pincell depletion simulations from 220 to 400 MWd/kgIHM before being used in
assembly simulations. Test dataset K contained MOX fuel with isotopics from the ESFR
reactor [11]. Figure 5 shows a flow diagram indicating the origin of all fuel types used in
each test dataset.

Energies 2024, 17, x FOR PEER REVIEW 7 of 26 
 

 

 
Figure 4. Fuel origin flowchart for validation datasets. Fuel in datasets G, J, and H originates from 
LWR depletion simulations of UOX fuel enriched to 1.6% (G, J) and 19.9% (H) performed in [10]. 
The plutonium isotopics from the fuel burned to 17.44 MWd/kgIHM (G, J) or 216.91 MWd/kgIHM 
(H) in an LWR spectrum are sampled and reformulated as UPuZr (G, H) and MOX (J) fuels. Fuel in 
dataset I begins as fresh UOX enriched to 11%. All fuel types in validation datasets are then burned 
in SFR pincell depletion simulations up to 180 MWd/kgIHM in steps of 20 MWd/kgIHM before be-
ing used in criticality eigenvalue assembly-level simulations. Quantities of U and Pu in UPuZr fuel 
are percentages of total heavy metal. 

 
Figure 5. Fuel origin flowchart for test datasets. Fuel in datasets L, O, and M originates from LWR 
depletion simulations of UOX fuel enriched to 1.6% (L, O) and 19.9% (M) performed in [10]. The 
plutonium isotopics from the fuel burned to 17.44 MWd/kgIHM (L, O) or 216.91 MWd/kgIHM (M) 
in an LWR spectrum are sampled and reformulated as UPuZr (L, M) and MOX (O) fuels. Fuel in 
dataset N begins as fresh UOX enriched to 11%. All fuel types in test datasets M, N, L, and O are 
then burned in SFR pincell depletion simulations from 220 to 400 MWd/kgIHM in steps of 20 
MWd/kgIHM before being used in criticality eigenvalue assembly-level simulations. Fuel in test da-
taset K originates from an ESFR reactor with isotopics, according to [11], and is imported directly 
into an assembly-level simulation. Quantities of U and Pu in UPuZr fuel are percentages of total 
heavy metal. 

The plutonium isotopics of the fresh SFR fuels containing plutonium are shown in 
Table 3 for each relevant dataset. The plutonium isotopics of each fuel type that was de-
pleted in SFR pincell simulations are shown in Figures A1–A8 in Appendix A. 

  

Figure 5. Fuel origin flowchart for test datasets. Fuel in datasets L, O, and M originates from LWR
depletion simulations of UOX fuel enriched to 1.6% (L, O) and 19.9% (M) performed in [10]. The
plutonium isotopics from the fuel burned to 17.44 MWd/kgIHM (L, O) or 216.91 MWd/kgIHM
(M) in an LWR spectrum are sampled and reformulated as UPuZr (L, M) and MOX (O) fuels. Fuel
in dataset N begins as fresh UOX enriched to 11%. All fuel types in test datasets M, N, L, and O
are then burned in SFR pincell depletion simulations from 220 to 400 MWd/kgIHM in steps of 20
MWd/kgIHM before being used in criticality eigenvalue assembly-level simulations. Fuel in test
dataset K originates from an ESFR reactor with isotopics, according to [11], and is imported directly
into an assembly-level simulation. Quantities of U and Pu in UPuZr fuel are percentages of total
heavy metal.

The plutonium isotopics of the fresh SFR fuels containing plutonium are shown in
Table 3 for each relevant dataset. The plutonium isotopics of each fuel type that was
depleted in SFR pincell simulations are shown in Figures A1–A8 in Appendix A.

Table 3. Plutonium isotopics from SFR fuel containing plutonium. Values are expressed as a
percentage of total plutonium.

Dataset, Pu Origin

Pu Isotope
A, D, E, G, J, L, O
1.6% UOX LWR

[Atom %]

H, M
19.9% UOX LWR

[Atom %]

K
Pu from [11]
[Weight %]

236Pu 1.9 × 10−9% 6.3 × 10−7% 0%
237Pu 7.2 × 10−7% 8.5 × 10−6% 0%
238Pu 0.59% 21.47% 3.6%
239Pu 60.0% 35.8% 47.7%
240Pu 23.8% 17.9% 29.9%
241Pu 11.9% 14.0% 8.3%
242Pu 3.7% 10.9% 10.5%
243Pu 0.0014% 0.0024% 0%
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2.2. Convolutional Neural Network

The CNN developed in this work was a residual network [14] similar to the models de-
veloped in [9,10]. Residual networks are characterized by the inclusion of skip connections
between shallower and deeper layers that bypass layers in between. Residual networks are
used to reduce the impact of vanishing gradients during training [15]. A simple, manually
guided optimization was conducted where the activation function and number of filters
in each convolutional layer of the CNN in [10] were varied. It was found that using ELU
activations in place of rectified linear units (ReLUs) and increasing the number of filters
from 128 to 256 improved the validation loss. The CNN was developed using the Tensor-
Flow [16] library’s Keras API and was trained for 2500 epochs using the Adam optimization
algorithm. Training proceeded with a batch size of 100 and an initial learning rate of 10−4.
The learning rate was reduced to 2 × 10−5, 1 × 10−5, and 2 × 10−6 after 4000, 8000, and
16,000 training steps, respectively. The mean absolute error (MAE) loss metric was used as
a basis for updating the weights and biases of the network during training. The validation
dataset was used to compute a validation MAE loss score independent of the training loss.
The weights and biases of the CNN that achieved the lowest validation loss score over
2500 epochs were stored and used to generate results in this work.

Because procedurally generated assemblies varied in size, the grids on which the
mesh tallies were recorded also varied in their number of horizontal and vertical elements.
To allow training to be conducted in a batch mode using stochastic gradient descent,
each training sample’s input low-resolution tallies were segmented into equal-size non-
overlapping 20 × 20 × 8 grids. The ground-truth high-resolution tallies were segmented
into corresponding 40 × 40 × 16 grids. The training and inference pipeline included the
data pre- and post-processing steps that scaled the input low-resolution data and output
high-resolution prediction. All tally values in each sample were first multiplied by the
total number of elements in that sample’s mesh. Again, this was done because generated
assemblies varied in size, causing the recorded flux per mesh element in larger assemblies
to be reduced compared with smaller assemblies. In a second scaling step, the largest flux
value was sought for each energy group across the entire set of training data. These flux
values were found in both the low- and high-resolution tallies in the training dataset. The
input low-resolution tallies and output upsampled tallies were then divided by the largest
flux values on a groupwise basis. The largest flux values in the training data were stored
for use during inference on unseen validation and test data, where the high-resolution
tallies are unknown to the CNN.

3. Results and Discussion

Figure 6 shows the low- and high-resolution neutron flux mesh tallies and relative
error from the simulation corresponding to dataset K, as well as the upsampled CNN
prediction. Dataset K (Table 2) corresponds to the simulation of the ESFR assembly. In
this figure, the mesh tally fluxes are summed in the energy dimension. The relative error
was calculated by summing absolute errors in quadrature along the energy dimension and
dividing them by the flux. The upsampling prediction in Figure 6c compares well visually
with the high-resolution OpenMC tally in Figure 6b. Figure 6d shows that the relative
Monte Carlo uncertainty computed by OpenMC is close to 0.5% across the entire assembly.

Figure 7 compares the residuals between the high-resolution OpenMC tally and the
upsampled CNN prediction for dataset K as a function of neutron energy on relative and
absolute bases. The mean residuals and errors are shown for each energy group, which is
averaged across all spatial locations. The results in Figure 7 show that CNN’s prediction
residual significantly exceeds the relative error computed using OpenMC only in the first
and last energy groups. In all other energy groups, the CNN’s predictions were either
within or very close to the Monte Carlo errors on a relative basis. This was the case for all
energy groups when results were computed on an absolute basis. The figure also shows
that CNN’s predictions only had a strong bias in the first and last energy groups. The
neutron flux in these groups, however, was extremely low relative to that of other groups.
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Monte Carlo uncertainties scaled with the square root of the number of samples, which
amplified the relative uncertainty in the energy groups with low statistics. The average
neutron flux for dataset K is shown in the Appendix A, Figure A9.
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Figure 6. Neutron flux tallies, CNN prediction, and Monte Carlo relative error for ESFR assembly 
(dataset K). (a) Low-resolution neutron flux mesh tally computed using OpenMC. (b) High-
Figure 6. Neutron flux tallies, CNN prediction, and Monte Carlo relative error for ESFR assembly
(dataset K). (a) Low-resolution neutron flux mesh tally computed using OpenMC. (b) High-resolution
neutron flux mesh tally computed using OpenMC (ground truth). (c) Upsampled neutron flux tally
predicted using CNN was a low-resolution tally (a) as input. (d) Relative error in the high-resolution
tally (b) was computed using OpenMC. Units on colorbars of panels (a–c) are in counts per starting
source particle.
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The number of CNN predictions worse than the Monte Carlo uncertainties is a useful 
metric for additional insight into its prediction accuracy. Figure 8 shows the fraction of 
CNN predictions outside one and two standard deviations of the Monte Carlo calculation 

Figure 7. Mean CNN prediction residuals and Monte Carlo errors for ESFR assembly (dataset K).
(Top) Blue triangles show the relative magnitude of the prediction residuals with respect to the Monte
Carlo high-resolution flux tallies. Black crosses represent the relative residuals computed without
the magnitude, which is shown to illustrate the prediction bias for each group. (Bottom) Absolute
residuals and Monte Carlo errors. Each data point represents an average over each spatial element of
the sample.

The number of CNN predictions worse than the Monte Carlo uncertainties is a useful
metric for additional insight into its prediction accuracy. Figure 8 shows the fraction of
CNN predictions outside one and two standard deviations of the Monte Carlo calculation
for dataset K. CNN’s predictions were outside one and two standard deviations in 33.6%
and 7.6% of cases overall, respectively. These numbers align closely with what would be
expected, assuming that errors are normally distributed. By using this metric, the prediction
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accuracy was reduced at very low and high energies where the flux was low. The results
shown in Figures 7 and 8 are tabulated in the Appendix, Table A1.
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Figure 8. Fraction (%) of CNN predictions outside one (blue) and two (green) Monte Carlo standard
deviations. Data points were computed by counting the number of CNN predictions with residuals
greater than one and two Monte Carlo standard deviations and dividing them by the total number of
data points.

The CNN prediction residuals and Monte Carlo uncertainties are compared for the
test dataset L in Figure 9. This dataset comprised procedurally generated assemblies with
10 or 11 rings of pins whose fuel’s plutonium isotopes were taken from discharged LWR
fuel enriched to 1.6%. In the assemblies of dataset L, the fuel form was UPuZr with burnup
values between 220 and 400 MWd/kgIHM, burned in a fast spectrum. Figure 10 shows
the fraction of CNN predictions outside one and two Monte Carlo standard deviations for
dataset L. On a relative basis, the mean residuals in the CNN’s predictions were close to or
below the Monte Carlo uncertainty, except for the low and high energy groups. Again, these
energies correspond to very low neutron fluxes. The prediction bias in either direction was
also small except in the groups with low neutron flux values. Unlike dataset K, in dataset
L, the mean values of the CNN’s residuals were larger than Monte Carlo uncertainties
around 200 to 950 keV. On a relative basis, however, the residuals in this region were 1.45%
at worst. The average neutron flux for dataset L is shown in the Appendix A, Figure A10.

Figure 10 shows the fraction of CNN predictions outside one and two Monte Carlo
standard deviations for dataset L. CNN’s predictions were outside one and two stan-
dard deviations in 37.6% and 9.8% of cases overall, respectively. The results shown in
Figures 9 and 10 are tabulated in the Appendix A, Table A2.

Figure 11 shows a comparison between the CNN prediction residuals and Monte Carlo
uncertainties for test dataset M. This dataset comprised procedurally generated assemblies
with 10 or 11 rings of pins whose fuel’s plutonium isotopes were taken from discharged
LWR fuel enriched to 19.9%. In the assemblies of dataset M, the fuel form was UPuZr
with burnup values between 220 and 400 MWd/kgIHM, burned in a fast spectrum. The
accuracy of the CNN’s predictions, as well as the prediction bias, on dataset M varied by
energy in a similar manner to dataset L. Although the absolute residuals between 200 and
950 keV were larger than Monte Carlo uncertainty, on a relative basis, this corresponded
to 1.64% at worst. The average neutron flux for dataset M is shown in the Appendix A,
Figure A11.
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Figure 9. Mean CNN prediction residuals and Monte Carlo errors for UPuZr assemblies (dataset L). 
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Figure 9. Mean CNN prediction residuals and Monte Carlo errors for UPuZr assemblies (dataset L).
(Top) Blue triangles show the relative magnitude of the prediction residuals with respect to the Monte
Carlo high-resolution flux tallies. Black crosses represent the relative residuals computed without
the magnitude, which is shown to illustrate the prediction bias for each group. (Bottom) Absolute
residuals and Monte Carlo errors. Each data point represents an average over each spatial element of
both samples in dataset L.
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standard deviations for dataset M. CNN’s predictions were outside one and two standard 
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Figure 12 shows the fraction of CNN predictions outside one and two Monte Carlo
standard deviations for dataset M. CNN’s predictions were outside one and two stan-
dard deviations in 35.4% and 8.9% of cases overall, respectively. The results shown in
Figures 11 and 12 are tabulated in the Appendix A, Table A3.
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The CNN prediction accuracy for datasets N and O was extremely close to or below 
the Monte Carlo uncertainties in almost all energy groups, as shown in Figure 13. The sole 
exception to this was at the highest energy group and only on a relative basis. Because of 
this, Figure 13 represents the combined statistics of datasets N and O. Prediction biases 

Figure 11. Mean CNN prediction residuals and Monte Carlo errors for UPuZr assemblies (dataset M).
(Top) Blue triangles show the relative magnitude of the prediction residuals with respect to the Monte
Carlo high-resolution flux tallies. Black crosses represent the relative residuals computed without
the magnitude, which is shown to illustrate the prediction bias for each group. (Bottom) Absolute
residuals and Monte Carlo errors. Each data point represents an average over each spatial element of
both samples in dataset M.
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Figure 12. Fraction (%) of CNN predictions outside one (blue) and two (green) Monte Carlo standard
deviations for UPuZr assemblies (dataset M). Data points were computed by counting the number
of CNN predictions with residuals greater than one and two Monte Carlo standard deviations and
dividing them by the total number of data points.
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The CNN prediction accuracy for datasets N and O was extremely close to or below
the Monte Carlo uncertainties in almost all energy groups, as shown in Figure 13. The sole
exception to this was at the highest energy group and only on a relative basis. Because of
this, Figure 13 represents the combined statistics of datasets N and O. Prediction biases
were also small and, overall, did not show a preference in direction, except for the lowest
and highest energy groups. Similarly, Figure 14 shows the fraction of CNN predictions
outside one and two Monte Carlo standard deviations for datasets N and O, again using
combined statistics for both datasets. CNN’s predictions were outside one and two stan-
dard deviations in 33.0% and 6.8% of cases overall, respectively. The results shown in
Figures 13 and 14 are tabulated in the Appendix A, Table A4. The average neutron flux for
datasets N and O is shown in the Appendix A, Figure A12.
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Figure 13. Mean CNN prediction residuals and Monte Carlo errors for UOX and MOX test assemblies
(datasets N, O). (Top) Blue triangles show the relative magnitude of the prediction residuals with
respect to the Monte Carlo high-resolution flux tallies. Black crosses represent the relative residuals
computed without the magnitude, which is shown to illustrate the prediction bias for each group.
(Bottom) Absolute residuals and Monte Carlo errors. Each data point represents an average over
each spatial element of a total of 4 samples across the two datasets.
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deviations for UOX and MOX test assemblies (datasets N, O). Data points were computed by counting
the number of CNN predictions with residuals greater than one and two Monte Carlo standard
deviations and dividing them by the total number of data points.

The predictions made by the CNN on unseen test data were accurate on a relative
basis, except in energy groups where the neutron flux was close to zero, as shown in
Figures 7, 9, 11, and 13. This was also the case on an absolute basis, with the only exceptions
being in the 200–950 keV region in high burnup procedurally generated test assemblies
fueled with UPuZr, as shown in Figures 9–12. Even in these cases, the difference between
the CNN predictions’ residuals, 1.64%, and the Monte Carlo uncertainty, 1.37%, was
extremely small compared with the neutron flux. In the MOX or UOX test assemblies
burned up to 400 MWd/kgIHM, however, the CNN residuals remained smaller than the
Monte Carlo uncertainties in the 200–950 keV region, as shown in Figures 7 and 13. A
likely explanation for this difference is that the fissile plutonium content in UPuZr fuel is
lower than that in the MOX or UOX fuel at high levels of burnup. Even in the high-burnup
MOX and UOX samples (Datasets N, O, Figure 13), the predictive accuracy of the CNN in
the 200–950 keV region was slightly worse compared with the ESFR assembly predictions,
as shown in Figure 7. In the ESFR assembly, the plutonium content of the fuel was high,
which is closer in similarity to the training data in contrast to the high-burnup datasets.
Prediction biases generally do not show a strong directional preference except for energy
groups with very low flux values.

An important feature of the CNN trained in this work is the relatively small number of
assemblies in its training dataset. CNNs in previous studies were trained using 4400 [9] and
5568 [10] unique assemblies, while the CNN in this work was trained with 300 assemblies.
Despite this, the CNN achieved similar accuracy as measured by the fraction of predictions
below one and two Monte Carlo standard deviations, as shown in Figures 8, 10, 12, and
14. The neutron flux tallies in this work, however, were recorded on a mesh with spatial
elements less than a third of the width of the meshes in [9,10]. By pixel count, the training
data in this work would be comparable.

4. Conclusions and Future Work

A residual convolutional neural network was trained on neutron flux tally data
computed using OpenMC. The training data consisted of 250 samples of low- and high-
resolution flux tallies from fast reactor simulations and 50 samples from thermal spectrum
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simulations. All training data samples consisted of hexagonal assemblies with two to
five rings of pins, with fuel burnup up to 180 MWd/kgIHM. Validation data consisted of
eight samples of fast reactor assemblies with 10 or 11 rings of pins and fuel burnup up to
180 MWd/kgIHM. All samples in the training and validation data were heterogeneous
procedurally generated assemblies using Latin hypercube sampling to select assembly-
and pin-level geometric and material parameters. To test the CNN, eight procedurally
generated heterogeneous fast reactor assemblies were simulated with burnup levels from
220 to 400 MWd/kgIHM and 10 or 11 rings of pins. The burnup range was selected to test
CNN’s ability to generalize in samples with characteristics that were well outside those
encountered in the training data. The CNN was also tested on a simulation of a realistic
ESFR assembly with fresh mixed-oxide fuel.

The results show that across all test and validation data, the fraction of predictions
outside one (two) standard deviation was 36% (8.6%) and 31% (6.8%), respectively. The
residuals and fraction of predictions outside one and two standard deviations were also
given by the energy group for individual test datasets. In all test data and energy groups,
the residuals were smaller than or close to the Monte Carlo uncertainty on an absolute
basis. On a relative basis, this is also the case, with the exception being at energies above
20 MeV, where the neutron flux was close to zero.

Although the CNN trained in this work can make accurate predictions on test data that
are considerably dissimilar to the training data, it is limited to specific resolutions. The CNN
can upsample 1 × 1 mm tallies to 0.5 × 0.5 mm accurately, but a CNN that can operate on a
wider range of input and output resolutions would be of significant utility. Similarly, a CNN
with the ability to upsample between different input and output energy resolutions would
also be valuable. Similar neural network models, such as generative adversarial networks
(GANs), could be explored to enable this capability. GANs have been shown previously
to be effective in the super-resolution of climatological data [17], and similar benefits of
GANs could be realized in the context of neutron transport simulations. Incorporating
uncertainty quantification methods to enable the neural network to estimate the confidence
in upsampled predictions would also be essential before its use in neutron Monte Carlo
applications. Ensemble methods have been shown to provide uncertainty quantification
in simulations of neutron flux monitors [18] and could be adapted for upsampling in a
similar way. Finally, the potential for the flexible and accurate upsampling of neutron flux
tallies using additional input data that would be available a priori has not been explored.
Another CNN input layer could accept a spatial map of the materials used as input to the
Monte Carlo simulation. This input layer would be connected to the existing input and
encode valuable additional information that would be propagated to downstream layers.
Alternatively, or in addition, other types of prior information, such as uncertainties and
few-group cross-sections, could be encoded in CNN input layers.
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Figure A1. Plutonium isotopics, UPuZr fuel. The Pu in the UPuZr fuel burned in the SFR pincell
simulation originated from 1.6% enriched UOX burned in an LWR simulation to 17.44 MWd/kgIHM.
The isotopics shown correspond to UPuZr fuel at 180 MWd/kgIHM of burnup in an SFR spectrum.
Relevant datasets using this type of fuel are A and G (Figures 3 and 4).
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Dataset H includes this type of fuel (Figure 4).
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The isotopics shown correspond to MOX fuel at 180 MWd/kgIHM of burnup in an SFR spectrum.
Dataset J includes this type of fuel (Figure 4).
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Figure A5. Plutonium Isotopics, UPuZr fuel. The Pu in the UPuZr fuel burned in the SFR pincell
simulation originated from 1.6% enriched UOX burned in an LWR simulation to 17.44 MWd/kgIHM.
The isotopics shown correspond to MOX fuel at 400 MWd/kgIHM of burnup in an SFR spectrum.
Dataset L includes this type of fuel (Figure 5).
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Figure A6. Plutonium Isotopics, UPuZr fuel. The Pu in the UPuZr fuel burned in the SFR pincell sim-
ulation originated from 19.9% enriched UOX burned in an LWR simulation to 216.91 MWd/kgIHM.
The isotopics shown correspond to MOX fuel at 400 MWd/kgIHM of burnup in an SFR spectrum.
Dataset M includes this type of fuel (Figure 5).
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Figure A8. Plutonium Isotopics, MOX fuel. The Pu in the MOX fuel burned in the SFR pincell
simulation originated from 1.6% enriched UOX burned in an LWR simulation to 17.44 MWd/kgIHM.
The isotopics shown correspond to MOX fuel at 400 MWd/kgIHM of burnup in an SFR spectrum.
Dataset O includes this type of fuel (Figure 5).
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Figure A12. Neutron flux tally in datasets N and O. Each data point represents an average over all
spatial tally bins of all four samples in datasets N and O. Error bars represent the average Monte
Carlo uncertainty also over all spatial tally bins in datasets N and O.
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Tabulated Data: Test Datasets

Table A1. Tabulated data for Figures 7 and 8, dataset K. Lowest error for each group is in bold.

Upper
Energy Bin

[eV]

MC
Relative
Error [%]

CNN
Relative

Residual [%]

CNN Relative
Residual Bias

[%]

MC
Absolute

Error a

CNN
Absolute

Residual a

Fraction of Predictions Worse
Than MC Uncertainty [%]

1σ 2σ

2.14 × 102 24.38 34.85 29.56 2.98 × 10−8 3.64 × 10−8 52.88 24.25
4.60 × 102 10.06 6.76 1.15 7.43 × 10−8 4.91 × 10−8 23.14 2.27
9.86 × 102 5.14 4.44 2.10 1.47 × 10−7 1.24 × 10−7 35.05 7.02
2.11 × 103 3.26 2.39 −1.24 2.34 × 10−7 1.72 × 10−7 28.07 2.67
4.53 × 103 3.86 3.22 0.87 1.99 × 10−7 1.65 × 10−7 33.72 5.94
9.72 × 103 2.37 1.62 −0.45 3.23 × 10−7 2.22 × 10−7 24.53 2.01
2.09 × 104 1.67 1.68 1.21 4.52 × 10−7 4.49 × 10−7 42.27 11.65
4.47 × 104 1.49 1.35 −0.91 5.12 × 10−7 4.70 × 10−7 38.21 8.11
9.59 × 104 1.31 1.04 0.43 5.77 × 10−7 4.53 × 10−7 31.16 4.59
2.06 × 105 1.22 0.90 0.14 6.17 × 10−7 4.50 × 10−7 27.64 3.17
4.41 × 105 1.32 1.07 0.20 5.70 × 10−7 4.60 × 10−7 32.39 5.18
9.46 × 105 1.40 1.14 −0.04 5.32 × 10−7 4.32 × 10−7 32.84 5.08
2.03 × 106 2.06 1.53 −0.65 3.59 × 10−7 2.68 × 10−7 28.48 3.10
4.35 × 106 2.61 2.13 0.85 2.82 × 10−7 2.28 × 10−7 32.68 5.56
9.33 × 106 5.52 3.14 −0.05 1.32 × 10−7 7.47 × 10−8 16.20 0.64
2.00 × 107 31.57 53.90 50.44 2.16 × 10−8 2.83 × 10−8 58.41 29.68

a Units are per starting source particle.

Table A2. Tabulated data for Figures 9 and 10, dataset L. Lowest error for each group in bold.

Upper
Energy Bin

[eV]

MC
Relative
Error [%]

CNN
Relative

Residual [%]

CNN Relative
Residual Bias

[%]

MC
Absolute

Error a

CNN
Absolute

Residual a

Fraction of Predictions Worse
Than MC Uncertainty [%]

1σ 2σ

2.14 × 102 32.55 43.74 −8.21 2.48 × 10−8 3.08 × 10−8 54.07 18.94
4.60 × 102 10.73 7.68 2.65 7.54 × 10−8 5.27 × 10−8 25.88 3.39
9.86 × 102 4.25 3.74 1.78 1.87 × 10−7 1.68 × 10−7 37.05 7.95
2.11 × 103 2.59 1.79 −0.49 3.06 × 10−7 2.17 × 10−7 25.55 2.23
4.53 × 103 3.68 3.51 −2.22 2.17 × 10−7 2.08 × 10−7 41.35 8.98
9.72 × 103 1.93 1.37 0.74 4.07 × 10−7 2.88 × 10−7 26.48 2.78
2.09 × 104 1.26 1.05 −0.56 6.15 × 10−7 5.14 × 10−7 34.30 5.45
4.47 × 104 1.08 0.83 0.36 7.14 × 10−7 5.41 × 10−7 29.62 3.90
9.59 × 104 0.94 0.73 −0.31 8.21 × 10−7 6.42 × 10−7 30.86 4.13
2.06 × 105 0.84 0.62 0.22 9.12 × 10−7 6.73 × 10−7 28.22 3.35
4.41 × 105 0.85 1.00 0.90 8.99 × 10−7 1.06 × 10−6 54.15 15.94
9.46 × 105 1.01 1.45 −1.39 7.58 × 10−7 1.11 × 10−6 67.00 26.27
2.03 × 106 1.38 0.93 0.02 5.51 × 10−7 3.71 × 10−7 23.74 1.93
4.35 × 106 2.10 1.67 −0.03 3.57 × 10−7 2.85 × 10−7 31.72 4.75
9.33 × 106 4.45 2.52 0.07 1.66 × 10−7 9.37 × 10−8 16.06 0.64
2.00 × 107 24.81 53.11 52.09 2.84 × 10−8 5.25 × 10−8 75.21 46.35

a Units are per starting source particle.
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Table A3. Tabulated data for Figures 11 and 12, dataset M. Lowest error for each group in bold.

Upper
Energy Bin

[eV]

MC
Relative
Error [%]

CNN
Relative

Residual [%]

CNN Relative
Residual Bias

[%]

MC
Absolute

Error a

CNN
Absolute

Residual a

Fraction of Predictions Worse
Than MC Uncertainty [%]

1σ 2σ

2.14 × 102 59.16 282.61 196.20 1.91 × 10−8 2.41 × 10−8 53.45 24.56
4.60 × 102 17.95 13.11 1.37 5.68 × 10−8 4.04 × 10−8 26.42 3.37
9.86 × 102 6.48 5.37 −0.07 1.44 × 10−7 1.32 × 10−7 35.39 6.49
2.11 × 103 3.81 2.62 0.47 2.37 × 10−7 1.72 × 10−7 25.42 2.55
4.53 × 103 5.43 4.89 −2.06 1.65 × 10−7 1.65 × 10−7 39.97 8.49
9.72 × 103 2.71 1.85 0.73 3.19 × 10−7 2.30 × 10−7 25.27 2.57
2.09 × 104 1.76 1.36 −0.50 4.84 × 10−7 3.88 × 10−7 31.00 4.16
4.47 × 104 1.49 1.06 0.27 5.67 × 10−7 4.14 × 10−7 26.87 2.99
9.59 × 104 1.28 1.00 −0.36 6.52 × 10−7 5.12 × 10−7 30.85 4.12
2.06 × 105 1.14 0.85 0.27 7.26 × 10−7 5.37 × 10−7 28.12 3.36
4.41 × 105 1.16 1.20 1.00 7.14 × 10−7 8.15 × 10−7 48.10 12.96
9.46 × 105 1.37 1.64 −1.46 5.98 × 10−7 8.17 × 10−7 56.89 19.07
2.03 × 106 1.87 1.27 −0.01 4.35 × 10−7 2.97 × 10−7 24.24 2.05
4.35 × 106 2.80 2.24 0.16 2.85 × 10−7 2.30 × 10−7 32.08 4.92
9.33 × 106 5.86 3.33 0.09 1.33 × 10−7 7.54 × 10−8 16.13 0.68
2.00 × 107 32.88 66.87 64.30 2.27 × 10−8 3.94 × 10−8 66.71 39.41

a Units are per starting source particle.

Table A4. Tabulated data for Figs. 13,14, datasets N and O. Lowest error for each group in bold.

Upper
Energy Bin

[eV]

MC
Relative
Error [%]

CNN
Relative

Residual [%]

CNN Relative
Residual Bias

[%]

MC
Absolute

Error a

CNN
Absolute

Residual a

Fraction of Predictions Worse
Than MC Uncertainty [%]

1σ 2σ

2.14 × 102 13.53 13.32 −7.23 6.92 × 10−8 6.47 × 10−8 42.66 9.18
4.60 × 102 5.82 4.03 1.66 1.50 × 10−7 1.01 × 10−7 24.44 2.63
9.86 × 102 2.89 2.36 1.01 2.88 × 10−7 2.30 × 10−7 32.45 5.41
2.11 × 103 2.01 1.39 −0.44 4.09 × 10−7 2.85 × 10−7 25.24 2.19
4.53 × 103 2.87 2.35 −0.42 2.86 × 10−7 2.42 × 10−7 33.87 5.55
9.72 × 103 1.61 1.06 0.25 4.98 × 10−7 3.35 × 10−7 23.26 1.91
2.09 × 104 1.15 0.86 −0.10 6.91 × 10−7 5.19 × 10−7 28.84 3.49
4.47 × 104 1.05 0.75 0.05 7.58 × 10−7 5.48 × 10−7 26.92 2.90
9.59 × 104 0.93 0.68 0.02 8.47 × 10−7 6.22 × 10−7 27.77 3.16
2.06 × 105 0.86 0.62 0.05 9.12 × 10−7 6.55 × 10−7 26.70 2.83
4.41 × 105 0.92 0.81 0.54 8.57 × 10−7 7.56 × 10−7 37.07 7.01
9.46 × 105 1.00 0.93 −0.65 7.76 × 10−7 7.22 × 10−7 39.79 7.94
2.03 × 106 1.35 1.08 −0.66 5.72 × 10−7 4.52 × 10−7 32.24 4.24
4.35 × 106 1.92 1.96 1.39 3.94 × 10−7 3.91 × 10−7 43.78 11.59
9.33 × 106 4.19 2.38 0.21 1.77 × 10−7 1.01 × 10−7 16.26 0.70
2.00 × 107 23.77 43.03 41.12 2.99 × 10−8 4.94 × 10−8 66.78 37.54

a Units are per starting source particle.
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11. Facchini, A.; Giusti, V.; Ciolini, R.; Tuček, K.; Thomas, D.; D’Agata, E. Detailed neutronic study of the power evolution for the
European Sodium Fast Reactor during a positive insertion of reactivity. Nucl. Eng. Des. 2017, 313, 1–9. [CrossRef]

12. Brown, D.A.; Chadwick, M.B.; Capote, R.; Kahler, A.C.; Trkov, A.; Herman, M.W.; Sonzogni, A.A.; Danon, Y.; Carlson, A.D.; Dunn,
M.; et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New
Standards and Thermal Scattering Data. Nuclear Data Sheets 2018, 148, 1–142. [CrossRef]

13. Berry, J.; Romano, P.; Osborne, A. Data and Software: Upsampling Monte Carlo Reactor Simulation Tallies in Depleted SFR
Assemblies using a Convolutional Neural Network 2024. AIP Adv. 2024, 14, 015004. [CrossRef]

14. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1132–1140.

15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 770–778.

16. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467.

17. Stengel, K.; Glaws, A.; Hettinger, D.; King, R.N. Adversarial super-resolution of climatological wind and solar data. Proc. Natl.
Acad. Sci. USA 2020, 117, 16805–16815. [CrossRef]

18. Wilkinson, I.M.; Bhattacharjee, R.R.; Shafer, J.C.; Osborne, A.G. Confidence estimation in the prediction of epithermal neutron
resonance self-shielding factors in irradiation samples using an ensemble neural network. Energy AI 2022, 7, 100131. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.anucene.2020.108026
https://doi.org/10.1080/23324309.2016.1156550
https://doi.org/10.1016/j.egyai.2023.100247
https://doi.org/10.1063/5.0169833
https://doi.org/10.1016/j.nucengdes.2016.11.014
https://doi.org/10.1016/j.nds.2018.02.001
https://doi.org/10.5281/ZENODO.10703159
https://doi.org/10.1073/pnas.1918964117
https://doi.org/10.1016/j.egyai.2021.100131

	Introduction 
	Methods 
	Data Generation 
	Convolutional Neural Network 

	Results and Discussion 
	Conclusions and Future Work 
	Appendix A
	References

