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Abstract: In order to ascertain the mechanical properties and fracture performance of AA6016
aluminum sheets after cold forming and heat treatment processes, uniaxial tensile tests and fracture
tests were conducted under various pre-strain conditions and heat treatment parameters. The
experimental outcomes demonstrated that pre-strain and heat treatment had significant impacts on
both stress–strain curves and fracture properties. Pre-strain plays a predominant role in influencing
the mechanical and fracture properties. The behavior of precipitation hardening under different
pre-strains was investigated using Differential Scanning Calorimetry (DSC). The results indicated
that pre-strain accelerates the precipitation of the β′′ strengthening phase, but excessive pre-strain
can inhibit the heat treatment strengthening effect. To consider the influences of pre-strain and heat
treatment, a constitutive model, as well as a predictive model for load–displacement curves, was
established using a backpropagation (BP) neural network. An analysis of the number of hidden
layers and neuron nodes in the network revealed that the accuracy of the model does not necessarily
improve with an increase in the number of hidden layers and neuron nodes, and an excessive number
might actually decrease the efficiency of the machine learning process.

Keywords: AA6016; pre-strain; heat treatment; precipitation hardening; backpropagation (BP)
neural network

1. Introduction

As the global energy crisis intensifies, the automotive industry is shifting towards the
development of more environmentally friendly, safe, and energy-efficient vehicles. In this
context, the use of lightweight materials has become an effective method to achieve vehicle
lightweighting. Aluminum alloys, as a key lightweight material, are widely used in auto-
mobile bodies. Typically, the body manufacturing process involves stamping and painting
processes, which can alter the mechanical and fracture properties of the sheet material.

Pre-treatment has a significant influence on the mechanical properties of aluminum
alloys. From a macroscopic perspective, pre-strain and heat treatment result in an increase
in the strength of aluminum sheets, accompanied by a reduction in plasticity. Additionally,
these treatments tend to lower the anisotropy of the material after pre-strain and heat treat-
ment [1,2]. On a microscopic level, pre-strain and pre-aging promote the rapid formation
of solute clusters, but inhibit their growth during prolonged aging. The precipitated β′′

strengthening phase mitigates natural aging, thus enhancing the heat treatment effect [3–5].
Nevertheless, the impact of pre-strain and heat treatment on the fracture performance of
aluminum alloys is less frequently reported, and research in this field is still not exhaustive.

Constitutive models have been widely used in the study of aluminum alloy formation
due to its ability to reflect the relationship between stress and strain during material
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deformation. Models that simultaneously consider pre-strain and heat treatment include
the H-S flow stress model [2,6] and the combination of the YLD2000-2d yield criterion with
the Swift–Voce hardening model [7]. These models were calibrated by fitting stress–strain
curves obtained under different pre-strain and heat treatment conditions. Due to numerous
model parameters, the fitting process is quite complex, and such constitutive models cannot
consider pre-strain and heat treatment parameters as independent variables, limiting their
extrapolative predictive abilities. Conversely, artificial neural network models, particularly
backpropagation (BP) neural networks, are increasingly favored for their efficiency in
considering multiple factors [8–11].

Fracture models, known for effectively describing material fracture behavior under
various stress states, are extensively utilized in researching aluminum alloy fracture behav-
ior. Notably, there has been research on the Hosford–Coulomb failure model after pre-strain
and heat treatment [7]. By calibrating the parameters of the Hosford–Coulomb failure
model using the experimentally obtained force–displacement curves, the pre-strain- and
post-heat-treatment Hosford–Coulomb failure model can be obtained. In this methodology,
the force–displacement curves are particularly crucial. Generating these curves necessitates
extensive fracture testing post pre-strain and heat treatment, which requires considerable
time and human resources. However, with the aid of artificial neural network models, it is
possible to develop predictive models for force–displacement curves after pre-strain and
heat treatment.

Most of the reports related to constitutive models have focused on fitting test results,
and process parameters (e.g., pre-strain, heat treatment time and heat treatment tempera-
ture) were not used as input variables. Therefore, it is impossible to predict the stress–strain
curves under different process parameters. On the other hand, force–displacement curves
were mostly obtained by testing. The prediction of force–displacement curves under differ-
ent process parameters has received limited attention. This study will examine the impact
of pre-strain, heat treatment temperature, and heat treatment time on the mechanical and
fracture properties of AA6016 sheet materials via uniaxial tensile tests and shear fracture
tests. Subsequently, this paper aims to develop a constitutive model incorporating the influ-
ences of pre-strain and heat treatment, along with predictive models for force–displacement
curves of various fracture specimens, employing a BP neural network. The research will
also explore how the configuration of neural network model parameters affects the accuracy
and efficiency of the fit. Additionally, this research will examine the impact of genetic
algorithms on the accuracy of model predictions.

2. Experimental Section
2.1. Experimental Design

This paper utilizes AA6016 aluminum sheets with a thickness of 1 mm. The composi-
tion of the material was provided by Southwest Aluminium, Chongqing, China, as shown
in Table 1. An orthogonal experimental design was adopted for determining pre-strain and
heat treatment parameters, and is outlined in Table 2.

Table 1. AA6016 composition table.

Composition Si Mg Fe Cu Mn Cr Zn Ti Al

Wt (%) 0.95 0.39 0.24 0.15 0.06 0.04 0.02 0.05 98.1

Table 2. Table of orthogonal experiments.

Serial Number Heat Treatment Time
(min)

Heat Treatment
Temperature (◦C)

Pre-Strain Level
(%)

1 10 170 6
2 10 185 12
3 10 200 18
4 20 170 12
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Table 2. Cont.

Serial Number Heat Treatment Time
(min)

Heat Treatment
Temperature (◦C)

Pre-Strain Level
(%)

5 20 185 18
6 20 200 6
7 30 170 18
8 30 185 6
9 30 200 12

2.2. Uniaxial Tensile Test

In this section, the mechanical properties of uniaxial tensile specimens made from the
original sheet material were examined. Subsequently, the sheet material was pre-stretched
at various pre-strain levels. Following pre-stretching, the specimens were subjected to
heat treatment according to the orthogonal test table (as shown in Table 2). Finally, the
specimens were pulled to fracture. The test was repeated three times for each condition.
The uniaxial tensile tests were conducted on a 5982 universal testing machine manufactured
by Instron, Boston, MA, USA. The dimensions and shape of the specimens are depicted in
Figure 1.
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Figure 1. Uniaxial tensile specimen.

2.3. Fracture Test

In this section, pre-stretching experiments were first conducted on strip plates of two
sizes: 210 mm × 50 mm and 130 mm × 35 mm. After pre-stretching, the sheets were
wire-cut to the dimensions depicted in Figure 2. The specimens prepared were heat-treated
following the process specified in Table 2 and subsequently stretched to fracture. These
fracture tests were conducted on an Instron 5982 universal testing machine. Furthermore,
to obtain more precise displacement data, Digital Image Correlation (DIC) was installed
in this section to record displacement and strain fields. DIC is a non-contact method and
remains accurate in recording the changes in displacement and strain fields, especially
during unstable deformations like necking in the specimens.
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2.4. DSC Experiments under Different Pretreatment Conditions

To determine the precipitation behavior of the AA6016 aluminum alloy under different
pre-treatment conditions, this section included the preparation of the pre-treated samples
into circular discs with a diameter of 3 mm, followed by Differential Scanning Calorimetry
(DSC) testing on a DSC214 manufactured by Netzsch, Selb, Germany. This method involves
operating the 1100LF system under an argon atmosphere, with a temperature range from
50 to 550 ◦C and a heating rate set at 10 ◦C/min. Such an approach helps researchers to
understand the thermal properties and precipitation behavior of the material.

3. BP Neural Network Model

The BP neural network is a common neural network model used for solving classi-
fication and regression problems. The BP network can be employed to learn and store
the mapping relationship of a large number of input–output models without the need to
explicitly describe these mapping relationships using mathematical equations [12,13]. This
model mainly consists of an input layer, an output layer, and hidden layers, as shown in
Figure 3, where the inputs are connected to the outputs through neurons. The training
process of the BP neural network consists of forward propagation and error backpropaga-
tion. During forward propagation, the input layer inputs the samples, and the hidden layer
computes the output. When the output does not match the actual result, it leads to the
generation of the mean square error, initiating the backward propagation phase. During
backpropagation, the output error is calculated and propagated backwards through the
hidden layers to the input layer, distributing the error among all units. The error signals
of each layer’s units serve as the basis for adjusting the unit weights. The weights and
bias parameters are then learned using gradient descent. The entire model flowchart of
the neural network is shown in Figure 4. The specific processing steps of the model will be
elaborated upon in the following text.
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3.1. Pretreatment

First, to establish the model, it is necessary to normalize the raw data, mapping it to
the range of [−1, 1] using Formula (1) [14]. This model is built in Python, and the data
normalization is achieved using the MinMaxScaler function in the library.

X
′
=

2 ∗ (X − Xmin)

(Xmax − Xmin)
− 1 (1)

In Formula (1), X
′

represents the normalized original data, Xmax represents the max-
imum value in the sample data, Xmin represents the minimum value in the sample data,
and X represents the sample data.
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3.2. Selection of Parameters

The number of input layer neural nodes, denoted as m, and the number of output
layer neural nodes, denoted as n, are determined by the respective quantities of input and
output in the dataset. The number of hidden layers and the neural node count in each
layer are determined through trial and error, taking into account the training quality and
efficiency of the model. The hidden layers can consist of a single hidden layer or multiple
hidden layers, with the range in this paper is between 1 and 3. The range for the number of
neural nodes in the hidden layer is between 5 and 20.

3.3. Selection of Activation Function

As part of the neural network, the activation function is responsible for introducing
non-linearity to the neurons. The Sigmoid function is widely used because its activation
logic is closest to that of neurons. Therefore, in this model, the Sigmoid function [13] is
chosen as the activation function, and its functional formula is shown as (2). The derivative
formula of the Sigmoid function is shown as (3).

f (x) =
1

1 + e−x (2)
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f ′(x) = f (x)(1 − f (x)) (3)

Input data x in the array may contain large negative absolute values, and passing this
to the Sigmoid function will result in a very large value for e−x in the denominator, causing
e−x to overflow. That is, when the input data x < 0, the function formula is as shown in (4).

f (x) =
ex

1 + ex (4)

3.4. Model Evaluation Indicators

R2 is a statistical metric that evaluates the goodness of fit of the predictive data. When
R2 is closer to 1, it indicates a better predictive capability of the model. Its calculation
formula is shown in Equation (5) [9]. Root Mean Square Error (RMSE) is a statistical metric
used to measure the prediction error of a model. It represents the root mean square of the
errors between predicted values and actual observed values, and its calculation formula is
shown in Equation (6) [9].

R2 = 1 − SSR
SST

= 1 − ∑n
i=1(Ti − Pi)

2

∑n
i=1

(
Ti − Ti

)2 (5)

RMSE =

√
∑n

i=1(Pi − Ti)
2

n
(6)

where SSR is the sum of squares due to regression, SST is the total sum of squares, Ti is
the observed value of the dependent variable, Pi is the predicted value of the dependent
variable from the model, Ti is the mean of the dependent variable, and n is the sample size.

4. Results and Discussion
4.1. Experimental Results Analysis
4.1.1. Uniaxial Tensile Test Results and Analysis

Figure 5 shows the stress–strain curves of AA6016 before and after pre-strain and
heat treatment. From the stress–strain curves, it can be observed that pre-strain and heat
treatment have a significant impact on the yield strength of AA6016. Both yield strength
and tensile strength increased after pre-strain and heat treatment, while the elongation at
break decreased.
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Table 3 shows the yield strength, tensile strength, and elongation at break of the initial
sheet metal, while Table 4 presents the yield strength, tensile strength, and elongation at
break of AA6016 after different pre-strain and heat treatments (the standard deviation
formula is shown in Formula (7)). Compared to the untreated sheet metal, the sample
with a pre-strain level of 18% and a heat treatment process at 185 ◦C for 20 min showed
the highest increase in yield strength and tensile strength, with a 124.4 MPa increase in
yield strength and a 48.1 MPa increase in tensile strength. As strength increases, plasticity
decreases, resulting in a 16% decrease in elongation at break. From Table 4, it can be
observed that at pre-strain levels of 6% and 12%, with an increase in baking temperature
and baking time, the strength of the material improves. However, at a pre-strain level of
18%, this trend is not observed. This phenomenon will be explained in Section 4.1.3.

S =

√
∑n

i=1(xi − x)2

n − 1
(7)

where n represents the amount of data and x represents the average value of the data.

Table 3. Mechanical properties of AA6016 before pre-strain and heat treatment.

Yield Strength (MPa) Tensile Strength (MPa) Elongation (%)

108 ± 2 231 ± 3 32 ± 1

Table 4. Mechanical properties of AA6016 after pre-strain and heat treatment.

Pre-Strain
(%)

Heat Treatment
Temperature (◦C)

Heat Treatment
Time (min)

Yield Strength
(MPa)

Tensile Strength
(MPa)

Elongation
(%)

6 170 10 177.6 ± 2 242.3 ± 1 25.78 ± 1
6 185 20 183.2 ± 1 249.1 ± 2 22.09 ± 1
6 200 30 190.8 ± 2 248.3 ± 1 22.57 ± 1

12 170 10 212.4 ± 3 264.7 ± 2 22.79 ± 1
12 185 20 209.9 ± 2 263.5 ± 4 19.95 ± 1
12 200 30 229.1 ± 1 270.3 ± 2 15.67 ± 1
18 170 10 225.1 ± 1 271 ± 3 17.43 ± 1
18 185 20 232.4 ± 2 279.1 ± 2 16 ± 1
18 200 30 228.9 ± 1 276.7 ± 2 16.54 ± 1

In order to determine the extent and priority of the impact of pre-strain, heat treatment
temperature, and heat treatment time on the mechanical properties of AA6016, this study
conducted variance analysis and range analysis on the experimental results. Analysis of
variance is a statistical method used to analyze the effect of different factors on the variation
of data. When the p-value is less than 0.05, it indicates that the factor has a significant effect
on the results of the test. Range analysis is also a statistical method for analyzing the effects
of different test factors on test results in orthogonal tests. When the difference between the
maximum and minimum values of the data is larger, it indicates that the factor has a greater
influence on the results of the test. The results of the analysis of variance are shown in Figure 6
(where PS represents pre-strain, T represents heat treatment temperature, and t represents heat
treatment time). From the results, it can be observed that the p-values (the numbers on the bar
charts, with * indicating a p-value of less than 0.05) for the pre-strain samples in the analysis
of yield strength, tensile strength, and elongation are all less than 0.05, indicating significant
differences for pre-strain in these properties. On the other hand, the p-values for the analysis
of heat treatment time and temperature in relation to yield strength, tensile strength, and
elongation are all greater than 0.05, suggesting that heat treatment time and temperature do
not exhibit significant differences in these properties. Therefore, from the charts, it can be seen
that the primary and secondary orders of influence on yield strength, tensile strength, and
elongation are pre-strain, heat treatment temperature, and heat treatment time.
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The range analysis results are shown in Figure 7 (where the numbers on the bar charts
represent the ranking). From these figures, it can be seen that among the three factors, the
primary influencing factor is pre-strain, followed by heat treatment temperature and heat
treatment time. Therefore, it is evident that both the analysis of variance and the range analysis
results demonstrate that pre-strain has the greatest impact on the mechanical performance.
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4.1.2. Fracture Test Results and Analysis

Figure 8 shows the force–displacement curves of three fracture specimens before and
after pre-straining and heat treatment. From the graphs, it is evident that for AA6016, after
pre-strain and heat treatment, the maximum load increases, while the failure displacement
decreases. It is also noticeable that all three fracture specimens achieve their maximum
load and the greatest reduction in failure displacement at a pre-strain level of 12% and a
heat treatment temperature of 200 ◦C. The center hole specimen, at a pre-strain level of 12%
and a heat treatment process of 200 ◦C for 30 min, experienced an increase in maximum
load by 514.1 N, while the failure displacement decreased by 2.0 mm. For the notched
specimen, under the same pre-strain level and heat treatment, the maximum load increased
by 332.7 N, and the failure displacement decreased by 1.4 mm. Finally, for the pure shear
specimen, at the same conditions, the maximum load increased by 29.3 N, and the failure
displacement decreased by 1.2 mm. Similar to Section 4.1.1, at pre-strain levels of 6%
and 12%, an increase in baking temperature and baking time lead to an enhancement in
the maximum load required for the fracture of the test specimens. However, this trend
was not observed at the 18% pre-strain level. This phenomenon will also be explained in
Section 4.1.3.
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Figure 8. The force–displacement curves of three fracture specimens before and after pre-strain and
heat treatment. (a) Center hole specimen, (b) notch specimen, (c) pure shear specimen.

Variance and range analyses were conducted on the failure displacement and shear
strength of the three specimen types with respect to pre-strain and heat treatment parame-
ters. From the p-values in Figures 9 and 10 (the numbers on the bar charts, with * indicating
a p-value of less than 0.05), it can be observed that pre-strain significantly affected the
failure displacement of the center hole specimen, the notched specimen, and the pure shear
specimen. Heat treatment temperature did not exhibit a significant effect on the three
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types of fracture specimens. However, the heat treatment time showed a significant impact
on the shear strength of the pure shear specimen. Range analyses results are shown in
Figures 11 and 12 (where the numbers on the bar charts represent the ranking). It can be
observed that pre-strain significantly affects the shear strength and failure displacement
of the three types of specimens. The influence of heat treatment temperature and time
varies slightly for different specimens. In particular, for the pure shear specimen, its shear
strength is notably influenced by heat treatment time, to the extent of slightly surpassing the
impact of pre-strain. It can be seen that similar to the results of uniaxial tension, pre-strain
predominantly influences the fracture performance of AA6016.
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4.1.3. DSC Test Results Analysis

Figure 13 shows the DSC curves under different pretreatment conditions. The en-
dothermic and exothermic phenomena in the figure represent precipitation at different
temperatures. It can be seen from the figure that the sample without pre-strain has a
dissolution trough of solute clusters between 180 ◦C and 220 ◦C, and an endothermic peak
forms around 240 ◦C, which is related to the formation of the GPI region (β′). At around
256 ◦C, an exothermic peak forms, which is related to the formation of the GPII region
(β′′) [5,15,16].
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Compared to samples without pre-strain, the dissolution trough between 180 ◦C and
220 ◦C in pre-strained samples is significantly reduced or eliminated. This is because pre-
strain can effectively inhibit natural aging. With an increase in pre-strain level, the formation
temperature of the exothermic peak (β′′ strengthening phase) decreases. This is due to the
increase in dislocation density in pre-strained samples, where these high-energy dislocation
points accelerate the movement of quenched vacancies to the GPI region [17,18], making
it more favorable for the formation of the β′′strengthening phase, thereby enhancing the
strength of pre-strained samples. From Figure 13, it can be observed that the precipitation
temperature of the exothermic peak for both 6% and 18% pre-strain levels is lower than the
precipitation temperature of the endothermic peak in samples without pre-strain. Under
0–6% pre-strain, the precipitation temperature of the exothermic peak shows a decreasing
trend. At an 18% pre-strain level, the precipitation temperature of the exothermic peak is
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slightly higher than that at 6%. This is because at 18% pre-strain, the material has a higher
dislocation density. When the dislocation density is high, dislocation entanglement occurs,
leading to uneven distribution of precipitated phases [5,19], inhibiting the heat treatment
strengthening effect, limiting the improvement in strength.

Based on classical nucleation theory, the nucleation rate can be obtained from
Equation (8) [20,21].

J = N0Zυexp
(
−∆G∗

KBT

)
η(t) (8)

where N0 is the number of nucleation sites, Z is the Zeldovich factor, υ is the atomic attach-
ment rate, ∆G∗ is the nucleation free activation enthalpy, KB is the Boltzmann constant, T is
the absolute temperature, and η(t) is the activation factor. Assuming that all independent
variables except the number of nucleation sites remain constant, an increase in disloca-
tion density leads to an increase in the number of nucleation sites and, consequently, the
nucleation rate, ultimately resulting in greater precipitation of the β′′ strengthening phase.

If only considering the volume free energy and surface energy, the Gibbs free energy
of the nucleation process can be obtained from Equation (9) [20].

∆G∗ = ∆gT
4π

3
r3 + 4πr2γ (9)

In this equation, ∆gT represents the volume free energy, γ is the surface energy, and
r is the radius of the precipitated phase. When dislocations occur, this process, due to its
uneven occurrence, leads to a decrease in the nucleation free energy ∆G∗, resulting in faster
nucleation [22]. Assuming constant volume free energy and surface energy, the decrease in
nucleation free energy ∆G∗ will lead to a decrease in the radius of the precipitated phase,
thereby resulting in more precipitation of the β′′ strengthening phase.

The above analysis shows that the introduction of appropriate pre-strain will increase
the precipitation rate and quantity of the β′′ strengthening phase, thereby improving
the heat treatment strengthening effect and enhancing the strength of the alloy. However,
excessive pre-strain will inhibit the heat treatment strengthening effect, limiting the strength
improvement. The results obtained in Sections 4.1.1 and 4.1.2 just confirm this conclusion.

4.2. Model Fitting Results
4.2.1. Uniaxial Tensile Neural Network Constitutive Model

This section takes pre-strain, heat treatment temperature, heat treatment time, and
strain as inputs, and stress as the output. Therefore, we can obtain m = 4, n = 1. The
learning rate of the model is set to 1 × 10−3, the target training accuracy is set to 1 × 10−3,
and the maximum training iterations are set to 500,000. In this section, a single hidden
layer structure is used, and through parameter tuning, the optimal number of neurons in
the hidden layer is found to be δ = 5.

The comparison between the stress–strain data obtained from the model fitting and
the experimental data is shown in Figure 14. The R2 for model fitting is 0.96. From the
results in the figures, it can be observed that predictions closely match the experimental
results, indicating that the model can accurately represent the constitutive relationship of
AA6016 within a pre-strain range of 6% to 18%, heat treatment temperatures of 170–200 ◦C,
and heat treatment times of 10–30 min. This suggests that the BP neural network model
can be employed to accurately describe the mechanical behavior of AA6016 after pre-strain
and heat treatment.
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4.2.2. Force–Displacement Curve Prediction Model

This section takes the force–displacement obtained from pure shear experiments as an
example, with strain, heat treatment temperature, heat treatment time, and displacement as
inputs, and force as the output. Therefore, we have m = 4 and n = 1. The model’s learning
rate is set to 1 × 10−3, the target training accuracy is set to 1 × 10−6, and the maximum
training iterations are set to 650. The R2 for model fitting is 0.99. The model’s predicted
load–displacement curve matches the experimental load–displacement curve, as shown in
Figure 15.

4.2.3. The Influence of Model Parameters on Fitting Results

When establishing constitutive model and load–displacement curve prediction models
using artificial neural network, it was found that R2 is very high in some cases, but the high
level of dispersion of individual data prediction points results in a significant difference
between the predicted curve and the experimental curve, as shown in Figure 16 (“2-20”
represents two hidden layers with 20 neuron nodes, and so on in the following text). The
R2 and RMSE of “2-20” are 0.9973 and 5.2004, while the R2 and RMSE of “3-20” are 0.9986
and 3.7765. It can be seen that the R2 of the two cases is similar, but RMSE of 3-20 is lower
and the curve prediction is better. This suggests that RMSE is an important indicator in
addition to R2.
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To explore the limits of the number of hidden layers and neuron nodes in neural
networks, six different scenarios were designed, as shown in Table 5. R2, RMSE, and the
running time of the predicted results are shown in Figures 17–20 (where the numbers
on the bar charts represent the ranking). Taking “3-20” on the x-axis in the figure as an
example, “3” represents the number of hidden layers and “20” represents the number of
neuron nodes. From the figures, it can be observed that when the number of neuron nodes
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is constant, increasing the number of hidden layers, as well as increasing the number of
neuron nodes when the number of hidden layers is constant, does not significantly affect
the accuracy of the prediction. The changes in R2 and RMSE are not substantial, but the
prediction time of the model increases by approximately 1-fold. Evidently, an excessively
high number of hidden layers and neuron nodes is not suitable.

Table 5. Hidden layer parameter table.

Number of Hidden Layers Number of Neurons in a Layer

3 20
3 50
3 100
5 20
10 20
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4.2.4. The Influence of Model Architecture on Prediction Results

In a previous section, the parameters of the proposed model were determined through
trial and error. The model architecture and hyperparameters could be optimized by a
genetic algorithm (GA) [23]. In this section, the model architecture will be optimized by a
genetic algorithm, and prediction data of the two models will be compared to study the
generalization ability of the model.

Firstly, the dataset needs to be divided into a training set, testing set, and prediction
set. The training set comprises six force–displacement curves at pre-strain levels of 6% and
12%. For the force–displacement curves with a pre-strain level of 18%, the curve at a heat
treatment temperature of 170 ◦C forms the testing set, while the curves at temperatures
of 185 ◦C and 200 ◦C are designated as the prediction set. Following this, both a standard
BP neural network model and a genetically optimized BP neural network model were
employed for training.

The training results of the two models are shown in Figure 21, and the prediction
accuracies of the two models are shown in Table 6. From Figure 21, it can be seen that the
predicted values of the GA-BP model for the two curves under different process conditions
are closer to the experimental values. From Table 6, it can be seen that for the curves
under both of the two process conditions, the R2 values of GA-BP model prediction are
higher than those of BP model, and the RMSE values of GA-BP model prediction are lower
than those of BP model. To sum up, the BP neural network model optimized by genetic
algorithm has better prediction ability.
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Table 6. Comparison of prediction accuracy of BP and GA-BP models.

No. Pre-Strain
(%)

Heat Treatment
Temperature

(◦C)

Heat
Treatment
Time (min)

Model R2 RMSE

1 18 185 20
GA-BP 0.98 10.27

BP 0.92 23.23

2 18 200 10
GA-BP 0.85 30.37

BP 0.76 38.32

5. Conclusions

Uniaxial tensile tests and fracture tests were conducted at different levels of strain
before and after heat treatment. The range of strain variation was 6% to 18%, and the heat
treatment temperature ranged from 170 ◦C to 200 ◦C, with heat treatment times ranging
from 10 min to 30 min. Through the use of a BP neural network, an artificial neural network
constitutive model and a load–displacement curve prediction model were established,
leading to the following conclusions:

(1) The impact of pre-strain and heat treatment on the mechanical properties of AA6016
is primarily reflected in the increase in yield strength and tensile strength, as well as a
decrease in elongation. From the analysis of variance and range analysis results, it
can be observed that pre-strain has the greatest impact on the mechanical properties.

(2) The impact of pre-strain and heat treatment on the fracture properties of AA6016
is mainly reflected in the increase in shear strength and the decrease in failure dis-
placement. From the results of variance analysis and range analysis, it appears that
pre-strain predominantly influences the fracture properties of AA6016.

(3) The introduction of an appropriate pre-strain can increase the precipitation rate and
quantity of the β” strengthening phase, thereby promoting heat treatment strengthen-
ing, leading to an increase in the strength of the alloy. Excessive pre-strain can suppress
the precipitation of strengthening phases, thereby suppressing the strengthening effect
of heat treatment and limiting the improvement in the strength of the alloy.

(4) The BP neural network prediction model can effectively fit the influence of pre-strain,
heat treatment temperature, and heat treatment time on the mechanical properties
and fracture performance. Through model parameter analysis, it is known that the
fitting accuracy does not increase with the increase in the number of hidden layers and
neuron nodes, and excessive hidden layers and neuron nodes can reduce the machine
learning efficiency. The BP neural network model optimized by genetic algorithm has
better prediction accuracy.
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