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Abstract: With the continuous improvement of shale oil and gas recovery technologies and achieve-
ments, a large amount of geological information and data have been accumulated for the description
of shale reservoirs, and it has become possible to use machine learning methods for “sweet spots”
prediction in shale oil and gas areas. Taking the Duvernay shale oil and gas field in Canada as an
example, this paper attempts to build recoverable shale oil and gas reserve prediction models using
machine learning methods and geological and development big data, to predict the distribution
of recoverable shale oil and gas reserves and provide a basis for well location deployment and
engineering modifications. The research results of the machine learning model in this study are as
follows: 1⃝ Three machine learning methods were applied to build a prediction model and random
forest showed the best performance. The R2 values of the built recoverable shale oil and gas reserves
prediction models are 0.7894 and 0.8210, respectively, with an accuracy that meets the requirements of
production applications; 2⃝ The geological main controlling factors for recoverable shale oil and gas
reserves in this area are organic matter maturity and total organic carbon (TOC), followed by porosity
and effective thickness; the main controlling factor for engineering modifications is the total proppant
volume, followed by total stages and horizontal lateral length; 3⃝ The abundance of recoverable shale
oil and gas reserves in the central part of the study area is predicted to be relatively high, which
makes it a favorable area for future well location deployment.

Keywords: machine learning; random forest; main controlling factor analysis; sweet spot prediction;
recoverable reserves

1. Introduction

Shale gas resources are distributed worldwide and it requires progressive exploration
and engineering technologies to achieve economic production [1,2]. In the past twenty
years, due to the application of hydraulic fracturing and long horizontal well technologies,
shale gas production has increased sharply, which has played a significant role in the
world’s gas supply [3–6]. The core of shale gas exploration is the evaluation and prediction
of “sweet spots”. Sweet spot evaluation requires consideration of both geological and
engineering factors. Geological factors comprise depth, thickness, lithology, porosity, water
saturation, TOC content, permeability; engineering sweet spots take into consideration
fracturing fluid volume, total proppant volume, total clusters, and total stages [7–14].

As for the prediction of geological sweet spots, Tian [13] used the kriging method
and Monte Carlo sampling method to assign values to the geological parameters of each
well, studied the main controlling factors of production using the spatial Gaussian process
regression method, and concluded that TOC and depth are the two most important factors
that affect the production. Ahmed [15,16] used bulk gamma-ray (GR) and spectral GR logs
to predict total organic carbon based on support vector regression (SVR), functional neural
networks (FNN), and random forests (RFs). Zhengye Qin [17] applied geophysical data
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such as P-wave velocity and density to realize three-dimensional high-precision prediction
of gas content, porosity, and total organic carbon; this method was used in the Wufeng–
Longmaxi shale reservoir and obtained good results. Zhai [18] built a correlation between
shale gas sweet spots and sedimentary microfacies through cluster analysis and factor
analysis using geochemical data; this method is appropriate for areas that lack drilling data
and seismic data.

With regard to engineering sweet spot evaluation, Huang [19] ranked the production-
affecting factors based on a random forest algorithm and concluded that the horizontal
length has the greatest impact on the production. Song [20] also used a random forest
algorithm to rank 10 production-affecting factors and concluded that the proppant amount
is the most important factor that affects the production.

Shale gas production is directly related to geological factors and engineering
factors [21–23]. It is not applicable to predict shale gas sweet spots using only one fac-
tor such as porosity or total organic carbon. Data mining provides a way to quickly identify
the relationship between sweet spots and several factors. Therefore, based on the Duvernay
shale oil and gas data and the fact that shale oil and gas production is affected by geological
and engineering factors, this paper attempts to analyze the main controlling factors of shale
oil and gas production and predict the distribution of sweet spots using a machine learning
algorithm, and thereby provide a basis for resource evaluation and well location deployment.

2. Background of the Study Area

The area of interest in this study is located in the western part of the Alberta sub-basin
in the central part of the Western Canada Basin (WCSB), and the target formation is the
Devonian Duvernay Formation shale. The Western Canada Basin is a typical foreland basin
(Figure 1), with an area of 140 × 104 km2, located between the Rocky Mountains and the
Canadian Shield, and extending partially southward into North Dakota, Montana, and
South Dakota, USA [24–27].
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Figure 1. Geological sketch of the Western Canada Basin [28]: (a) isopach map of the Duvernay shale 
(according to Lyster et al. [29]); (b) stratigraphic section (according to Price et al. [30]); (c) strati-
graphic column (according to Porter et al. [31]). 
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Jurassic represent stable craton shelf-margin marine and nearshore deposits formed by 
slow subsidence. The Middle Jurassic and Paleogene strata mainly consist of thick marine 
deposits, as well as non-marine foreland deposits in the eastern part of the orogenic belt. 
The Duvernay shale, a dark brown or black shale rich in organic ma er, was formed dur-
ing the maximum marine transgression event of the Woodbend Group in the Upper De-
vonian. It is one of the most significant source rocks in the WCSB. The stratum above the 
Duvernay is the Ireton Formation, while below are the strata of Majeau Lake and Beaver-
hill Lake limestones. The Duvernay shale covers an area of 2.43 × 104 km2, with a landform 
of low southwest and high northeast, and a shale burial depth of 500–5500 m [30–34]. The 
Duvernay shale can be subdivided vertically into an upper shale section, a central car-
bonate section, and a lower shale section (Figure 2). 
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Influenced by multiple tectonic activities, the WCSB exhibits a complete stratigraphic
development, ranging from the Cambrian to the Quaternary. Based on different tectonic
and sedimentary backgrounds, the stratigraphic system can be divided into those de-
posited during the craton platform period and the foreland basin period. The strata of
the basin are further categorized into four major sedimentary series through four regional
disconformities: Cambrian–Silurian, Devonian, Mississippian–Lower Jurassic, and Middle
Jurassic–Paleogene.

In terms of sedimentary characteristics, the strata from the Cambrian to the Lower
Jurassic represent stable craton shelf-margin marine and nearshore deposits formed by
slow subsidence. The Middle Jurassic and Paleogene strata mainly consist of thick marine
deposits, as well as non-marine foreland deposits in the eastern part of the orogenic belt.
The Duvernay shale, a dark brown or black shale rich in organic matter, was formed during
the maximum marine transgression event of the Woodbend Group in the Upper Devonian.
It is one of the most significant source rocks in the WCSB. The stratum above the Duvernay
is the Ireton Formation, while below are the strata of Majeau Lake and Beaverhill Lake
limestones. The Duvernay shale covers an area of 2.43 × 104 km2, with a landform of
low southwest and high northeast, and a shale burial depth of 500–5500 m [30–34]. The
Duvernay shale can be subdivided vertically into an upper shale section, a central carbonate
section, and a lower shale section (Figure 2).
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Figure 2. Stratigraphic correlation of the northwest–southeast project in the Duvernay Formation
in the Western Canada Basin (modified by Kong Xiangwen et al. [28]; see Figure 1a for specific
section locations).

Currently, the main development block in the study area is the Simonette block with
173 production wells. Through the continuous optimization of engineering parameters
since 2012, the horizontal lateral length increased from 1200 m in 2012 to 3413 m in 2019
(Figure 3a). The number of fracturing stages increased from 12 sections in 2012 to 61 sections
in 2019, and the number of fracturing clusters increased from three clusters per section
in 2012 to seven clusters per section in 2019. The stage and cluster spacing had been
decreasing year-by-year, proppant volume per meter increased from 13.41 t/m in 2012 to
19.85 t/m in 2019, and fracturing fluid volume per meter increased significantly between
2012 and 2013, then decreased significantly and has remained unchanged at 20 m3/m
(Figure 3) since 2016.

The Simonette block has accumulated a large amount of geological, engineering, and
production data since it was put into production in 2012. Geological data include thickness,
porosity, permeability, water saturation, TOC, oil-to-gas ratio; and the engineering data
include total fracturing fluid volume, total proppant volume, total clusters, total stages,
horizontal lateral length, fracturing fluid type, and well spacing. Geological parameters
determine the scale of the buried hydrocarbon deposited in the area, and engineering
parameters determine the oil and gas production. Analyzing the existing geo-engineering
data, effectively predicting “sweet spots”, and defining the parameters for well location
deployment and shale engineering modifications are the key to the efficient development of
this project, and machine learning provides a way of thinking about and exploring methods
for mining information from the data.
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(b) number of fracturing stages; (c) average proppant volume; (d) average fracturing fluid volume.

3. Research Approach and Technology Roadmap
3.1. Technology Roadmap

This study was conducted in five steps (Figure 4). First, the geological, engineering,
and production data of the study area were collected and preprocessed; thereafter, the
main controlling factors were selected; three machine learning methods were used to build
a prediction model; the determination coefficient R2 and root mean square error (RMSE)
were used as criteria to continuously improve the model; and finally, the model was used
to select sweet spots.
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3.2. Random Forest

Random forest (RF) is an ensemble learning method proposed by Breiman [35], which
is based on a bootstrap resampling technique that randomly reselects k samples as new
training samples, and grows a series of decision trees based on the sample set. The final
prediction result of a RF is the average of the results of all decision trees. Compared
with other machine learning algorithms such as neural network, this method has various
advantages such as high noise immunity, computing speed, and stability [36,37].
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The basic flow of the RF algorithm is as follows.
(i) First, randomly select m samples from the data set E through bootstrap sampling to

create T sub-datasets.
(ii) Use the sub-datasets to train the regression trees. During this training process,

t attributes are first selected randomly for each node of a regression tree, and then the
optimal cut-point is found among these t attributes.

(iii) Multiple regression tree models can be obtained by the second step, and the
prediction result of each regression tree is the average of the leaf nodes where that sample
is located, and the final result of the RF is the average of the prediction results of all
regression trees.

3.3. Support Vector Machine

The concept of support vector machine (SVM) regression was first proposed by
Vladimir Vapnik [38] in 1992, and the model can be regarded as a non-parametric model
due to the existence of kernel functions. For training samples (x,y), traditional statistical
models calculate the loss based on the difference between the model output value and the
true value; the loss is zero when the model output value is the same as the true value. SVM
regression is different in that it assumes that the tolerance of the deviation between the
model output value f(x) and the true value y is at most ϵ, the loss is calculated when the
deviation between the two value is greater than ϵ (Figure 5), so that the SVM problem can
be expressed as:

f(x) = wTx + b (1)

min
w,b,ϵi,ϵ̂ı

1
2
∥w∥2 + C

m

∑
i=1

(ϵi + ϵ̂ı) (2)

s.t.f(xi)− yi ≤ ϵ+ ϵi,
yi − f(xi) ≤ ϵ+ ϵ̂ı,

ϵi ≥ 0, ϵ̂ı ≥ 0, i = 1, 2, . . . , m
(3)

where C is the penalty term; ϵi and ϵ̂i are the relaxation variables; and ϵ is the insensitive
parameter.

To make it easy to solve, the problem can be transformed into a dual problem using a
Lagrange function, i.e.,

max
α,α̂

m

∑
i=1

yi(α̂i − αi)− ϵ(α̂i + αi)−
1
2

m

∑
i=1

m

∑
j=1

(α̂i − αi)
(
α̂j − αj

)
xT

i xj (4)

s.t.∑m
i=1 (α̂i − αi) = 0

0 ≤ αi, α̂i ≤ C
(5)

The corresponding parameters are obtained by the sequence minimum optimization
algorithm, the block algorithm, and other methods. The kernel function is considered, and
the final hyperplane equation is as follows:

f(x) =
m

∑
i=1

(α̂i − αi)κ(x, xi) + b (6)

where κ(x, xi) = ϕ(xi)
Tϕ

(
xj
)

is the kernel function, which can map the sample from the
original space to a high-dimensional space, making the sample linearly separable in the
feature space; and α̂i and αi are the Lagrange multiplier vectors.
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3.4. Artificial Neural Networks

Artificial neural networks (ANN) are a widely used machine learning model that
simulates the behavioral characteristics of animal neural networks to establish the relation-
ship between data input and output [39]. Neural networks have strong associative power,
strong adaptability, and strong self-organization ability, so they are widely used to solve
problems such as data classification, image recognition, and nonlinear regression. The
most basic component of a neural network is neurons, as shown in Figure 6a, each neuron
contains weights, activation functions, and biases. In this model, neurons receive input
signals from other neurons, these signals are transmitted through weighted connections,
the current neuron compares the total input received with the bias of the neuron, and
finally the final output of the neuron is obtained through activation function processing.
The computational process for each neuron can be represented by the following formula:

yi = f(
n

∑
j=1

wijxj − bi) (7)

where wij represents the weight between the jth neuron in the previous layer and the ith

neuron in the layer; bi represents the bias of the ith neuron in the layer; xj denotes the
output of the jth neuron in the previous layer; yi indicates the output of the ith neuron in
the layer; f represents the activation function; and n means the number of neurons in the
previous layer.

The training process of a neural network is to continuously adjust the weights and
biases through the inputs and outputs in order to minimize the error. In this process,
according to the different signals received by neurons, it can be divided into a feedforward
neural network and a feedback neural network. In a feedforward neural network, the
information in the entire network is propagated in one direction, and there is no back-
information propagation; in a feedback neural network, neurons can receive information
from other neurons as well as their own feedback signals. Due to the strong power of neural
networks, some overfitting problems often occur in the actual application process, that is,
the error of the training set continues to decrease, but the error of the test set may continue
to increase. The usual solution is “early stop”. This method divides the dataset into a
training set and a validation set, where the training set is used to calculate the gradient,
bias, and weight, and the validation set is used to calculate the error. If the error of the
training set decreases and the error of the validation set increases, the training is stopped
and the weight and bias are obtained with the smallest verification set error.
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3.5. Data Preprocessing

For oil and gas data, the magnitudes of different variables differ, and the value ranges
of different attributes differ significantly, which may lead to problems when algorithms
such as gradient descent are used in the model. Therefore, we used z-score standardized
data (as shown in Equations (8)–(10)) in this study. After standardization, data can be
converted into normally distributed data with a mean of 0 and a standard deviation of 1 to
improve the data comparability.

zi =
xi − µ

σ
(8)

µ =
1
n

N

∑
i=1

(xi) (9)

σ =

√
1
n

n

∑
i=1

(xi − µ)2 (10)

where µ, σ, and xi are the mean, standard deviation, and normalized value of the data.
In this study, we used the One-Hot Encoding method to encode discrete attributes

such as the fracturing fluid type. This method can extend the value of a discrete attribute to
the Euclidean space. A value in the discrete space corresponds to a point in the Euclidean
space, and the One-Hot Encoding method makes the calculation of the distance between
attributes more sensible.
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3.6. Model Selection and Evaluation

The RMSE and determination coefficient R2 were used as the evaluation criteria. The
RMSE is the square root of the ratio of the sum of the squares of the deviation between the
predicted value and the true value to the number of samples m, namely,

RMSE(X, h) =

√
1
m

m

∑
i=1

(
h
(
x(i)

)
− y(i)

)2 (11)

The determination coefficient R2 is the ratio of the regression sum of squares to the
total sum of squares, namely,

R2 = 1 − ∑(y − ŷ)2

∑(y − y)2 (12)

where y represents true value; ŷ denotes predicted value; and y is the mean value of
the data.

The RMSE is a measure of the deviation between the predicted value and the true value.
In general, the smaller the RMSE, the higher the accuracy of the model. The determination
coefficient R2 reflects the goodness of fit of the model, and its value is between 0 and 1. The
closer the value of R2 is to 1, the higher the reliability of the model.

4. Data Integration and Analysis

The geological, engineering, and production data of 173 wells were collected in this
study. The wells were gathered from the same shale gas reservoir, namely Simonette.
Geological and engineering data were selected as the attribute values, and the one-year
cumulative oil and gas production was used as the target value. The geological data include
thickness, porosity, permeability, water saturation, TOC, oil-to-gas ratio (OGR); and the
engineering data include total fracturing fluid volume, total proppant volume, total clusters,
total stages, horizontal lateral length, fracturing fluid type, and well spacing. In this study,
the 3-Sigma Rule was applied to detect outliers. After outlier detection, 165 samples existed
in the dataset. The data distribution of the variables is shown in Tables 1 and 2.

Table 1. Data distribution of the geological variables.

Item Thickness (m) Porosity (%) Permeability (mD) Water Saturation (%) TOC (%) OGR (t/104m3)

count 165 165 165 165 165 165
mean 34.2 4.3 1.469 × 10−3 3.2 3.1 9.8

std 8.6 0.4 1.885 × 10−3 0.8 0.8 5.3
min 16.7 3.6 6.150 × 10−6 1.9 1.9 0.2
25% 26.5 3.9 5.780 × 10−5 2.6 2.4 7.0
50% 36.1 4.4 6.410 × 10−4 3.2 2.9 9.0
75% 41.1 4.6 2.150 × 10−3 3.6 3.6 11.3
max 48.8 5.6 7.611 × 10−3 8.6 5.2 41.6

Table 2. Data distribution of the engineering variables.

Item Well Spacing Total Fracturing
Fluid (m3)

Total Proppant
(t) Total Clusters Stages Lateral Length (m)

count 165 165 165 165 165 165
mean 344.8 50,175.0 7651.6 213.7 40.6 2522.8

std 231.5 15,239.4 2708.7 144.0 15.6 558.6
min 100 16,145.5 1763.0 32 10 975
25% 200 39,222.0 5980.0 124 31 2084
50% 300 47,277.0 7330.3 152 37 2551
75% 400 60,531.9 8986.3 232 44 2874
max 999 84,414.0 16,493.0 595 85 3851
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Shale oil and gas reservoirs are self-generated and self-stored reservoirs, and the
geological conditions of shale formation directly determine the resource quality and scale
of shale oil and gas, while engineering parameters have a great impact on the recoverability
of shale oil and gas. The RF algorithm can be used to obtain the attribute importance
ranking for the one-year cumulative oil and gas production (Figure 7), which can be used to
analyze the main controlling factors of the oil and gas production, and serve as a reference
for subsequent sweet spot selection.
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4.1. Analysis of Geological Main Controlling Factors

By analyzing the importance of geological factors based on machine learning, it can
be concluded that two geological factors, i.e., oil-to-gas ratio and TOC, were the top two
factors (Figure 7a,b), followed by four factors, i.e., permeability, effective thickness, porosity,
and water saturation, indicating that the impact of the oil-to-gas ratio and TOC on the
production is much greater than that of the other four factors. In the following sections, the
impact of each individual geological factor on the production will be analyzed based on
the shale oil/gas formation mechanism (Figure 8).

(1) TOC: Total organic carbon (TOC) is an important indicator of organic carbon abun-
dance [40,41], which reflects the hydrocarbon generation capacity of the shale formation,
directly determines the scale of the generated shale oil and gas, indirectly affects the sizes
of organic matter pores, and also has an obvious controlling effect on the adsorbed gas in
shale. The natural gas in shale will first be adsorbed in the adsorbed state on the surface of
organic matter as well as rock particles, and as the adsorbed and dissolved gas saturate,
the remaining gas will be transported and stored in a free state in pores or fractures. The
TOC is calculated based on the resistivity and acoustic transit time logging curves using
the ∆LgR technique [42]. As shown in Figure 8a, the TOC is highly positively correlated
with the one-year cumulative oil and gas production.

(2) Oil-to-gas ratio: The oil-to-gas ratio indicates the amount of natural gas accompa-
nying each ton of produced condensate oil. Since the oil-to-gas ratio is positively correlated
with the shale organic matter maturity [43], its impact also reflects the controlling effect
of the organic matter maturity on the production. In areas where the oil-to-gas ratio data
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are lacking, the organic matter maturity can be used as a substitute for this parameter.
The pressure coefficient of the formation in the study area is 1.7–2.0, and the temperature
gradient is 3.1 ◦C/100 m–3.7 ◦C/100 m. When the reservoir pressure exceeds the dew point
pressure at its corresponding temperature and the reservoir temperature is between the
critical and critical condensation temperature, the liquid hydrocarbon is back-dissolved
into the gaseous hydrocarbon to form a condensate gas reservoir, and the oil and gas are
mainly liquid-rich hydrocarbon. As shown in Figure 8b, the oil-to-gas ratio is negatively
correlated with the one-year cumulative gas production and positively correlated with the
one-year cumulative oil production.
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(3) Thickness: For a commercial shale oil and gas reservoir to be formed, organic-rich
shale must reach a certain thickness to ensure a sufficient scale of shale oil and gas resources.
Generally speaking, high quality shale refers to organic-rich shale with a TOC level greater
than 2% [44]. Shale thickness and oil and gas production are generally positively correlated,
and the one-year cumulative oil and gas production gradually increases with thickness
(Figure 8c).

(4) Porosity and permeability: For unconventional oil and gas, rock pores are an
important space for storing oil and gas. According to the statistics, more than 50% of
shale oil and gas is stored in shale pores which are of various types, e.g., intergranular,
intragranular, and organic matter pores [45]. The organic matter pores can form a three-
dimensional connected organic matter mesh, which can improve the pore connectivity to
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a certain extent. Generally speaking, the correlation of porosity is highly positive with
the permeability. The porosity is calculated using the neutron-density cross plot, and the
permeability is measured by building a permeability interpretation model through analysis
of the porosity–permeability relationship based on cores. The one-year cumulative oil
production has a good positive correlation with porosity and a poor correlation with the
permeability (Figure 8d,e), which indicates that shale oil is mainly stored in shale pores
in free state, and therefore the porosity of organic matter has a great impact on the shale
oil production. Shale gas is stored in shale in a free state and an absorbed state, and
the one-year cumulative gas production has a positive correlation with the porosity and
permeability. In addition, due to the heterogeneous permeability of shale, the test sample
points may not fully represent the true permeability of the production formation. Moreover,
for low-permeability shale, the error of the permeability test result is high, which together
cause a poorer correlation between the permeability and production than that between the
porosity and production.

(5) Water saturation: Generally speaking, the lower the water saturation, the higher
the hydrocarbon content in the shale reservoir space, and the more favorable to shale oil
and gas development. The one-year cumulative oil and gas production is highly negatively
correlated with the water saturation (Figure 8f).

4.2. Analysis of Engineering Main Controlling Factors

Among all engineering factors, the total proppant volume is the top factor that has the
greatest impact on the one-year cumulative oil production and one-year cumulative gas
production (Figure 7c,d). It is the most important factor affecting the one-year cumulative oil
and gas production, which has been mentioned frequently in many previous papers [46,47].
Other engineering parameters, e.g., total fracturing fluid volume and fracturing fluid type,
seem to be less important due to strong correlations between engineering parameters.
When the total proppant volume is present in a model, other engineering parameters such
as total fracturing fluid volume and cluster spacing will also be present in it.

5. Discussion

Considering the limited representativeness of the permeability and water saturation
data, and the difficulty of obtaining them, these two parameters were removed from the
sweet spot prediction, and the remaining eleven parameters were used to build one-year
cumulative oil and gas production prediction models, namely, total fracturing fluid volume,
total proppant volume, horizontal lateral length, total clusters, total stages, fracturing fluid
type, well spacing, TOC, oil-to-gas ratio, thickness, and porosity.

In this study, the scikit-learn library in python 3.9 was used to build the machine
learning models, and to prevent overfitting, this study used 5-fold cross-validation to
separate the test set from the training set, i.e., the ratio of the number of wells in the training
set to that in the test set was 4:1 (132:33). For various hyperparameters required by the
model, firstly, we determined the value ranges of the hyperparameters through random
searches, and then determined their specific values through grid searches.

After optimization, the hyperparameters of RF, SVM, and ANN are demonstrated in
Tables 3–7 which illustrate the model performance for one-year cumulative gas production
and one-year cumulative oil production, respectively. The model results for the training
set and testing set are demonstrated in Figure 9. As for the one-year cumulative gas
production prediction, the root mean squared errors (RMSE) in the testing set are found
to be 460.6 × 104 m3 for SVM, 487.94 × 104 m3 for ANN, and 404.68 × 104 m3 for RF. The
RF model demonstrates the highest R2 and the lowest RMSE in both the training set and
testing set. In particular, in the testing set, the RF model shows R2 at 0.82 and RMSE at
404.68 × 104 m3. This indicates that the model is able to explain 82% of the gas production
variance in the study area.

As for the one-year cumulative oil production prediction, the result is the same as the
one-year cumulative gas production prediction, the R2 of the testing set is 0.67 for SVM,
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0.71 for ANN, and 0.79 for RF. The RF model shows the highest R2 at 0.79 and the lowest
RMSE at 3300.58t in the testing set; this also means that the RF model can illustrate 79% of
the oil production variance in Duvernay shale gas reserve.

Table 3. Distributions of random forest (RF) hyperparameters.

Hyperparameter
One-Year Cumulative

Gas Production
One-Year Cumulative

Oil Production

Grid Research Range Final Results Grid Research Range Final Results

Number of
decision trees [400,500,600,700] 500 [400,500,600,700] 500

Minimum number of
samples for leaf nodes [2,3,4,5] 3 [2,3,4,5] 3

Minimum number of
samples for split nodes [2,3,4,5] 3 [2,3,4,5] 3

Number of attributes
in the attribute subset [2,3,4,5] 3 [2,3,4,5] 3

Table 4. Distributions of support vector machine (SVM) hyperparameters.

Hyperparameter
One-Year Cumulative

Gas Production
One-Year Cumulative

Oil Production

Grid Research Range Final Results Grid Research Range Final Results

C [950,1000,1050,1100] 1000 [950,1000,1050,1100] 1000
Kernel functions [Gaussian; Linear; Polynomial] Gaussian [Gaussian; Linear; Polynomial] Gaussian

Epsilon [0.9,1.0,1.1,1.2] 1.1 [0.9,1.0,1.1,1.2] 1.2

Table 5. Distributions of ANN hyperparameters.

Hyperparameter
One-Year Cumulative Gas Production One-Year Cumulative Oil Production

Grid Research Range Final Results Grid Research Range Final Results

Number of fully connected layers [1,2,3] 2 [1,2,3] 3
First layer size [10,12,14,16] 12 [4,5,6,7,8] 5

Second layer size [10,15,20,25] 20 [4,5,6,7,8] 5
Third layer size [10,15,20,25] / [4,5,6,7,8] 5

Activation [ReLU, Tanh, Sigmoid] Tanh [ReLU, Tanh, Sigmoid] Tanh

Table 6. Model results for one-year cumulative gas production.

Training Set Testing Set

SVM ANN RF SVM ANN RF

R2 0.77 0.74 0.83 0.75 0.73 0.821
RMSE 445 485 397 460.6 487.94 404.68

Table 7. Model results for one-year cumulative oil production.

Training Set Testing Set

SVM ANN RF SVM ANN RF

R2 0.7 0.72 0.82 0.67 0.71 0.79
RMSE 4233 3980 3169.83 4478 4198 3300.58
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In most machine learning-based models, the R2 value has varied from 0.5 to 0.8
(Luo et al. [21], Kong et al. [48], Wang et al. [49]). The RF models applied in this study
are able to provide relatively high accuracy and robustness for production prediction.
Compared with SVM and ANN, RF has better performance for the prediction of one-year
cumulative gas production and one-year cumulative oil production. Therefore, the RF
method was selected to apply sweet spot prediction.

6. Results

The one-year cumulative oil production model and one-year cumulative gas produc-
tion prediction model contain two types of parameters, i.e., geological and engineering
parameters. Geological parameters determine the scale and quality of the resources, and
engineering parameters affect the resource recoverability. We can input predicted geolog-
ical parameters and generalized engineering parameters into the models to analyze the
abundance of recoverable reserves in some sparsely drilled areas, and thereby provide
a basis for future well location deployment and assessment of recoverable reserves in
these areas.

The planar distributions of geological parameters such as TOC, oil-to-gas ratio, thick-
ness, and porosity in the study area are shown in Figure 10. As shown in the distribution
of thickness, the shale thickness in the study area gradually increases from northwest to
southeast, and the thickness in some southern parts of the area can reach 50 m. The planar
distribution of TOC is based on well-to-well interpolation, and the TOC of each well is
calculated based on the resistivity and acoustic transit-time logging curves. As shown in
the planar distribution of TOC, the TOC values in the west and south of the study area are
high, and even higher than 5% in some parts of the area. The planar distribution of the
oil-to-gas ratio is also based on well-to-well interpolation, or organic matter maturity. It
gradually decreases from northwest to southeast, and is close to 0 in some southern parts
of the area (Figure 10).
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Engineering parameters can usually be optimized with the progress of technologies.
Different values of engineering parameters can cause different distributions of recoverable
reserves. Since 2012, the horizontal lateral length and number of stages have grown year-by-
year and the stage spacing has decreased year-by-year. Since 2016, the number of clusters
per section has risen considerably and the total proppant volume per meter has increased
year-by-year. The fracturing fluid volume per meter increased significantly between 2012
and 2013, then dropped significantly, and has remained unchanged at 20 m3/m (Figure 3)
since 2016. The average values of the engineering parameters in 2013, 2015, 2017, and 2018
were selected as the engineering parameter inputs for schemes 1, 2, 3, and 4, respectively,
and the specific input values of the engineering parameters for the four schemes are listed
in Table 8 below.

Table 8. Engineering parameters used in different schemes.

Item Scheme 1 Scheme 2 Scheme 3 Scheme 4

Total fracturing fluid volume (m3) 78,210 65,760 59,760 58,590
Total proppant volume (t) 5970 8970 9750 11,160

Total clusters 125 176.4706 272.7273 428.5714
Horizontal lateral length (m) 3000 3000 3000 3000

Total stages 22 32 50 64

Fracturing fluid type Slick water Composite fracturing fluid High viscosity composite
fracturing fluid

High viscosity composite
fracturing fluid

Well spacing (m) 250 250 300 300

The values of engineering parameters and geological parameters are input into the one-
year cumulative oil production model and one-year cumulative gas production prediction
model to obtain a series of predicted values. Since the one-year cumulative gas production
is well correlated with the estimated ultimate recovery (EUR) of gas per well, and the one-
year cumulative oil production is well correlated with the EUR of oil per well (Figure 11),
the following equations can be used to calculate the EUR of oil and EUR of gas.

Gas − EUR = 3.5055 × one-year cumulative gas (13)

Oil − EUR = 2.596 × one-year cumulative oil (14)
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The horizontal lateral length input in the model is 3000 m; the well spacing is usually
300 m; and the well-controlled area of each well is 0.9 km2. We can obtain the predicted
EUR values of oil and gas and the abundance of recoverable reserves per unit area based
on the normalized well-controlled area. The distributions of abundance of recoverable
reserves resulting from different schemes are shown in Figure 12.
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Figure 12. Distributions of abundance of recoverable reserves: (a) gas-scheme 1; (b) gas-scheme 2;
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According to the analysis results, the distribution patterns of recoverable gas reserves
resulting from all the schemes are consistent with one another, namely, gradually increasing
from northwest to southeast (Figure 12a–d), as is the case with the oil-to-gas ratio. The
scales of recoverable gas reserves resulting from different schemes differ from one another.
From scheme 1 to scheme 4, the engineering parameters such as total fracturing fluid
volume, total proppant volume, and total clusters gradually increase, and so does the scale
of recoverable gas reserves. The recoverable gas reserves in some parts of scheme 4 can
reach 1.34 × 108 m3/km2, indicating that the more aggressive the scheme, the higher the
gas production.

The distribution patterns of recoverable shale oil reserves resulting from all the
schemes are consistent with one another, with lower values in the southwestern and north-
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eastern parts of the area and higher values in the central part of the area (Figure 12e–h).
Their distribution patterns differ from those of the oil-to-gas ratio, and are close to zero in
the southeastern and southern parts of the area. In the abundance graph of recoverable
oil reserves, values in these parts are low as well. The shale in the northern part has a low
TOC, thin thickness, and limited total organic hydrocarbon. The scales of recoverable oil
reserves resulting from different schemes differ from one another. From scheme 1 to scheme
4, the engineering parameters such as total fracturing fluid volume, total proppant volume,
and total clusters gradually increase, and so does the scale of recoverable oil reserves. As
shown in Figure 12e–h, the parts with an abundance of recoverable reserves higher than
8 × 104 t/km2 are expanding, also indicating that the more aggressive the scheme, the
higher the oil production. However, the abundance of recoverable reserves in the central
part of the study area resulting from scheme 2 is higher than those resulting from the more
aggressive schemes 3 and 4, which indicates that the production is not directly linearly
correlated with the engineering parameters, and a more appropriate scheme may cause a
higher production under certain geological conditions, which requires further studies.

This study is based on the utilization of several machine learning techniques for
predicting shale oil and gas reserves and obtaining good results. It is important to note that
while the model used in this study may provide some suggestions for sweet spot prediction
in the Duvernay Formation, it is not applicable to use the same model in a completely
different shale gas reserve. Furthermore, the machine learning model does not take parent
and child well interference into consideration, which may limit the prediction accuracy of
sweet spots.

7. Conclusions

Herein, we built recoverable gas and recoverable oil reserve prediction models using
three machine learning methods as well as the geological, engineering, and production
data of the Duvernay shale oil and gas field in the Western Canada Basin. The R2 values of
the prediction models were 0.7894 and 0.8210, respectively. The results intuitively reflect
the impacts of different geological and engineering factors on the recoverable oil and gas
reserves, reliably predict the distributions of recoverable shale oil and gas reserves, and
provide a basis for future well location deployment.

The main geological factors on the recoverable reserves of the Duvernay shale oil
and gas field are shale maturity and TOC. The thickness of organic-rich shale and water
saturation have a greater impact on the recoverable shale oil reserves, while the physical
properties of shale have a greater impact on the recoverable gas reserves. The differences
in the controlling factors between the two are mainly caused by the different oil and gas
enrichment mechanisms in shale reservoirs. The main engineering factor affecting the
recoverable oil and gas reserves in Duvernay is the total proppant volume. The total
fracturing fluid volume has a greater impact on the recoverable shale oil reserves, while
the total clusters have a greater impact on the recoverable shale-gas reserves, followed by
other engineering factors such as the total stages and horizontal lateral length.

Under the control of geological factors such as shale maturity, thickness of organic-rich
shale, and TOC, the abundance of recoverable shale-gas reserves is high and the abundance
of recoverable oil reserves is low in the southeastern part of the study area; the abundance of
recoverable oil and gas reserves is low in the northern part of the study area; the abundance
of recoverable shale oil and gas reserves is relatively high in the central part of the study
area due to a moderate shale maturity, high TOC, and high thickness of organic-rich shale,
and therefore the central part of the study area is a shale oil and gas sweet spot for future
well location deployment.
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Nomenclature
Abbreviation Full Name
R2 Determination coefficient
RMSE Root mean square error
RF Random Forest
EUR Estimated Ultimate Recovery
TOC Total Organic Carbon Content (%)
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