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Abstract: Small-scale agriculture is important. However, there are still limitations regarding the
implementation of technologies in small-scale agriculture due to the high costs accompanying them.
Therefore, it is essential to seek viable and low-cost solutions since the insertion of technologies
in agriculture, especially irrigated agriculture, guarantees the sustainable expansion of production
capacity. The present work applied the Internet of Things concept to an automated irrigation system
powered by photovoltaic panels. The materials used in the prototype consisted of Arduino Uno R3,
the ESP8266 development board, a soil moisture sensor, a current sensor, a voltage sensor, a flow
sensor, and a humidity and temperature sensor. The prototype was designed to take system readings
and send them to the Adafruit platform IO. Furthermore, it was programmed to perform remote
irrigation control, enabling this to be activated from distant points through the platform. The medium
proved efficient for the monitoring and remote control of the system. This indicates that it is possible
to use this medium in small automated irrigation systems.

Keywords: adafruit IO; automation; IoT; irrigation

1. Introduction

Food production is a significant factor in a world with increasing population growth;
according to research published by the Department of Economic and Social Affairs of the
United Nations [1], it is estimated that in the year 2050, the number of inhabitants on
the planet will approach 9.7 billion people, an increase of 2 billion individuals over the
next 30 years. Furthermore, there is a constant concern about ensuring food security in
developing countries since food distribution is not egalitarian [2].

Thus, given the existing and future food demand to supply the population, irrigated
agriculture has a high potential to contribute substantially to food production. In Brazil,
although the irrigated area is less than 20% of the total cultivated area, it stands out
compared to other areas, being responsible for more than 40% of the food, fibre, and
bioenergy crops in the country [3].

The insertion of technologies in agriculture, especially irrigated agriculture, guaran-
tees the sustainable expansion of production capacity. At present, several systems use
technologies aiming to achieve irrigation management [4]. However, many of them have
high costs that make them unaccessible to small producers.

Therefore, as most of the food that reaches Brazilians’ tables comes from family
farming, it is essential to think about low-cost, accessible and autonomous projects capable
of increasing the intensity, quality, and ease of production [5,6].

Therefore, the present work is based on the development of an automated irrigation
prototype using the Arduino microcontroller, photovoltaic energy, and the concept of the
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Internet of Things (IoT). The use of Arduino in systems is seen as an excellent tool for
automatic irrigation control since it is low-cost and has an open and safe code and hardware,
which enables the development of more varied systems [5–9].

The use of photovoltaic solar energy to power the system suggests that the system
can be used to achieve sustainability and electricity savings, especially when considering
the climate changes suffered over time and the country’s great solar radiation potential.
The use of solar energy is also conducive to the incorporation of other renewable energy
sources into the electrical matrix [10–12]. Many control [13–15], monitoring [16–18], and
protection [19–21] projects have been developed over the years to guarantee the exploitation
of the potential of the photovoltaic generation source in power systems. A set of challenges
were encountered regarding the maximum use and operation of photovoltaic generation
sources in power systems, but these challenges have been gradually overcome in recent
years [22–26].

One of the benefits of the photovoltaic generation source is its flexibility and easy
installation in different environments, both rural and urban [27]. Both rural and urban
consumers can plan and install a photovoltaic panel and produce electrical energy for their
own benefit with great ease [28]. In [29–31], the authors present a detailed review of the
main benefits and challenges of using photovoltaic generation in systems.

IoT consists of a network containing systems, applications, platforms, and physical
objects, which use embedded technology to communicate and interact with internal and
external environments [32,33]; its application in agriculture is fundamental in optimizing
field activities [34–36]. There is a relevant set of IoT applications in air monitoring [37], soil
monitoring [38], water monitoring [39], disease monitoring [40], environmental condition
monitoring [41], crop and plant growth monitoring [42], temperature monitoring [43], and
humidity monitoring [44].

The motivation for the research was based on the hypothesis that, in specific, small
rural properties, there are limitations regarding access to conventional electrical energy
and technologies, which directly affect irrigation processes and, as a consequence, can lead
to a low level of food production. The search and implementation of new energy sources
in difficult-to-access areas is therefore essential to optimise irrigation management and
food production.

Thus, given the above and seeking to contribute to the development of automated
irrigation systems, the present prototype uses the understanding of IoT to monitor impor-
tant variables in irrigation management, such as soil humidity and temperature, and also
enables an analysis of the energy costs of the irrigation process through readings from
voltage and current sensors. Furthermore, IoT was used to control the system remotely,
proving to be a helpful technology during automated system failure. Therefore, this work
presents a sustainable solution that optimises natural resources such as water and energy
using the Internet of Things (IoT) in conjunction with an automated irrigation system
powered by photovoltaic energy to enable its implementation in systems used by small
rural properties.

This article has the following organization: Section 2 presents the proposed irrigation
prototype, all the technologies involved in its construction, and the environment in which
the proposed prototype was applied; Section 3 describes the case studies carried out and
discussions of the results; Section 4 concludes the article with the main contributions of
the article.

2. Materials and Methods

The prototype was developed and tested in the Electrotechnical Laboratory of the Agri-
cultural and Environmental Engineering course at the Federal University of Rondonópolis
(UFR), located in Brazil. The components that were used in the prototype are Arduino Uno
R3, the ESP8266 development board, a resistive soil moisture sensor, a 25 V voltage sensor,
the ACS712 5A current sensor, flow sensor model YF-S201, a humidity and temperature
sensor—DHT11, 5 V relay module—with 2 channels, an 85 W poly R5A/D solar panel,
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PWM ECP 1024 Intelbras charge controller, and a water pump. Figures 1 and 2 present the
system assembly schematic and its practical assembly, respectively.
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Figure 1. Automated, solar-powered irrigation prototype connections. (1) PWM ECP 1024 Intelbras
charge controller; (2) battery; (3) 85 W poly R5A/D solar panel; (4) 25 V voltage sensor, ACS712
5A current sensor; (5) humidity and temperature sensor—DHT11; (6) ESP8266 development board;
(7) 5 V relay module—two channels; (8) motor pump; (9) Arduino Uno R3; (10) resistive soil moisture
sensor; (11) 5 V relay module—two channels; (12) flow sensor model YF-S201.

Figure 2. Practical assembly of the irrigation prototype.

Firstly, the sensors used in the prototype were calibrated. The methodology proposed
by [45–47] to calibrate the soil moisture sensor was used. Thus, 200 g of dry soil was
weighed in a microwave oven with a precision analytical balance, as suggested in the [3].
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Portions of water were also considered, which, when added to the soil sample, were
equivalent to 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 29% of moisture based on mass.
The humidity range chosen for calibration was based on the average field capacity and
permanent wilting point of the University’s experimental area. Thus, for the 9% moisture
percentage, 18 g of water was added to the 200 g soil sample. Then, to raise the humidity
to 11%, another 4 g of water was added to the model, and so on, to obtain the remaining
percentages of soil moisture.

As the water was added to the soil sample, analogue readings from the humidity
sensor were extracted, with a 10 min interval between each lesson, so the sensorwas
stabilised [45]. Once this was completed, based on the points analogue reading of the
sensor and percentage of soil moisture, the equation of the linear regression line was
calculated in a spreadsheet, and later the equation was used in the programming carried
out using the Arduino IDE.

An adjustable voltage source was used to calibrate the ACS712 5A current and 25 V
voltage sensors, feeding a 60 W incandescent lamp representing the system load. In this
way, the voltage source was adjusted to supply the load with 12, 14, 16, 18, 20, 22, and 24 V.
The ACS712 5A current sensor was connected in series with the circuit, and subsequently,
the 25 V voltage sensor was connected in parallel to take the readings. Using a digital
multimeter, measurements of the current and voltage applied to the load were carried out.
Subsequently, the sensor readings were adjusted according to the digital multimeter.

To calibrate the YF-S201 flow sensor, a constant proposed by [48] was used, which
offers a calibration factor between the flow in (L/min) and the frequency in (Hz), with the
proposed adjustment constant being equivalent to 4.5. Therefore, a container with 500 mL
of water was used to carry out the test. The volume was subsequently passed through the
sensor with the aid of the water pump, seeking to verify whether the constant entered in
the programming would accurately read the volume of water passed through the sensor.

To begin using Adafruit IO, first, sign up for a free account. Then, configure feeds and
dashboards. Feeds act as online variables, managing data exchange between servers and
sensors. Create feeds for each system variable: soil humidity, air humidity, temperature,
voltage, current, and water volume for irrigation. The dashboard, a customizable display
panel, showcases sensor readings and data graphs. Customise the project dashboard to
present sensor values and graphical data.

Although there are other IoT platforms, such as Arduino IoT Cloud and Blynk, the cho-
sen platform was AdaFruit IO. This choice was made considereing the ease of connection,
configuration, data volume, update rates, and widgets (devices) available.

Even though we have access to other sensors with greater sensitivity and precision,
such as capacitive soil moisture sensors, the sensors used, including the resistive soil
moisture sensor, were chosen due to their low cost and robustness, as we aimed to use
sensors that could serve local agricultural projects in Brazil.

The system automation was carried out using the Arduino microcontroller together
with ESP8266. In short, the connection between microcontrollers on the development board
occurred via the ports that are used in the i2C communication of the Arduino UNO R3,
namely SDA and SCL, and the GPIO 0 and 2 from ESP8266.

Using the a2A library, the microcontroller ESP8266 could perform the master function
while the Arduino microcontroller worked as a slave. Notably, the i2C protocol was only
used for sending and receiving information since, in other processes, microcontrollers
worked independently.

After assembly, the prototype was installed under real field conditions in the Univer-
sity’s experimental area. The irrigation system consisted of drip tapes, photovoltaic panels,
and water reservoirs used for drip irrigation. After the initial tests, the system remained
connected between 11 March 2022 and 15 March 2022, totalling 5 days of data collection.
The arrangement of the system elements was carried out as shown in Figure 3, and the
practical installation of the components was carried out as shown in Figure 4.
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Figure 3. Simplified arrangement of irrigation system components, consisting of (1) photovoltaic
panels, (2) water reservoirs, (3) the assembled prototype, and (4) drip tapes.

Figure 4. Practical installation of the prototype and irrigation system.

3. Results and Discussions
3.1. Resistive Humidity Sensor Calibration

According to the readings taken by the resistive soil moisture sensor presented in
Table 1, the sensor that was used behaved as expected, reducing the analog tasks as the
water was added to the sample to increase the humidity percentage.

After extracting the readings, in an electronic spreadsheet, the equation of the linear
regression line was calculated, as performed by [46], finding the equation and R2 expressed
in Figure 5.

It is known that the coefficient of determination R2 consists of an indicator that
measures the quality of adjustment of a regression line. This varies between 0 and 1;
thus, the higher the R2, the more explanatory the model is, and the better adapted to the
sample [49]. Given this, according to Figure 5, the relationship between the sensor’s analog
reading and soil moisture was adjusted to a linear model with R2 of 0.8972; that is, the
analog readings are capable of describing 89.72% of the model in question.

However, it is worth highlighting that the points that were found could be adapted to
other regression models; however, due to the behaviour of the sensor, it was decided to
generate only the linear regression curve, as per Pereira (2020).

In the calibration test developed by [50], which used HL69-resistive sensors in Red
Oxisol, the relationship between the sensor’s analog reading and soil moisture was adjusted
to a linear model with an R2 above 0, 97. In other studies developed by [46], with the
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resistive sensor, a coefficient of determination R2 of 93.9% was obtained using the linear
regression model.

Thus, it is possible to observe that different behaviours occur for the different cali-
bration tests and sensor models, and the behaviours may vary according to the type and
texture of the soil, among other factors. Therefore, individual calibrations must be carried
out for all sensors under the conditions in which they will be used [45,50–52].

Table 1. Relationship between the percentage of soil moisture and the readings of the HL-69-resistive
humidity sensor.

Reading
Resistive Humidity Sensor

Analog Reading Soil Moisture

1° 465 9%

2° 459 11%

3° 452 13%

4° 448 15%

5° 445 17%

6° 443 19%

7° 441 21%

8° 420 23%

9° 395 25%

10° 389 27%

11° 383 29%

380 390 400 410 420 430 440 450 460 470

Analog Reading
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y = -0.2143x + 111.35

R² =0.8972

Original Data
Best Fit

Figure 5. Calibration of the HL-69-resistive soil moisture sensor.

3.2. Calibration of ACS712 5A Current Sensor and 25 V Voltage Sensor

When programming the ACS712 5A current sensor, aiming to increase the ease and
reduce the number of necessary calculations, the ACS712-Arduino library was used to
convert the sensor’s analogue readings into a present value in Ampere. We chose the
library due to the sensor’s uniqueness and ability to perform current measurements at
negative values.
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In this way, by applying the “sensor.calibrate( )” function available from the library, it
was possible to obtain a reading approximate to that of the digital multimeter. Thus, as
shown in Table 2, for each voltage applied to the load, current readings from the sensor
and digital multimeter were extracted for subsequent adjustment.

Table 2. Readings taken by the ACS712 5A current sensor and digital multimeter.

Voltage
Applied (V)

Current
Source (A)

Current
Multimeter (A)

Current
Sensor (A)

12 1.58 1.58 1.59

14 1.69 1.69 1.74

16 1.82 1.81 1.86

18 1.95 1.94 1.99

20 2.06 2.06 2.10

22 2.17 2.16 2.21

24 2.29 2.28 2.33

Table 2 does not showy large discrepancies when comparing the readings taken by the
ACS712 5A current sensor with those of the digital multimeter. The average error found in
readings regarding the voltage source was 2.21%; for the digital multimeter, it was 1.69%.
Considering the multimeter as the calibration base, an average adjustment ratio of 0.97
was found.

The test was repeated to validate the values after obtaining and applying the adjust-
ment relationship in the sensor’s programming. Thus, after extracting the readings from
the digital multimeter and the current sensor, the values presented in Table 3 were found.

Table 3. ACS 712 5A current sensor and digital multimeter readings after applying the calibration
constant.

Voltage
Applied (V)

Current
Source (A)

Current
Multimeter (A)

Current
Sensor (A)

12 1.57 1.56 1.57

14 1.71 1.70 1.70

16 1.84 1.83 1.83

18 1.96 1.95 1.95

20 2.08 2.07 2.06

22 2.19 2.19 2.18

24 2.30 2.29 2.28

After entering the average calibration constant, an average error was found regarding
the adjustable source of 0.58%, and an average error regarding the digital multimeter of
0.14% was found. In this way, using the adjustment ratio, it became possible to reduce the
average error in the sensor readings regarding the digital multimeter by approximately
91%, thus making the readings more accurate.

When programming the 25 V voltage sensor, no library was used to relate the analogue
readings taken by the sensor with the voltage readings taken with the digital multimeter.
In this way, all measured readings were recorded, obtaining the data expressed in Table 4.

Thus, according to the data in Table 4, an average adjustment ratio of 0.024165522
converted the sensor’s analogue reading into a voltage value close to that measured by
the digital multimeter. In this way, after applying the calibration constant, the process was
repeated, obtaining the readings in Table 5. With the application of the calibration constant,
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it became possible to adjust the sensor readings of the multimeter, presenting an average
error of 0.89945.

Table 4. Analog readings of the 25 V voltage sensor and digital multimeter voltage.

Voltage
Applied (V)

Voltage
Source (V)

Voltage
Multimeter (V)

Analog
Sensor

12 12 11.88 496

14 14 13.84 578

16 16 15.80 660

18 18 17.76 743

20 20 19.98 835

22 22 21.70 909

24 24 23.70 995

Table 5. The 25 V voltage sensor readings after applying the calibration constant.

Voltage
Applied (V)

Voltage
Source (V)

Voltage
Multimeter (V)

Analog
Sensor

12 12 11.80 11.88

14 14 13.83 13.96

16 16 15.85 15.99

18 18 17.77 17.95

20 20 19.77 19.96

22 22 21.80 21.90

24 24 23.70 24.00

3.3. Adafruit IO Development Platform

Tests carried out on the Adafruit IO platform proved convincing. Through the devel-
oped visualisation panel, illustrated in Figure 6, it was possible to monitor the readings
measured by the sensors in real-time. There were no limitations regarding the received data.
During the five days of practical testing, the platform quickly received sensor readings,
displaying current, voltage, soil humidity, air humidity, temperature, and volume values
on the dashboard.

Through the developed programming and the Adafruit portal, it was possible to
control the irrigation system remotely. An irrigation button is displayed on the dashboard,
illustrated in Figure 6. In the tests, it was possible to remotely turn on the system’s irrigation
in real-time by activating the button. There were no restrictions regarding the activation
distance, and it could occur from anywhere as long as you had access to the internet.

The ease of using remote control technology makes it possible to bring this tool into the
daily lives of small producers or residential gardens. Its use allows for greater practicality
and control over the system.

According to the information received, graphs were generated on the platform to
monitor the variables’ behaviour, as shown in Figures 7–11. These graphs are generated
in real-time by the Adafruit platform. Therefore, the system operator does not have the
necessary control to improve the presentation of the figures. They were added to illustrate
the visualisation of the data provided by the platform. These data can be exported via
“CSV” and graphically improved, as shown in Figure 12.

Figure 7 shows the monitoring of the system voltage, in which the system was ener-
gised until 08:56. After this time, the operator de-energised the system, using the platform’s
remote control (red button) (Figure 6) to verify this functionality.
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Figure 6. Visualisation of readings taken by sensors through the dashboard developed on the Adafruit
IO platform.
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Figure 7. Graph monitoring voltage readings.

Figure 8 shows the monitoring of the soil moisture sensor. The sensor adjustment
limits were set between 20 and 25% humidity. Thus, as soil moisture varied between 18
and 19% before 8:47 am, the irrigation system was activated, showing an electrical current
value of around 0.4 A, as shown in Figure 9. With the activation of the irrigation system, it
is possible to observe that the soil humidity exceeded the 25% limit, and after 08:47 am, the
system was automatically turned off, as shown in Figure 9, presenting a record of the low
electrical current value. Even when the system is turned off, a small amount of electrical
current is observed due to the electrical supply to all equipment.

The system pumped the volume of water shown in Figure 10 during real-time moni-
toring through the flow sensor. As the irrigation system was activated before 8:47 am, the
volume of pumped water increased during this period.

Figure 11 displays the reading of the air humidity sensor. We positioned this sensor
close to the ground and activated the irrigation system in the early hours, before 8:47 am,
which resulted in a higher sensor reading value of around 85%. As time passes and the
irrigation system remains turned off, we observe a decrease in humidity.
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Figure 8. Chart tracking soil moisture readings.
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Figure 9. Chart monitoring current readings.
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Figure 10. Graph for monitoring water volume.
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Figure 11. Graph for monitoring air humidity readings.
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Figure 12. Soil moisture readings taken by the moisture sensor.

3.4. Implementation of the Prototype in the Experimental Area

The test was carried out during the period between 11 March and 15 May 2022, totaling
5 days of monitoring. The automatic activation of the system was programmed according
to soil moisture readings. Thus, it was stipulated that irrigation would occur when the
soil moisture percentage was below 20% and would be deactivated when the moisture
percentage was above 25%.

Thus, according to the “CSV” data extracted from the platform, it was possible to
generate a graph of soil moisture throughout the days of the experiment, as shown in
Figure 12. Figure 12 shows that, during the test days, the system was activated three times,
with the activation days corresponding to 11, 13 and 14 March. It is observed that the
sensor’s adjustment limits were the humidity sensor recordings, which were adjusted to
between 20 and 25% humidity, recording higher and lower values. This is due to a delay
in the platform receiving the sensor readings, allowing for longer and shorter irrigation
times and, consequently, higher and lower humidities, without affecting the functioning of
the prototype.
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Figure 13 shows the moment when the irrigation system was activated. Figure 14
shows the moment the irrigation system was deactivated after reaching the maximum soil
moisture, as previously defined in the programming.

Figure 13. Activation of the irrigation system installed in the experimental area.

Figure 14. Irrigated area after turning off the irrigation system.

From the volume readings taken by the flow sensor, the graph shown in Figure 15 was
generated. During the five days of testing, 28.2 litres of water were consumed, intended
for system irrigation. It is observed that, on days when soil humidity was below 20%,
there were increases in the volume of water consumed, thus indicating the activation of the
system during these periods.
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Figure 15. Total volume pumped over the days.

From the readings of the current and voltage sensors, graphs of current, voltage,
power, and energy consumption were generated, presented in Figures 16–19 respectively.
In Figures 16–18, the voltage, current, and power are shown to have zero values on days 12
and 14 due to the system shutdown caused by the soil moisture sensor after recording the
pre-defined percentages when monitoring the moisture.
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Figure 16. Readings taken by the ACS712 5th current sensor.
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Figure 17. Readings taken by the 25 V voltage sensor.
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Figure 18. Power calculation using voltage and current readings.

During the five days of testing, the energy consumption, calculated using an electronic
spreadsheet, was equivalent to 2.3069 Ws, as shown in the graph in Figure 19. Considering
the number of test days and the operating capacity of the pump used, it is concluded that
the obtained value is consistent with the reality of the system. From the readings taken by
the air temperature and humidity sensor—DHT 11—the graph expressed in Figure 20 was
generated. It can be seen from the graph that the properties, air temperature, and humidity
present inversely proportional behaviour. In other words, when the ambient temperature
is high, air humidity decreases and vice versa.
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Figure 19. Energy consumption during the five test days.
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Figure 20. Air temperature and humidity readings—DHT 11.

4. Conclusions

The present work demonstrated that applying the Internet of Things concept in an
automated irrigation system powered by photovoltaic energy, using humidity, current,
voltage, flow, and temperature sensors, is possible. After tests were carried out with the
prototype, it was possible to use IoT technology, which can be replicated and expanded as
long as the necessary adaptations are made, facilitating better production control for the
small producer.

Using the Adafruit IO platform makes it possible to visualise the analysed variables in
the system in real-time. In addition to providing information monitoring on a smartphone
or computer, the platform offers the means to exercise remote control of the system.

During the five days of testing, the system behaved as expected, activating irrigation
according to the stipulated soil moisture. From the generated data, graphs can be developed
to monitor all the analysed variables.

This work has great potential for future research as it is a prototype, long-term opera-
tion that requires needs validation in the field for prolonged periods, and the durability
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and degradation of the components over time need to be evaluated. It is possible to expand
the project to other sensors, such as solar irradiation, to facilitate wireless data transmission
between the sensors, and, finally, to use other communication protocols. Regarding the
aspects related to implementation costs, a relationship was observed with commercial
products with similar functions regarding the components used in this project; the cost
ratio is 3 to 5 times lower.
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