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Abstract: This paper presents an evaluation of the static stability of complex, composite annular
plates with layers having auxetic properties. The main objective of the numerical investigations is the
development of a plate model, which uses an approximate solution based on orthogonalization and
finite difference methods. The three-layered plate is composed of auxetic facings and a soft, foam
core. The material properties of the facings are characterized by Poisson’s ratio, the values of which
are variously positive and negative. The results obtained for an auxetic plate were compared on
the basis of the results for a plate with traditional facings and a plate model built of finite elements.
Additionally, in order to verify the calculation results, an analysis of the homogeneous plate was
performed. Two plate models built of finite differences and finite elements were compared. The wide
image of buckling responses of the examined plates was created on the basis of the calculation results
of both compressed and radially stretched plates. An increase in the values of the critical static loads
with increasing absolute value of Poisson’s ratio of auxetic facings is one of the observations.

Keywords: auxeticity; buckling; composite annular plate; finite element method

1. Introduction

The phenomenon of auxeticity exhibited by materials with a negative Poisson’s ratio
is practically important and scientifically inspiring during the evaluation of the mechanics
of composite structures. Analysis of the mechanical behaviours of auxetic materials and a
special complex group of materials—multi-materials in which one of the constituents is an
auxetic material—has been undertaken in numerous works.

The approach to estimating the material parameters and evaluating the stress state is
also a subject of consideration. Refs. [1–5] can serve as an example.

Composite materials such as periodic laminates built of auxetic and isotropic elastic
constituents are the subject of the consideration by Ramirez et al. [1]. By analysing various
material combinations, the influence of the laminate structure on the total mechanical
properties of the composite was shown. An analysis of the laminated periodic composite
material with the use of the homogenization technique was presented by Donescu et al. [2].
The value of Young’s modulus, which was found to be equal to 1550 MPa for the auxetic
materials on the basis of the simulation process, was adopted for the exemplary analyses
in this paper. Analytical, finite element and experimental approaches to the modelling
of auxetic cell foam liners and curved auxetic thermoplastic plates were presented by
Mohanraj et al. [3]. Experimental and computational investigations evaluating the normal
and shear behaviours of the mechanically attractive group of materials known as auxetic
metamaterials, which also exhibit compressional resistance, were presented by Henyš
et al. [4]. Due to the existence of a group of materials with negative values of Poisson’s
ratio, it was found to be necessary to estimate the values of the elastic moduli for the
classical linear isotropic theory of elasticity. The proposed solution based on the condition
of the positivity of the internal energy of the deformation of the material was presented by
Rushchitsky [5].
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Employing auxetic materials in classic sandwich structures can create new possibilities
for the usage of such structures, the properties of which are specific. Their significant
rigidity and strength in connection with their light weight are the main known qualities
of sandwich structures. The incorporation of the auxetic layer can change the mechani-
cal response of the composite. The circular and annular plates of a sandwich structure
with orthotropic composite facings and an auxetic core were examined by Alipour and
Shariyat [6]. Two methods were proposed: one based on the principle of the minimum
total potential energy and the other using the ABAQUS programme. Numerous results
have been reported presenting the distributions of lateral deflections and in-plane normal
and transverse shear stresses. This highlights the effect of the auxeticity of the plate core. It
also shows the influence of the rigidity of the plate structure, the type of support system,
and the geometric dimensions.

A three-layered sandwich plate with an auxetic core and isotropic, homogeneous fac-
ings was presented in [7]. The influence of the geometric, boundary and load parameters on
the static bending of the investigated plate was analysed. A bending analysis of FGM shell
and plate structures with auxetic properties was presented by Shariyat and Alipour [8]. The
problem was solved analytically and numerically, with numerous results being presented
for different combinations of geometrical, material, loading and support parameters.

The final conclusions included some observations that were similar to those presented
in this paper, like those related to the influence of increasing the value of Poisson’s ratio
to a value equal to ν = −0.9. The optimal Poisson’s ratio for minimizing the bending
stress of the auxetic circular plate was determined in Lim’s work [9]. Strongly dependent
elements such as the deformed shape, the load distribution, and edge supports were
taken into consideration. Studies for the analysis of maximum deflection were carried out
investigating an axisymmetrical example of a plate with different values of Poisson’s ratio
assuming three cases: constant value of Young’s modulus, constant value of Kirchhoff’s
modulus, and constant value of the product of Young’s and Kirchhoff’s moduli. The
buckling and vibration analysis of the auxetic circular plate was presented by Lim [10]. The
critical parameters were calculated for an axisymmetric plate made of isotropic material
with values of Poisson’s ratio within the range of −1 to 0.5.

In classic sandwich structures, where the facings are loaded with normal stresses
but the core is loaded with shear stresses, the influence of Poisson’s ratio occurs when
describing the material parameters of the facings. This kind of structure is adopted for the
investigations presented in this paper, the main aim of which is the evaluation of the effect
of negative values of Poisson’s ratio. Numerical analyses are performed for a three-layered
annular plate, as the research object, subjected to loads acting in the plane of the plate
facings. Critical parameters like loads and modes, which characterize the static state of
plate buckling, are subjected to detailed analysis. An example of work in which eigenvalue
buckling and post-buckling analyses are performed is that of Faghfouri et al. [11]. The
thin circular disks are subjected to two edge loads. The stability behaviour of disks made
from both traditional, linear elastic and auxetic materials under compression and tension
loading was evaluated. The values of Poisson’s ratio were varied over a wide range. Great
differences were observed between disks subjected to compression and tension in the
numerical results.

In this paper, numerical investigations were carried out in two tracks for two plate
models. The first model was obtained by solving the problem analytically and numerically,
but the second one was built using finite elements. The presented numerical calculation
results for the exemplary plates provide an image of the static plate responses. The evalua-
tion of the buckling behaviour of the plate composed of three layers made of two different
materials, one traditional and the second with conventional parameters expressed by a pos-
itive value of Poisson’s ratio or with unconventional parameters determined by a negative
value of Poisson’s ratio, significantly complements our understanding of the annular plates
under examination. The problem of the stability of annular plates built using traditional
elastic or viscoelastic layers has been addressed in numerous works, and has been rather
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widely examined. Works by Chen and Wang et al. [12,13] can serve as examples. Various
areas of application for composite annular plates have been underlined, for example, in
the aerospace industry, in mechanical and nuclear engineering, in civil engineering, or in
miniature mechanical systems, and the continuing search for new mechanical possibilities
arising from the use of composite structures acts as the natural motivator for undertaking
such investigations. The following problems constitute the research questions addressed
in this paper: the evaluation of the basic, static critical state of the annular plate with
outer layers with auxetic properties; the analysis of the responses of two similar plate
models; and the behaviours of homogeneous and heterogeneous layered plates subjected
to the radial compression and tension. The numerical calculation results, diagrams, analy-
ses, observations and remarks provided make it possible to formulate relevant answers
and demonstrate the properties of auxetic annular plate structures with respect to the
buckling issue.

2. Problem and Object of the Analysis

Buckling analysis is the main problem that has been addressed. A composite, three-
layered annular plate loaded mechanically on the inner or outer edge was the object of
analysis. The plate structure was transversely symmetrical composed of thin facings and
a thicker foam core. The plate’s outer layers were linearly elastic and traditional, or were
made of a special material, the properties of which corresponded to the parameters of aux-
etic material. The plate transversal structure, with an auxetic–foam–auxetic arrangement,
created a structure with some new qualities. Understanding the stability behaviours and
the reactions of the plate to mechanical loading enables the evaluation of the possibilities of
producing such mixed structures with different material constants. Various cases of plate
structures built using auxetic and conventional elastic facings with values of Poisson’s
ratio ν within the range −0.9 ≤ ν ≤ 0.3 were examined in order to supplement the good
existing knowledge of sandwich composite plates. The analyses were carried out for a fixed,
constant value of Young’s modulus. Depending on the relation between the engineering
constants pertaining for the isotropic material, the value of Kirchhoff’s modulus changes.
The critical states of composite plates with and without auxetic properties were compared
by analysing two buckling models: the classical model, with radial compression; and the
opposite, with radial stretching, referred to as “buckling at stretching”.

The scheme of the examined plate is shown in Figure 1. Both plate edges are slidably
clamped, meaning that displacement in the radial direction is possible. Thin facings are
loaded in the middle plane. The forces are uniformly distributed on the inner or outer
plate perimeter. The objective of the numerical investigations and analysis of results was to
obtain the values of static and critical loads and their corresponding modes.
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Figure 1. The scheme of the plate radially compressed on the outer edge (a). Cross-sections of the
plates (1,3—outer layers, 2—core) when radially compressed on the inner edge (b), and radially
stretched on the inner edge (c).

3. Strategy for Solving the Problem

The proposed analytical and numerical method is a means of solving the problem of
the static stability of the plate. A detailed description of classical sandwich plates with
conventional facings was presented by Pawlus [14–16]. This solution was based on the
eigenvalue problem, where the numerically calculated minimal values of loads correspond
to the critical static loads. Numerical calculations were carried out using a programme
developed by the author.

3.1. Main Elements of the Solution

The fundamental elements of the solution are as follows:

- The derivation of the equilibrium equations for each plate layer;
- The establishment of geometrical relations to express the core deformation with the

use of the classical theory of the broken line hypothesis;
- The usage of linear physical relations presented by Hooke’s law;
- The determination of relations between sectional forces, moments and stresses in the

plate facings, transverse force in the core, and the resultant radial and circumferential
forces by the stresses function;

- The description of the boundary conditions for both slidable clamped edges of
the plate;

- The establishment of the basic form of the differential equation describing the plate
deflections;
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- The solution procedure based on the dimensionless quantities and parameters, ap-
plication of the orthogonalization method to eliminate the circumferential angular
variable, and usage of the finite difference method (FDM) to replace the derivatives
with respect to ρ by the finite central differences in the discrete points;

- The formulation of the main equation assuming that the stress function is a solution
to the disk state:

MP ·U + MCD ·D + MCG ·G = p∗MC ·U (1)

where
p*—dimensionless stress, p∗ = p

E , p—radially compressing or stretching stress, E—Young’s
modulus of the facing material;

MP, MCD, MCG, MC—matrices of components constructed from the geometric and
material parameters of the plate and quantity b (b—length of the interval in the finite
difference method);

U, D, G—vectors expressed by the plate deflections and coefficients δ or γ (δ, γ—differences
in radial or circumferential displacements at the middle surface of the facings);

- the numerical solution of the eigenvalue problem for calculating the critical, static
stress pcr is as follows:

det((MP + MCDG)− p∗MC) = 0 (2)

where MCDG—matrix of components constructed from the elements of the matrices MCD
and MCG and components of reverse matrices constructed from the elements of the ma-
trices expressed by the additional equilibrium equations in the radial and circumferential
facing directions (see Equations (9) and (10)).

3.2. Meaning of the Sign of Poisson’s Ratio in the Equations of the Three-Layered Annular Plate

Some of the solution elements described in Section 3.1 will be presented in detail to
show the effect of the Poisson’s ratio ν on the final results of the calculations for annular
composite plates with auxetic and conventional facings.

The linear physical relations of Hooke’s law are fundamental, as they determine the
influence of the value and the sign of Poisson’s ratio ν on the stress–strain state of the
facing material of the plate. Physical relations are presented in radial and circumferential
plate directions:

σr =
E

1− ν2 (εr + νεθ), σθ =
E

1− ν2 (εθ + νεr). (3)

The relations derived between sectional forces, moments and stresses in the plate
facings are presented by the forces Nr, Nθ and the moments Mr, Mθ by means of equations
in the radial and circumferential directions, respectively. Poisson’s ratio ν occurs as an
element in plate rigidity D or as a number in Equations (4)–(7):

Nr =
Eh′

1− ν2

(
u,r +

1
2
(w,r)

2 +
ν

r
u +

ν

r
v,θ +

ν

2r2 (w,θ)
2
)

(4)

N
θ
=

Eh′

1− ν2

(
1
r

u +
1
r

v,θ +
1

2r2 (w,θ)
2 +

1
2

ν(w,r)
2 + ν u,r

)
(5)

Mr = −D
(

w,rr +
ν

r
w,r +

ν

r2 w,θθ

)
(6)

Mθ = −D
(

1
r2 w,θθ

+
1
r

w,r + ν w,rr

)
(7)

where
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D = Eh′3

12(1−ν2)
—plate rigidity of facing material; w—plate deflection; u, v—displacements

of the points of the middle plane of facings in the radial and circumferential directions, respec-
tively; h′—facing thickness.

The main differential equation that defines the plate deflections includes the value of
ν in the parameters K1, K2:

K1w,rrrr +
2K1

r w,rrr − K1
r2 w,rr +

K1
r3 w,r +

K1
r4 w,θθθθ +

2(K1+K2)
r4 w,θθ+

+ 2K2
r2 w,rrθθ − 2K2

r3 w,rθθ − G2
H′
h2

1
r

(
γ,θ + δ + rδ,r + H′ 1r w,θθ + H′w,r + H′rw,rr

)
= 2h′

r

(
2
r2 Φ,θw,rθ − 2

r Φ,rθw,rθ +
2
r2 w,θΦ,rθ − 2

r3 Φ,θw,θ +w,rΦ,rr + Φ,rw,rr +
1
r Φ,θθw,rr +

1
r Φ,rrw,θθ

) (8)

where
K1 = 2D, K2 = 4Drθ + νK1, Drθ = Gh′3

12 ; G, G2—Kirchhoff’s modulus of facing and
core materials, respectively; h2—core thickness; H′ = h′ + h2, δ = u3 − u1, γ = v3 − v1;
Φ—stress function.

Additionally, ν is also present in the differential equilibrium equations of forces in the
plane of the facings in the radial and circumferential directions:

2r
h2

G2H′w,r =
Eh′

1− ν2

(
rδ,rr + δ,r −

1
r

δ + νγ,rθ −
1
r

γ,θ

)
+ Gh′

1
r
(δ,θθ + rγ,rθ − γ,θ)−

2r
h2

G2δ (9)

2
h2

G2H′w,θ =
Eh′

1− ν2
1
r
(δ,θ + rνδ,rθ + γ,θθ)−

2r
h2

G2γ + Gh′
1
r

(
δ,θ + rδ,rθ + r2γ,rr + rγ,r − γ

)
(10)

Changing the sign of ν influences the value of parameter K2 (8) and the quantity ν Eh′
1−ν2

(9), (10). Additionally, differences in the value of Poisson’s ratio ν affect the values of
Kirchhoff’s modulus G. However, in the case of the axisymmetrical plate mode m = 0, when
derivatives with respect to angle θ do not exist ( ∂

∂θ = 0), the sign of ν will not affect the final
results. Additionally, the difference in the displacement in the circumferential direction γ
of the plate will not influence the final results obtained by means of a solution process in
which the following form of the shape function of quantity γ is accepted:

γ(r, θ) = γ(r)sin(mθ) (11)

In summary, it can be observed that for the fixed, constant value of Young’s modulus,
the negative sign of the Poisson’s ratio ν affects the results of the asymmetrical m 6= 0 modes
of plates with auxetic facings.

4. Exemplary Results

In this section, the calculation results will be presented for the exemplary plates with
determined geometrical and material parameters in order to show the effect of auxeticity
when only present in the material of the facings.

The dimensions of the three-layered annular plate is defined as follows: inner radius
ri = 0.2 m, outer radius ro = 0.5 m, facing thickness h′ = 1 or 2 mm, core thickness h2 = 5 mm.
The facings are made of a conventional linear elastic material with a Poisson’s ratio ν = 0.3, a
material with a Poisson’s ratio ν = 0, or an auxetic material with a negative value of Poisson’s
ratio ν = −0.3, −0.6, −0.9. The Young’s modulus of the materials of the facings is fixed, and
is a constant E = 1550 MPa [2]. Due to the relation for the isotropic material G = E/2(1 + ν),
the value of Kirchhoff’s modulus G for the facings changes from G = 596.15 MPa for ν = 0.3
to G = 7750 MPa for ν = −0.9. Polyurethane foam with Kirchhoff’s modulus G2 = 5 MPa
is the core material, and is treated as an isotropic material. Additionally, the examined
homogeneous annular plate is assumed to have the same geometric, material and support
parameters as the single outer layer of the annular plate of the sandwich.
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4.1. Convergence Evaluation

Tables 1–3 present the convergence evaluation of the critical static loads pcr corre-
sponding to the plate modes m for the selected number of discrete points N using the
finite difference method. The number N creates a set of discrete values for all continuous
functions, which are replaced by the corresponding operators of the differences in the
values of the functions for the selected points N.

Table 1. Critical static load pcr of the composite plate model with Poisson’s ratio ν = −0.6 for auxetic
facings radially compressed on the outer edge versus different numbers of discrete points N.

m
pcr [MPa]

N = 11 N = 14 N = 17 N = 21 N = 26

0 9.01 8.69 8.52 8.39 8.30
1 8.31 8.03 7.88 7.77 7.69
2 6.80 6.61 6.50 6.43 6.37
3 5.59 5.48 5.41 5.37 5.34
4 5.03 4.96 4.92 4.89 4.88
5 4.95 4.90 4.87 4.86 4.85
6 5.13 5.10 5.08 5.07 5.07
7 5.46 5.44 5.43 5.42 5.42
8 5.86 5.84 5.83 5.83 5.82
9 6.27 6.26 6.25 6.25 6.25
10 6.69 6.68 6.67 6.67 6.67

Table 2. Critical static load pcr of the composite plate model with Poisson’s ratio ν = −0.9 for auxetic
facings radially compressed on the inner edge versus a different numbers of discrete points N.

number N 11 14 17 21 26

pcr [MPa] 24.65 25.20 25.66 25.90 25.99

Table 3. Critical static load pcr of the composite plate model with Poisson’s ratio ν = −0.3 for auxetic
facings radially stretched on the inner edge versus a different numbers of discrete points N.

m
pcr [MPa]

N = 11 N = 14 N = 17 N = 21 N = 26

3 48.00 47.00 46.46 46.08 45.85

4 21.52 21.17 20.98 20.85 20.76

5 15.94 15.76 15.67 15.61 15.57

6 14.37 14.27 14.22 14.18 14.16

7 14.16 14.10 14.07 14.05 14.04

8 14.53 14.49 14.48 14.47 14.46

9 15.15 15.13 15.12 15.12 15.12
10 15.87 15.85 15.85 15.85 15.86

These results are for auxetic plates radially compressed on the outer or inner edge
and radially stretched on the inner edge with Poisson’s ratio ν =−0.6, −0.9, and −0.3,
respectively. The analyses were carried out for the chosen numbers N equal to 11, 14,
17, 21, and 26. Observation of the presented numbers enables the formulation of the
following remarks:

- With increasing plate mode, the differences between the corresponding loads pcr
become smaller;
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- The minimal values of the critical static loads pcr are obtained for the asymmetrical
plate mode (the bold numbers) with several circumferential waves (m = 5, 7) and the
axisymmetric (m = 0) mode of plates radially compressed on the inner edge;

- Appropriate accuracy, determined on the basis of a technical error of up to 5%, is en-
sured by using a number N equal to 14, which was thus used in subsequent numerical
calculations.

4.2. Composite Annular Plate Radially Compressed

Figures 2 and 3 show the critical static load pcr distribution as a function of the value
of Poisson’s ratio ν. Figure 2 presents the results for plates loaded on the outer perimeter,
while Figure 3 presents the results obtained for plates compressed on the inner edge. Results
are presented for the following values of Poisson’s ratio: ν = 0.3, 0.0, −0.3, −0.6, and −0.9.
The values of pcr and the modes m with which they correspond change similarly for the
each of examined plates, the facing materials of which are described on the basis of their
accepted positive or negative values of Poisson’s ratio. Figure 2 shows the results for plates
with two considered values of facing thickness h′ = 1 mm and h′ = 2 mm. The minimum
value of critical static load is found for plate mode m = 5. Plates with thicker auxetic facings,
the absolute valuesare of Poisson’s ratio of which is also higher, ν = −0.9, loses stability
with a number of circumferential waves m = 6. Then, the value of pcr reaches its minimum.
With increasing absolute value of Poisson’s ratio in auxetic facings, the critical static load pcr
increases. The values of pcr for plates with thicker facings are higher for the axisymmetical
m = 0 mode and the asymmetrical m 6= 0 mode with several circumferential waves. For
higher numbers of waves m (m = 9, m = 10), small changes in the values of pcr for plate cases
with h′ = 1 mm and h′ = 2 mm can be observed (see Figure 2c). The differences between
the values of pcr for plates with h′ = 2 mm are smaller. The dependence of pcr distribution
on the number m is flatter than what can be observed for the plate with h′ = 1 mm. Plates
compressed on the inner edge (see Figure 3) lose their static stability in the axisymmetrical
form of buckling m = 0. Mode m = 0 corresponds to the minimum value of critical static load
pcr. The effect of the auxetic facings does not change the previously observed regularity
of the axisymmetrical form m = 0 of plate buckling [14–16]. The presented results show
that there are no significant differences between the results obtained for the plates with
auxetic (ν = −0.3) and traditional (ν = 0.3) facing materials (see, Figures 2d and 3). When
the composite plate structure is built using a thicker foam elastic core, the significance of
the auxetic facings is eliminated.

In conclusion, it can be observed that the use of facings with auxetic parameters used
to build plates with classic sandwich structures does not change the buckling reactions
compared to plates composed of layers made of conventional materials.
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4.3. Composite Annular Plate Radially Stretched

The problem of the loss of stability can also be observed for annular plates subjected
to forces that stretch the plate in a radial direction. This is an issue that has rather seldom
been addressed. The examined composite annular plate is loaded with forces regularly
distributed on the inner plate edge. The forces are directed to the middle of the plate (see
Figure 1b). Figure 4 presents the distribution of the values of critical static loads pcr as a
function of the mode number of the plates with various values of Poisson’s ratio.

The minimum values of pcr can be observed for the asymmetrical form of buckling
m = 7. The buckling mode changes when the absolute value of negative Poisson’s ratio is
increased to ν = −0.9. Then, the number m is equal to m = 14, and the differences between
the values of pcr for the higher plate modes (m > 10) become smaller. Higher mode numbers
m of auxetic plates with a high value of absolute negative Poisson’s ratio ν = −0.9 can
be clearly observed under buckling caused by radial stretching, in contrast to with radial
compression. Increased values of pcr can also be observed with incredasing absolute values
of Poisson’s ratio ν.

In conclusion, it can be stated that the phenomenon of “buckling at stretching” also
confirms the regular character of the plate responses. The stability of the reactions are
similar among the examined composite plates with facings with smaller absolute positive
or negative values of Poisson’s ratio ν. There are fewer differences in the values of the
critical loads pcr.
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5. Comparative Analysis

The comparison of the selected results of the numerical calculations of the FDM and
FEM plate models enables the verification of the calculations, as well as further observations
of plate behaviours. A comparison was performed between the examined heterogeneous
three-layered annular plate and the homogeneous plate.
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The finite element method was applied as a second means of conducting numerical
investigations. Calculations were performed in the ABAQUS 2022 system (product of
Dassault Systemes Simulia Corp., Johnston, RI, USA) at the Academic Computer Centre
CYFRONET-CRACOW (KBN/SGI_ORIGIN_2000/PLodzka/030/1999). Using the Buckle
option of the ABAQUS programme, the static eigenvalue solution was determined [17]. The
three-layered FEM plate model was built of shell and solid elements to produce the facings
and the core meshes, respectively. The homogeneous FEM plate model was built using
shell elements. The facing mesh and the mesh of the homogeneous plate were composed of
3D nine-node shell elements. The core mesh of the heterogeneous plate was built using 3D
27-node solid elements. The three-layered and homogeneous plate models took the form
of a full annulus. Surface contact interaction was applied to tie the surfaces of the facing
meshes to the surfaces of the core mesh.

5.1. Homogeneous Annular FDM and FEM Plate Models

A solution to the problem of deflections in homogeneous annular plates can be ob-
tained by eliminating Equations (9) and (10) and modifying the main Equation (8). The
single-plate outer layer was described by dividing both sides of Equation (8) by the number
2, and the single-plate outer layer with thickness h’ was accepted as the layer of the homo-
geneous plate with thickness h (h = h′) under the assumption that core thickness did not
exist, h2 = 0; thus, the new form of Equation (8) presents the main equation of the solution
process of the homogeneous plate deflections, as follows:

1
2 K1w,rrrr +

K1
r w,rrr − K1

2r2 w,rr +
K1
2r3 w,r +

K1
2r4 w,θθθθ +

(K1+K2)
r4 w,θθ +

K2
r2 w,rrθθ − K2

r3 w,rθθ =
h′
r

(
2
r2 Φ,θw,rθ − 2

r Φ,rθw,rθ +
2
r2 w,θΦ,rθ − 2

r3 Φ,θw,θ +w,rΦ,rr + Φ,rw,rr +
1
r Φ,θθw,rr +

1
r Φ,rrw,θθ

) (12)

Figures 5–7 show the distribution of the values of the critical static loads pcr of the
homogeneous FDM and FEM annular plate models with a thickness h = 2 mm.

Figure 8 shows exemplary modes of the homogeneous plate with auxetic facings with
Poisson’s ratio ν = −0.3 when radially stretched on the inner edge.

The results in the cases of the plates radially compressed on the outer and inner edge
are presented in Figures 5 and 6, respectively. The results of the analysis of the “buckling
at stretching” problem are presented in Figure 7. A good compatibility can be observed
between the minimum values of the critical loads pcr of the FDM and FEM plate models.
Greater differences exist for higher plate modes. The involvement of the auxetic material in
the homogeneous plate results in relevant differences in the values of loads pcr between the
material with the value of Poisson’s ratio ν = −0.9 and the materials with other values.

Summarizing the presented results of auxetic and conventional homogeneous plates,
the following can be observed:

• Lower values of critical loads pcr are routinely found for the FDM plate model than
the FEM model, which has importance for stability analysis;

• There was significant growth in the values of critical loads pcr with increasing absolute
number of Poisson’s ratio ν for the auxetic plate, as also observed in [8];

• There was a lack of differences in responses between plates with auxetic material with
Poisson’s ratio ν = −0.3 and conventional material with Poisson’s ratio ν = 0.3;

• Importantly, the plate stability problem was solved, by taking into account asymmetric
buckling modes. As it is more simple, the axisymmetric (m = 0) solution can be applied
only for plates radially compressed on the inner edge.
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Figure 5. Critical static load pcr distribution versus mode m for the FDM and FEM homogeneous
plate models radially compressed on the outer edge: for values of Poisson’s ratio ν = −0.9, −0.6 and
ν = 0, 0.3 (a), for values of Poisson’s ratio −0.6 ≤ ν ≤ 0.3 (b).
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5.2. Three-Layered Annular FDM and FEM Plate Models

A comparison of the calculation results obtained using the FDM and FEM plate models
is shown in Figures 9 and 10. The calculation results for the plates radially compressed on
the outer edge are presented in Figure 9.

Figure 9a shows the results obtained using the finite element method for plates with
auxetic properties. The distribution of values of the critical load pcr as a function of the mode
m confirms the calculations performed for plates with traditional facings. A significant
increase in the value of pcr can be observed for plates with auxetic facings with a high value
of Poisson’s ratio ν = −0.9. The minimum value of critical load pcr can be found for mode
m = 5 for the plate with a value of Poisson’s ratio ν = −0.9 and for mode m = 4 for the
other plates. A comparison of the pcr distribution for the FDM and FEM plate models with
two exemplary values of Poisson’s ratio ν = −0.3 and ν = −0.6 is presented in Figure 9b.
The values of pcr calculated using the finite element method are lower than those obtained
using the finite difference method. With increasing values of the number m, the difference
decreases to values in the range of 1 MPa.

Figure 10 shows the reaction of the FDM and FEM plate models when radially stretched
on the inner edge. The calculation results of the critical loads pcr of the FDM and FEM
plate models are presented for two material structures characterized by values of Poisson’s
ratio ν = 0 and ν = −0.3. Similarly to the case of plates radially compressed on the outer
edge, the values of the critical loads pcr calculated for the FEM model are lower than those
calculated for the FDM plate model. Additionally, the difference in values becomes smaller
with increasing number m.

Figure 11 shows exemplary modes of the three-layered plate with auxetic facings with
Poisson’s ratio ν = −0.6, radially compressed on the outer edge.

Summarizing the presented results, the following observations can be made:

• There is an agreement between the characteristics of the responses of the FDM and
the FEM plate models with auxetic and traditional properties, in which high values
of critical loads pcr for plates with auxetic facings with a high Poisson’s ratio value
ν = −0.9 can also be observed (see Figures 2a and 9a);

• Plates radially compressed on the outer perimeter and stretched on the inner one
exhibit asymmetric buckling;

• The structure of the plate model built with finite elements possesses greater flexibility,
the core mesh of which is composed of solid elements and does not eliminate the
existing effect of bending.
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6. Conclusions

The analysis of the classic sandwich structure of annular plates with auxetic prop-
erties was the subject of the buckling investigations undertaken in this study. Negative
values of Poisson’s ratio, which characterise auxetic materials, influence the structural
responses through the character of work on the outer plate layers when subjected to normal
stresses. The numerical calculation results for the critical static loads of plates when both
compressed and stretched in the radial direction were presented in this paper. Thus, the
stability case denoted as “buckling at stretching” was also evaluated. For the material
parameters selected for the facings, the behaviours of plates compressed and stretched
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on the inner edge in the radial direction were compared. The results were shown for
plates with facings made of auxetic materials, as well as those made from convential linear
elastic materials. The evaluation of the critical state of the plates was considered, while
taking into account the effect of the various values of Poisson’s ratio. Additionally, the
comparative analysis of the calculation results of two three-layered FDM and FEM annular
plate models—homogeneous and heterogeneous—was conducted. A number of detailed re-
marks regarding the analysed plate with slidably clamped edges were formulated. Among
these, the following should be distinguished:

• For the fixed, constant value of the Young’s modulus, a negative sign of Poisson’s ratio
ν affects the results of the asymmetrical m 6= 0 modes of plates with auxetic facings;

• The asymmetric form of buckling applies to plates radially compressed on the outer
perimeter and stretched on the inner one;

• There was an increase in critical static loads pcr with increasing absolute values of
Poisson’s ratio in auxetic facings;

• The impact of the value of Poisson’s ratio, particularly the examined value ν = −0.9,
which is close to the number −1, was observed;

• For the corresponding results obtained for Poisson’s ratio ν = −0.6, the increase in the
values of static loads for auxetic plates with a limiting value of Poisson’s ratio ν = −0.9
reaches more than 60% for plates with the axisymmetric form of buckling, and more
than 40% for plates with asymmetric modes;

• The effect of the auxetic facings does not change the buckling reaction of plates with
conventional facings (cf., the results for ν = −0.3 and ν = 0.3).

It should be noted that with respect to stability, the worst results were observed for
the plates with a value of Poisson’s ratio ν = 0, where the critical static loads were minimal.

A full analysis of the responses of the examined plates requires a generalised solution
that includes asymmetric modes of plate buckling. The proposed approximate analytical
and numerical solution, whose fundamentals have been used in calculations related to
traditional plates [14–16], enables the effective investigation of new plate structures. Com-
plex, multi-parameter tasks, which constitute a problem for the stability of three-layered
annular plates, can be successfully analysed by taking into account various plate parame-
ters: geometrical, material and loading. A comparative analysis of the calculation results
obtained for two plate models, FDM and FEM, in particular for homogeneous plates (see
Section 5.1 of this paper), confirms the efficiency of the analytical and numerical solution.
In the case of three-layered plates, this method of modelling the core layer differentiates
between the FDM and FEM models. In the analytical and numerical solutions the plate core
was loaded only with shear stresses. In the FEM model, it was not possible to exclude the
loading with normal stress, on the basis of which it can be stated that the flexibility of the
FEM model is better. The characteristics of the responses of both plate models were similar,
for both traditional plates and auxetic ones. Differences were observed for auxetic plates
in terms of greater absolute values of negative Poisson’s ratio. The presented summary
provides answers for the research questions formulated in the Introduction, supported by
the calculations and results analyses performed.

The presented approach for evaluating the critical parameters of composite annular
plates indicates the sensitivity of the examined structure to the auxetic, inverse mechanical
mechanism of the strains, which are in component facings. The analysed composite
structure, auxetic–foam–auxetix, was shown to have buckling responses characterized
by predictable regularity. However, the numerical analyses, supported by experimental
research, should be continued. In further numerical analyses, the dynamic stability problem
of annular plates with auxetic properties will be examined.
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Nomenclature

Symbols Definition
ri, ro inner and outer radii of the annular plate
r, θ, z cylindrical coordinates

u1, u3
displacements of the points of the middle plane of the plate’s outer layers 1 and 3
in a radial direction (see Figure 1)

v1, v3
displacements of the points of the middle plane of the plate’s outer layers 1 and 3
in a circumferential direction

r, ρ plate radius and dimensionless radius
h’ thickness of facing
h2 core thickness
h = 2h′ + h2 total thickness of the plate
p radially compressing or stretching stress
Pcr critical static load
E, G Young’s modulus, Kirchhoff’s modulus of facing material
ν Poisson’s ratio of facing conventional or auxetic material
G2 Kirchhoff’s modulus of core material
N number of discrete points of the finite difference method

m
number of buckling waves in the plate circumferential direction corresponding to
the plate mode

(),x partial derivative
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