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Abstract: Despite medical advancements in recent years, cardiovascular diseases (CVDs) remain
a major factor in rising mortality rates, challenging predictions despite extensive expertise. The
healthcare sector is poised to benefit significantly from harnessing massive data and the insights we
can derive from it, underscoring the importance of integrating machine learning (ML) to improve CVD
prevention strategies. In this study, we addressed the major issue of class imbalance in the Behavioral
Risk Factor Surveillance System (BRFSS) 2021 heart disease dataset, including personal lifestyle
factors, by exploring several resampling techniques, such as the Synthetic Minority Oversampling
Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), SMOTE-Tomek, and SMOTE-Edited
Nearest Neighbor (SMOTE-ENN). Subsequently, we trained, tested, and evaluated multiple classifiers,
including logistic regression (LR), decision trees (DTs), random forest (RF), gradient boosting (GB),
XGBoost (XGB), CatBoost, and artificial neural networks (ANNs), comparing their performance
with a primary focus on maximizing sensitivity for CVD risk prediction. Based on our findings, the
hybrid resampling techniques outperformed the alternative sampling techniques, and our proposed
implementation includes SMOTE-ENN coupled with CatBoost optimized through Optuna, achieving
a remarkable 88% rate for recall and 82% for the area under the receiver operating characteristic
(ROC) curve (AUC) metric.

Keywords: artificial neural networks (ANNs); class imbalance; heart disease; machine learning (ML);
resampling methods; SMOTE

1. Introduction

The World Health Organization (WHO) has reported that approximately 17.9 million
individuals succumb to CardioVascular Disease (CVD) annually, establishing CVDs as a
leading cause of global mortality [1]. Despite a decline in CVD mortality rates over the
last three decades, this favorable trend is beginning to plateau, raising concerns about a
potential reversal unless substantial and concerted efforts are undertaken.

This challenge necessitates a transformative stance towards preventive healthcare,
whereby our response transcends mere reaction to illness and instead emphasizes the antic-
ipation and interception of risk factors before they converge into potentially devastating
outcomes. Accurately predicting CVD risk based on personal lifestyle factors is pivotal for
facilitating early intervention and implementing preventive measures.

Nevertheless, diagnosis poses a significant challenge for practitioners due to the
intricate nature of CVDs, which are frequently conflated with signs of aging. In this
context, machine learning (ML) algorithms have emerged as invaluable assets, leveraging
their capacity to uncover intricate patterns and relationships within datasets, empowering
healthcare practitioners with predictive tools for the early detection and intervention of
CVD [2].

CVDs refer to a group of conditions that affect the heart and blood vessels, often
leading to complications such as heart attacks, strokes, and other circulatory disorders [3].
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These conditions can arise due to factors such as plaque buildup in the arteries (atheroscle-
rosis), hypertension (high blood pressure), inflammation, and various lifestyle factors such
as diet, physical activity, and smoking [3,4]. Symptoms of CVD can range from chest pain
and shortness of breath to numbness and weakness in the extremities, highlighting the
diverse nature of these conditions [5,6].

In this context, prevention emerges as the cornerstone for maintaining good health and
detecting potential health concerns at an early stage before they escalate into complications
or become more challenging to manage [7]. Regrettably, the uptake of preventive measures
falls significantly short of what is necessary. A study from 2018 revealed that merely
8% of adults in the United States aged 35 years and above received the recommended
preventive care [8]. This disparity underscores the substantial gap between the potential
advantages of preventive healthcare and its current implementation. Consequently, the
role of technology, data analytics, and predictive modeling in preventive healthcare has
become increasingly vital.

The advancements in technology facilitate a health management approach that is not
only more vigilant but also highly personalized. Through the application of data analytics
and predictive models, healthcare professionals can meticulously analyze extensive datasets
comprising crucial information, ranging from an individual’s medical history and lifestyle
choices to genetic predispositions and beyond [9]. This thorough analysis enables the
identification of intricate patterns and risk factors, particularly those associated with
conditions like CVD.

The utility of these advanced tools transcends mere pattern recognition. It enables
the precise identification of high-risk individuals before clinical symptoms manifest, thus
expediting the deployment of targeted interventions and tailored treatment strategies [8,10].
Early detection holds transformative potential in disease management and patient out-
comes. By identifying the onset of health issues at their nascent stages, healthcare providers
can initiate timely and personalized interventions tailored to individual needs. This en-
hances treatment effectiveness, reduces complications, alleviates the burden on healthcare
resources, and ultimately improves overall patient quality of life [11]. Consequently, early
detection not only yields medical benefits but also optimizes the overall healthcare system
and promotes population health resilience.

Predictive analytics can also play a crucial role in discerning patients at high risk of
hospital readmission [12]. Forecasting patient readmission allows clinicians to adjust post-
hospitalization treatment strategies, thereby saving costs, conserving healthcare resources,
and improving patient outcomes [13]. Additionally, predictive analytics in healthcare
assist in identifying potential population health trends or outbreaks. For instance, a study
published in The Lancet, a public health journal, utilized predictive analytics to forecast
health trends, indicating a rise in alcohol-related liver diseases in the US due to alcohol
consumption patterns. Moreover, predictive analytics could have anticipated the COVID-
19 pandemic, as evidenced by BlueDot, a Canadian company issuing warnings about
unfamiliar pneumonia cases in Wuhan, which preceded the World Health Organization’s
official declaration of the novel coronavirus emergence [14].

However, as we embrace technological advancements, addressing challenges related
to data privacy, predictive model accuracy, and equitable access to healthcare resources is
crucial. Balancing the potential benefits of technology with ethical considerations will be
instrumental in shaping the future of preventive healthcare.

1.1. Related Work

In recent years, significant progress has been made in applying data mining and
ML methods to predict CVDs, emphasizing early detection and prevention. These ad-
vancements have been strongly influenced by seminal studies in the field, prompting an
examination of their methodologies, outcomes, and limitations. Researchers have demon-
strated the potential of various ML and deep learning models to achieve high accuracy in
predicting CVDs.



Algorithms 2024, 17, 178 3 of 23

The authors in [15], from the very outset in 2017, evaluated four different models
using clinical data from over 300,000 homes in the United Kingdom, with neural net-
works demonstrating the highest accuracy in predicting CVDs, particularly with extensive
datasets. Another research [16] developed an ensemble of ML and deep learning models
that achieved an 88.70% accuracy, with the ML ensemble model emerging as the most accu-
rate. Another study [17] designed a machine intelligent framework (MIFH) for predicting
heart diseases, achieving improved sensitivity rates and selecting the best possible solution
among input predictive models.

In [18], the authors proposed a model that integrates bagging ensemble learning
with decision trees and employs feature extraction via Principal Component Analysis
(PCA), achieving an impressive accuracy rate of 98.6% on a practical heart dataset. The
researchers in [19] developed a predictive model aimed at forecasting the likelihood of
cardiac events in hypertensive individuals, utilizing electrocardiogram (ECG) data as the
input. They creatively combined a convolutional neural network with a long short-term
memory network, resulting in a hybrid model. This fusion leveraged time-series data to
detect early increases in hypertension occurrences among individuals.

The research in [20] directed efforts towards creating an intelligent agent for CVD
prediction using a multi-layer dynamic system based on ensembles. The proposed model in-
tegrates five feature selection algorithms alongside advanced ensemble learning techniques,
achieving high accuracy rates, with up to a 94.16% accuracy and a 0.94 Area Under the
Curve (AUC) value on a realistic heart dataset. Notably, this multi-layer dynamic system
perpetuates the classification process across successive layers by enhancing knowledge at
each level, yielding optimal results.

The study in [21] surpassed other ML algorithms discussed in the literature, achieving
a 96.7% accuracy using the random forest classifier and 95.08% using extreme gradient
boosting on the Cleveland dataset in 2023. Another study [22] attained an 86% AUC score
in predicting diabetes mellitus using the CatBoost classifier. Alongside SHAP values, they
identified glycose levels and age as the most influential features.

A recent development in [23] introduced an advanced hybrid ensemble gain ratio
feature selection (AHEG-FS) model. This model concentrates on enhancing accuracy
and AUC by selecting highly effective features while retaining relevant ones. Nine ML
classifiers—adaBoost, logistic regression (LR), classification via clustering (CVC), random
forest (RF), k-nearest neighbor (KNN), support vector machine (SVM), boosted regression
tree (BRT), naive Bayes (NB), and stochastic gradient boosting (SGB)—were integrated
with the proposed AHEG-FS model, which was tailored on medical datasets to design an
innovative methodology for enhancing prediction performance. The model achieved an
impressive 99% AUC after reducing features by 46.15%.

According to another research [24], methods like CatBoost, random forest, and gradi-
ent boosting can accurately predict almost eight out of ten cardiac arrests. Additionally, the
authors in [25] achieved an impressive 98.15% accuracy on a Kaggle dataset, showcasing
the efficacy of ensemble methods like the extra tree classifier in predicting heart diseases.

The research in [26] proposed the further application of deep neural networks to
address heart disease diagnosis, achieving a 90% accuracy rate on the Cleveland dataset
by utilizing Talos for optimizing hyperparameters. The study in [27] utilized an artificial
neural network (ANN) on the same dataset and assessed its performance across different
learning rates and numbers of neurons. The results indicated that the highest accuracy of
80.6% was attained with a learning rate of 0.25 and 25 neurons.

In another study [28], a deep learning methodology was recommended, coupled with
the isolation forest algorithm for feature extraction, resulting in an improved accuracy of
94.2% for the University of California Irvine (UCI) dataset. [29] subsequently developed a
stacking model comprising both a base learner layer and a meta-learner layer, achieving
an impressive accuracy of nearly 96% for predicting the presence or absence of heart
disease. These noteworthy findings underscore the potential of deep learning approaches
in enhancing predictive performance.
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However, the aforementioned studies on heart disease prediction primarily utilize
small and relatively balanced datasets. To address the challenge of dataset imbalance in a
large-scale dataset, we aim to determine the most suitable classification algorithms for heart
disease prediction. Authors in [30] employed a novel approach by integrating stacking
ensemble modelling, which combines SVM, NB, and KNN with a 10-fold cross-validation
Synthetic Minority Oversampling Technique (SMOTE). This method effectively handles
softly imbalanced datasets, yielding a robust accuracy of 90.9%. Researchers in [31] utilized
the Synthetic Minority Oversampling Technique along with the edited nearest neighbor
(SMOTE-ENN) data resampling technique and hyperparameter optimization, resulting in
notable improvements in classifier performance, especially in predicting the survival of
patients with heart failure.

Another study in [32] also leveraged the Synthetic Minority Oversampling Technique
(SMOTE) to address class imbalance and noise present in the Cleveland dataset. By
employing an AdaBoost random forest classifier, they achieved an accuracy of 95.47% in
the early detection of heart disease. Researchers in [33] attempted to mitigate imbalance
in the National Health & Nutrition Examination Survey (NHANES) dataset through a
two-step approach involving a least absolute shrinkage and selection operator (LASSO)-
based feature weight assessment, followed by majority-voting-based identification of
important features.

The authors in [34] chose to under sample cases without CVDs to reduce medical
resource consumption and false positive cases. They developed a three-layered model that
iteratively trains models and incorporates predictions from previous layers as features.
Also, in their investigation, [35] achieved a notable 30.4% improvement in their model’s
sensitivity by integrating the SMOTE-Tomek with random forest algorithm.

Another research [2] also utilized the 2021 BRFSS data, which mirrors the dataset used
in our study, advocated for increased involvement of logistic regression in the workflow
for CVD prediction. They demonstrated that logistic regression accurately classified 79.18%
of individuals with CVDs and 73.46% of healthy individuals, identifying sex, diabetes, and
general health as the most influential factors in predictions. These findings align well with
our study, in which we offer improved results, and we also emphasize minimizing false
negatives to help ensure timely medical attention for high-risk individuals.

1.2. Research Overview

This study focuses on the realm of early and precise detection of heart diseases,
leveraging the prowess of ML and deep learning algorithms. Operating within the intricate
landscape of highly imbalanced datasets drawn from past patient records, our research
focuses on achieving heightened accuracy levels in disease prediction.

Specifically, we explore the efficacy of two oversampling techniques (SMOTE and
ADASYN) and two hybrid resampling algorithms (SMOTE-Tomek and SMOTE-ENN)
alongside six ML models (logistic regression (LR), decision tree (DT), random forest (RF),
gradient boosting (GB), XGBoost classifier (XGB), and CatBoost) complemented by the
application of an ANN.

The primary contributions of our investigation are given below:

• Addressing the inherent class imbalance prevalent in real-world medical datasets by imple-
menting a range of resampling methodologies aimed at enhancing model performance.

• Discerning the optimal compatibility between specific classification algorithms and
corresponding statistical sampling techniques.

• Enhancing the models’ sensitivity to identify positive cases within the imbalanced
dataset, notably witnessing a remarkable surge in sensitivity from 4% to an impressive
88% with the utilization of CatBoost.

Ultimately, this study effectively addresses a noteworthy research gap by thoroughly
exploring ML and deep learning models for CVD risk prediction based on personal lifestyle
factors on a highly imbalanced dataset. By comparing model performance and resampling
methods, identifying influential attributes, and investigating the impact of hyperparameter
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tuning, this study provides valuable insights for healthcare professionals and researchers
by transitioning our focus from reactive to proactive healthcare paradigms; we aspire to
catalyze a transformative shift in healthcare dynamics.

2. Materials and Methods

Our study endeavors to predict CVDs by employing advanced ML techniques. Oper-
ating within the realm of real-world datasets characterized by significant class imbalances,
our research underscores the importance of minimizing false negative (FN) cases, thereby
enhancing the landscape of preventive healthcare. Figure 1 provides a visual depiction of
our study’s methodology.
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Initiating with preprocessing and feature engineering procedures, our methodology
encompassed comprehensive data cleaning, outlier detection, distribution assessments,
and data scaling. Additionally, we introduced supplementary features to unravel nuanced
patterns embedded within the dataset. After data preparation, we confronted the challenge
of class imbalance through the implementation of two oversampling techniques (SMOTE
and ADASYN) alongside two hybrid resampling methods (SMOTE-ENN and SMOTE-
Tomek) applied to our training data.

In sequence, we deployed six distinct ML algorithms—logistic regression, decision tree,
random forest, gradient boosting, XGBoost, and CatBoost—while constructing an ANN.
Proceeding forward, we meticulously optimized our models through a comprehensive
hyperparameter tuning processes.

The culmination of our study involves the presentation and analysis of performance
results gleaned from each resampling technique. Central to our investigation is the quest to
identify the most effective combination that maximizes the sensitivity metric. This inten-
sified focus on sensitivity stands as our pivotal contribution to mitigating the challenges
posed by class imbalance within heart disease datasets, refining existing approaches that
have often sacrificed sensitivity in favor of elevated accuracy levels.

This study was conducted utilizing Google Colab, an online platform tailored for exe-
cuting Python code. The computational environment provided by Google Colab included:

Operating System: Linux-based environment;
GPU: NVIDIA Tesla T4;
Driver Version: 525.105.17;
CUDA Version: 12.0.

The analysis, computations, and visualizations were performed using Python 3.10.12 within
the Google Colab environment. Key libraries utilized included Pandas 2.0.3 and Numpy
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1.25.2 for data manipulation and preprocessing. For model training and validation, we
employed Sklearn 1.4.2 and TensorFlow 2.15.0, supplemented by Optuna 3.6.1 and SciPy
1.12.0 for hyperparameter tuning and statistical analysis. Additionally, for visualization
purposes, we utilized the Seaborn and Matplotlib libraries.

2.1. Data Collection

The data collection process for this study involved accessing the 2021 annual Behav-
ioral Risk Factor Surveillance System data (BRFSS) [36], a health-related telephone survey,
which was obtained from the Center for Disease Control (2021). The dataset, comprising
308,854 records with a total of 304 attributes, was accessed on a local machine for analysis
and model development. However, not all of these attributes were utilized in this specific
study, as they were considered irrelevant. Therefore, a subset of 19 attributes was delib-
erately selected and was integrated into the construction of the predictive model, which
aimed to identify high-risk individuals for CVD. The target variable (‘Heart_Disease’)
represents whether an individual is likely to be at risk for CVD (class 1) or not (class
0). The subset of the BRFSS dataset used is displayed in Table 1, and it consists of 19
distinct features.

Table 1. BRFSS dataset description.

Feature Description

General_Health The general health condition of the respondent
Checkup The period elapsed since the last time the respondent had a routine check-up
Exercise Whether the respondent participated in any physical activities during the last month or not

Skin_Cancer Whether the respondent had skin cancer or not
Other_Cancer Whether the respondent had another kind of cancer or not

Depression Whether the respondent had a depressive disorder or not
Diabetes Whether the respondent had diabetes or not
Arthritis Whether the respondent had arthritis or not

Sex The respondent’s sex
Age_Category The category of age that the respondent falls into
Height_(cm) The respondent’s height measured in cm
Weight_(kg) The respondent’s weight measured in kg

BMI The respondent’s body mass index
Smoking_History Whether the respondent had a smoking history or not

Alcohol_Consumption The respondent’s reported alcohol consumption
Fruit_Consumption The respondent’s reported fruit consumption

Green_Vegetables_Consumption The respondent’s reported green vegetables consumption
Fried_Potato_Consumption The respondent’s reported fried potatoes consumption

Heart_Disease Whether the respondent reported having a heart disease or not

This curated subset, comprising 19 features, encapsulates most of the known risk
factors associated with CVDs. As we delve into our analysis and model construction,
these distilled attributes serve as crucial indicators, guiding our research for effective risk
prediction and proactive healthcare intervention.

2.2. Exploratory Data Analysis

Exploratory data analysis (EDA) stands as a cornerstone in predictive analytics, serv-
ing to illuminate feature interactions, unveil correlations, discern valuable patterns, and
foster data comprehension before venturing into predictive modeling. In our endeavor
to unlock insights within the BRFSS dataset pertaining to heart disease, we leveraged
various data analysis methodologies, including descriptive statistics, data visualization,
and correlation analysis.

A preliminary statistical examination unveiled pivotal characteristics embedded
within our dataset:
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• The Sex distribution indicates a slight predominance of females over males, with
females comprising 52% of the population.

• Patient demographics span diverse age categories, with the highest representation
observed in the 50–54 age group, closely trailed by the 55–59 and 60–64 age brackets.
Notably, fewer young individuals participated in the survey, suggesting the potential
applicability of the predictive model to older demographics.

• The majority of patients perceive their overall health as “Good”, with “Very Good”
emerging as the next frequently chosen option. Relatively fewer patients (33%) catego-
rize their health as “Fair” or “Poor”.

• A significant portion of patients (77%) underwent a medical checkup within the
previous year.

• Most patients reported no history of diabetes, arthritis, cancer, or depression.
• The majority of patients had no smoking history (59%) and engaged in regular

exercise (78%).

Furthermore, gaining precise insights into the distribution of the target variable within
the dataset is imperative. Our analysis of the BRFSS data unveiled a notable class imbal-
ance, as depicted in Figure 2. Merely 8.1% of the surveyed population reported a diagnosis
of heart disease, accentuating the challenge of class imbalance in our modeling endeav-
ors. Such imbalance may predispose the model towards the majority class of non-CVD
cases, potentially compromising its efficacy in identifying high-risk patients. Address-
ing this imbalance is paramount to mitigating bias and enhancing model performance in
risk prediction.

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 24 
 

distilled attributes serve as crucial indicators, guiding our research for effective risk pre-
diction and proactive healthcare intervention. 

2.2. Exploratory Data Analysis 
Exploratory data analysis (EDA) stands as a cornerstone in predictive analytics, serv-

ing to illuminate feature interactions, unveil correlations, discern valuable patterns, and 
foster data comprehension before venturing into predictive modeling. In our endeavor to 
unlock insights within the BRFSS dataset pertaining to heart disease, we leveraged various 
data analysis methodologies, including descriptive statistics, data visualization, and cor-
relation analysis. 

A preliminary statistical examination unveiled pivotal characteristics embedded 
within our dataset: 
• The Sex distribution indicates a slight predominance of females over males, with fe-

males comprising 52% of the population. 
• Patient demographics span diverse age categories, with the highest representation 

observed in the 50–54 age group, closely trailed by the 55–59 and 60–64 age brackets. 
Notably, fewer young individuals participated in the survey, suggesting the potential 
applicability of the predictive model to older demographics. 

• The majority of patients perceive their overall health as “Good”, with “Very Good” 
emerging as the next frequently chosen option. Relatively fewer patients (33%) cate-
gorize their health as “Fair” or “Poor”. 

• A significant portion of patients (77%) underwent a medical checkup within the pre-
vious year. 

• Most patients reported no history of diabetes, arthritis, cancer, or depression. 
• The majority of patients had no smoking history (59%) and engaged in regular exer-

cise (78%). 
Furthermore, gaining precise insights into the distribution of the target variable 

within the dataset is imperative. Our analysis of the BRFSS data unveiled a notable class 
imbalance, as depicted in Figure 2. Merely 8.1% of the surveyed population reported a 
diagnosis of heart disease, accentuating the challenge of class imbalance in our modeling 
endeavors. Such imbalance may predispose the model towards the majority class of non-
CVD cases, potentially compromising its efficacy in identifying high-risk patients. Ad-
dressing this imbalance is paramount to mitigating bias and enhancing model perfor-
mance in risk prediction. 

 
Figure 2. Percentage of people having a heart disease. 

Afterwards, we conducted a correlation analysis, which shed light on the intricate 
relationships between various features and the risk of developing CVD. One notable ob-
servation is the negative correlation between general health and both heart disease and 

Figure 2. Percentage of people having a heart disease.

Afterwards, we conducted a correlation analysis, which shed light on the intricate
relationships between various features and the risk of developing CVD. One notable
observation is the negative correlation between general health and both heart disease and
diabetes. This suggests that individuals who rate their general health poorly are more
prone to developing one or both diseases, underscoring the importance of overall health
status in disease prevention.

Similarly, the negative correlation observed with exercise implies that engaging in
regular physical activity may contribute to reducing the risk of developing CVDs. This
aligns with established knowledge emphasizing the benefits of exercise in promoting
cardiovascular health.

On the other hand, the positive correlation between age category and the target
variable is unsurprising, as age is a non-modifiable risk factor strongly associated with
increased CVD incidence. This underscores the importance of age as a critical determinant
in assessing cardiovascular risk.
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The identified influential features for prediction, including general health, age cate-
gory, diabetes, arthritis, and exercise, resonate with existing research in the field of CVDs.
These factors have been consistently recognized as significant contributors to CVD risk
and progression.

Overall, these findings provide valuable insights into the factors influencing CVD risk
and serve as a foundation for developing predictive models aimed at early detection and
prevention strategies in cardiovascular health management.

2.3. Data Wrangling

Data wrangling serves as the foundational step in the journey from raw data to
meaningful insights and actionable outcomes. In this chapter, we focus on the intricate
process of data preprocessing and feature engineering, essential components of preparing
datasets for analysis and modelling. Data wrangling encompasses a series of tasks aimed
at transforming raw data into a format conducive to analysis, addressing issues of quality,
consistency, and relevance.

2.3.1. Data Preprocessing

The subsequent phase involved the preprocessing of the dataset, aiming to render the
data as more compatible with ML algorithms and conducive to modeling. Notably, the
dataset exhibited no missing values, and its output was binary, categorizing individuals as
either unaffected by heart disease (labeled 0) or reporting its presence (labeled 1). Initially,
80 duplicated observations were identified and removed to mitigate potential noise and
inaccuracies. While outliers were detected in variables such as weight, height, and Body
Mass Index (BMI), they were deemed as extreme yet potentially meaningful values and were
retained within the dataset. Additionally, normalization of input features was performed
using MinMaxScaler, ensuring that all features fell within the range [0, 1] to facilitate a
uniform contribution to model fitting and prevent bias stemming from varying scales.

2.3.2. Feature Engineering

Subsequently, we engaged in feature engineering to augment the informativeness
and relevance of the data for our predictive objectives. Initially, binning was applied to
the “BMI” feature to facilitate interpretability, categorizing BMI values into underweight,
healthy weight, overweight, and obese ranges [1,37].

Binning continuous variables like BMI can help mitigate the impact of outliers and non-
linear relationships, making the data more amenable to modelling techniques that assume
linearity or require categorical inputs. Furthermore, we devised a composite variable
labelled “Overall_Diet”, which quantifies an individual’s dietary habits by considering
the consumption of green vegetables, fruits, and fried potatoes. The inclusion of fruits
and vegetables contributes positively to the score, while fried potato consumption detracts
from it.

In an effort to discern potential correlations between individual habits and heart
disease development, the feature “Substance_Use” was introduced, encapsulating the
interaction between smoking and alcohol consumption. Notably, a modified mapping was
employed for the smoking variable, with smokers being assigned a value of “−1” and
non-smokers designated as “0”, thereby accentuating higher negative values for individuals
engaging in both tobacco and alcohol use.

Further preprocessing steps involved converting features such as Heart_Disease,
Skin_Cancer, Other_Cancer, depression, arthritis, Smoking_History, and exercise from
Yes/No values to binary format. Additionally, ordinal features like General_Health,
BMI_Category, and Age_Category underwent label encoding to retain their ordinal nature,
while categorical nominal features such as sex and diabetes were subjected to one-hot
encoding to prevent the model from inferring spurious relationships between categories.
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2.4. Resampling Techniques

In the domain of data-driven decision making, the significance of data quality and
integrity cannot be overstated. The efficacy of predictive models, irrespective of their
application domain, heavily hinges on the quality of the data they are trained on. A
prevalent challenge encountered in real-world datasets is data imbalance, which poses a
substantial obstacle to achieving accurate predictions and robust model generalization.
Data imbalance manifests when the distribution of classes within the dataset is highly
skewed, with one class significantly outnumbering the others. Traditional ML models often
struggle with imbalanced data, exhibiting a tendency to prioritize the majority class while
potentially overlooking crucial patterns within the minority class.

To tackle the issue of imbalanced datasets, resampling techniques have emerged as
a widely adopted strategy. Resampling involves the manipulation of dataset instances,
typically through under sampling of the majority class and/or oversampling of the minority
class. The primary aim of this section is to offer a comprehensive insight into various
resampling techniques that have proven effective in addressing the imbalance challenge.

These techniques encompass methodologies such as the Synthetic Minority Over-
sampling Technique (SMOTE), SMOTE combined with edited nearest neighbors (SMOTE-
ENN), SMOTE combined with Tomek links (SMOTE-Tomek), and Adaptive Synthetic
Sampling (ADASYN).

2.4.1. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE stands out as an oversampling technique designed to generate synthetic
samples for the minority class. Unlike random oversampling, which can lead to overfitting,
SMOTE operates within the feature space, creating new instances through interpolation
between closely positioned positive instances.

Initially, the total number of oversampled observations, denoted as N, is determined.
Typically, this value is selected to attain a balanced binary class distribution of 1:1, although
adjustments can be performed based on specific requirements. The process initiates by
randomly selecting a positive class instance, followed by identifying its K-nearest neighbors,
often set to 5 by default. Subsequently, N instances from this set of K neighbors are chosen
to generate new synthetic instances. This is achieved by calculating the difference in
distance between the feature vector and its neighboring instances using a chosen distance
metric. The difference is then multiplied by a random value in the range (0, 1] and added
to the original feature vector [38].

2.4.2. Adaptive Synthetic Sampling (ADASYN)

Adaptive Synthetic Sampling (ADASYN) represents an extension of the SMOTE
algorithm, with a focus on adaptability in addressing the challenges posed by imbalanced
datasets. ADASYN operates by boosting the representation of the minority class through
the creation of synthetic instances. Unlike SMOTE, ADASYN adjusts its oversampling
rate based on the difficulty of classifying instances due to their proximity to the decision
boundary. Instances that are harder to classify receive a higher oversampling rate, while
those that are easier to classify receive a lower rate. Additionally, ADASYN explores
the nearest neighbor area more comprehensively by considering the majority class data
points present within that region [39]. This adaptability ensures a balanced oversampling
technique while preventing over-generalization.

2.4.3. SMOTE Combined with Edited Nearest Neighbors (SMOTE-ENN)

SMOTE combined with edited nearest neighbors (SMOTE-ENN) integrates both under-
sampling and oversampling methods to enhance classifier performance. SMOTE augments
the underrepresented class, while edited nearest neighbors (ENNs) eliminate observations
from both classes that deviate from their K-nearest neighbor majority class. This hybrid
approach ensures a balanced dataset free from noisy or misleading data points, thereby
improving predictive accuracy [39].
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2.4.4. SMOTE Combined with Tomek Links (SMOTE-Tomek)

SMOTE combined with Tomek links (SMOTE-Tomek) is another hybrid algorithm
that balances data by generating synthetic minority class instances and subsequently
removing noisy and borderline instances using Tomek links, an undersampling technique.
A Tomek link exists between two instances from different classes that are each other’s
nearest neighbors in the feature space. By removing these links, ambiguous data points are
eliminated, resulting in a cleaner and more balanced dataset [35].

2.5. Modeling

In this chapter, we briefly discuss the classification algorithms employed in our study,
as well as the configuration of the models’ fine-tuning.

Logistic regression: Logistic regression is a favored model for predicting the likelihood
of a target variable, employing the sigmoid function to transform real-valued inputs into
probabilities ranging from 0 to 1. By formulating a hypothesis and thresholding it at 0.5,
logistic regression facilitates binary classification, with values above 0.5 indicating the
presence of heart disease (y = 1) and values below 0.5 indicating a healthy individual
(y = 0) [40].

Decision tree: Decision trees are widely used for regression and classification tasks,
offering a clear and interpretable method for making predictions. With branches represent-
ing decisions and leaf nodes denoting outcomes, decision trees encapsulate training data in
a compact tree structure. Despite their susceptibility to overfitting, techniques like pruning
and ensemble methods enhance their generalization to unseen data [41].

Random forest: Random forest is an ensemble learning algorithm that constructs
multiple decision trees with random subsets of data and features during training. By
combining predictions from individual trees, random forest mitigates overfitting and
enhances decision-making accuracy [35].

Gradient boosting: Gradient boosting combines weak learners, often decision trees,
into a robust predictive model by iteratively rectifying errors introduced by prior learn-
ers. Continuous reduction of residual error with each iteration enhances model perfor-
mance [20].

Extreme gradient boosting (XGBoost): XGBoost is a scalable implementation of gradi-
ent boosting, employing techniques like parallel processing and tree pruning to optimize
speed and accuracy. It integrates regularization to mitigate overfitting and offers flexibility
by allowing custom loss functions [21].

CatBoost: CatBoost, based on gradient boosted decision trees, excels in handling cate-
gorical data in diverse datasets. Its ordered boosting approach and use of target statistics
facilitate efficient learning without relying on one-hot encoding. Additionally, Catboost
reduces the need for extensive hyperparameter tuning and enables custom function specifi-
cation, enhancing its utility for ML tasks [22].

Artificial neural networks (ANNs): ANNs constitute a class of ML models inspired
by the intricate network of interconnected neurons in the human brain. ANNs consist of
interconnected layers of artificial neurons, known as perceptrons, which serve as nonlinear
transformation units for input data. This architecture enables ANNs to perform complex
ANNs is their ability to adapt parameters through iterative training, where the network
adjusts internal weightings to optimize performance. Training involves using a backprop-
agation network to adjust weights based on the disparity between predicted and actual
outcomes [42,43].

Our proposed ANN architecture comprises sequentially arranged, densely connected
layers designed to extract intricate patterns from the input data. The input layer, consisting
of 128 units with rectified linear unit (ReLU) activation functions, introduces non-linearity
to capture complex relationships. A dropout layer with a dropout rate of 0.5 is added to
prevent overfitting by randomly dropping connections during training. Subsequently, a
second dense layer with 64 units and a ReLU activation function refines the learned features,
followed by another dropout layer to reinforce model robustness. The output layer, with
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a sigmoid activation function, transforms learned features into probability scores for the
binary classification of CVD presence. To address class imbalance, we assign class weights
during model compilation, prioritizing the correct prediction of high-risk cases. The class
weight for the positive class is set to 10 on raw data and 2 on resampled data.

For model optimization, we employed the Adam optimizer and binary cross-entropy
loss function. Early stopping is implemented using the EarlyStopping callback to prevent
overfitting by halting training if validation loss fails to improve over a predefined number
of epochs.

3. Results

In this chapter, we present the results obtained from our research, encompassing the
comprehensive performance assessment of each classifier (logistic regression (LR), decision
trees (DTs), random forest (RF), gradient boosting (GB), XGBoost (XGB) and CatBoost)
subsequent to the application of each resampling technique (SMOTE, ADASYN, SMOTE-
Tomek, SMOTE-ENN). The evaluation metrics employed in our analysis include accuracy,
recall, precision, F1-score, the area under the ROC curve (AUC), alongside the elucidation
of the confusion matrix. Highlighted in bold within the tables are the superior performance
outcomes the models achieved, representing the best-performing model when coupled
with each of the resampling techniques.

For the sake of robustness, a stratified split of 70% for training and 30% for testing
was adopted across all experiments. It is noteworthy that each resampling method was
exclusively applied to the training dataset to forestall any potential data leakage from the
test set. This meticulous approach not only upholds the integrity of the test dataset but also
provides a more precise evaluation of the model’s generalization ability.

3.1. Raw Data

At the onset of our study, we applied our ML algorithms on the raw dataset. As was
expected, the inherent imbalance within the data posed a substantial obstacle, hindering the
models’ ability to accurately identify positive observations of heart disease. This imbalance
led to a bias favoring the classification of most observations as not having heart disease,
thereby inflating apparent accuracy metrics while obscuring poor performance on the
minority class. Recognizing the critical nature of this challenge, we undertook measures to
address it, resulting in noteworthy improvements, as elaborated in subsequent sections.

To ensure robust estimations of model performance, we employed a stratified 5-fold
cross-validation across all models. This technique, by partitioning the dataset into multiple
folds and training/evaluating the model on each combination, provided a comprehensive
assessment of how well the models generalized to different subsets of the data. The
evaluation outcomes of the trained ML models on both the testing and training sets are
summarized in Table 2.

Table 2. Performance results on raw data.

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.92/0.93 0.03/0.06 0.47/0.51 0.06/0.12 0.80/0.84
Decision Tree 0.86/1.00 0.23/1.00 0.19/1.00 0.21/1.00 0.57/1.00

Random Forest 0.92/1.00 0.03/1.00 0.47/1.00 0.06/1.00 0.80/1.00
Gradient Boosting 0.92/0.92 0.05/0.05 0.49/0.55 0.09/0.09 0.83/0.84

XGBoost 0.92/0.92 0.05/0.09 0.46/0.75 0.10/0.17 0.83/0.88
CatBoost 0.92/0.93 0.04/0.11 0.47/0.84 0.09/0.19 0.83/0.87

Notably, initial observations revealed instances of overfitting in the decision tree and
random forest models, leading to poor generalization of unseen data. Additionally, while
many models achieved high accuracy rates (approximately 92%), their performance in
correctly predicting positive cases was notably deficient.
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This discrepancy, wherein models exhibited high accuracy but low recall rates, un-
derscores concern regarding the potential oversight of a significant portion of positive
cases—an issue of paramount importance in predictive healthcare analytics. For instance,
as depicted in Figure 3, the confusion matrix for logistic regression, which exhibited rel-
atively better performance, revealed 7247 missed positive cases. Such oversights could
carry significant consequences in real-world scenarios, prompting us to prioritize the
enhancement of model sensitivity.
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While default values often yield satisfactory results, the art of hyperparameter tuning
unveils the potential for more accurate predictions. By reviewing the documentation of
each algorithm, the bibliography, and by using some optimizing algorithms, we tried to
find the right parameter grid to improve our models’ performance. The performance results
that the models achieved can be seen in Table 3.

Table 3. Performance results after optimization.

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.92/0.92 0.05/0.05 0.52/0.53 0.08/0.09 0.83/0.84
Decision Tree 0.92/0.92 0.05/0.07 0.44/0.61 0.09/0.13 0.80/0.86

Random Forest 0.92/1.00 0.04/1.00 0.43/1.00 0.08/1.00 0.81/1.00
Gradient Boosting 0.92/0.92 0.04/0.07 0.49/0.71 0.08/0.12 0.83/0.86

XGBoost 0.74/0.76 0.75/0.87 0.20/0.23 0.32/0.37 0.82/0.89
CatBoost 0.74/0.78 0.77/0.85 0.20/0.22 0.33/0.35 0.83/0.87

Upon examination of the results, it is evident that there is negligible variance among
the outcomes for the remaining models, except for XGBoost and CatBoost. Notably, these
two models exhibited a noteworthy increase in the achieved recall, with CatBoost reaching
an impressive 77% while preserving an excellent accuracy rate. This substantial escalation
from the initial 4% underscores the significant impact of tuning these models with the
right hyperparameters. It demonstrates that, when finely tuned, CatBoost can identify a
considerable number of individuals prone to CVD with a level of accuracy that extends
beyond mere satisfaction. The dual-axis visualization in Figure 4 offers insights into how
each model navigates the trade-off between overall accuracy and the adeptness in capturing
positive cases, recall.
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Analyzing both the weighted average and the macro average F1-score, as illustrated in
Table 4, offers valuable insights into the model’s performance with and without considering
the proportion of each class.

Table 4. Macro and weighted average F1-score.

Model Macro Avg. F1-Score Weighted Avg. F1-Score

Logistic Regression 0.52 0.89
Decision Tree 0.53 0.89

Random Forest 0.52 0.89
Gradient Boosting 0.52 0.89

XGBoost 0.58 0.80
CatBoost 0.58 0.80

Particularly, the macro average F1-score, even in the best case scenario, reached
only 0.58. This indicates that the model’s performance diminishes when both classes are
considered equally, irrespective of their imbalance.

3.2. SMOTE

Next, in order to address the dataset’s class imbalance, we utilized the Synthetic
Minority Oversampling Technique (SMOTE) algorithm. This approach involved generating
synthetic instances within the minority class to augment its representation within the
dataset. The application of SMOTE resulted in the generation of an adequate number
of observations, thereby equalizing the representation of both classes. Consequently, the
dataset comprised a total of 397,294 observations.

The performance results of the trained models on the test set, in contrast with their
performance on the training set after applying SMOTE in the dataset, can be seen in Table 5.

The implementation of SMOTE yielded a significant improvement in the models’
ability to detect individuals at risk of heart disease. Notably, the recall metric experienced a
substantial surge, rising from 3% to an impressive 64% when employing logistic regression
or random forest algorithms. This heightened sensitivity indicates an enhancement in accu-
rately identifying positive cases, a critical aspect in the domain of heart disease prediction.
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Table 5. Performance results after SMOTE.

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.70/0.70 0.64/0.65 0.16/0.17 0.26/0.26 0.74/0.75
Decision Tree 0.84/0.99 0.27/0.99 0.17/1.00 0.21/1.00 0.58/1.00

Random Forest 0.70/0.70 0.64/0.65 0.16/0.17 0.26/0.26 0.78/1.00
Gradient Boosting 0.83/0.84 0.39/0.40 0.21/0.22 0.27/0.28 0.77/0.77

XGBoost 0.91/0.91 0.11/0.16 0.31/0.42 0.17/0.23 0.80/0.84
CatBoost 0.91/0.92 0.08/0.14 0.40/0.62 0.14/0.23 0.81/0.87

However, it is imperative to acknowledge the trade-offs associated with this improve-
ment. While the recall metric demonstrated a remarkable boost, accuracy and precision
witnessed a decline. This implies that while the models become more proficient at capturing
instances of heart disease, there is a corresponding increase in false positives and a potential
reduction in overall predictive accuracy.

Interestingly, the boosting algorithms did not demonstrate a proportional enhancement
in performance with the introduction of SMOTE. Despite the augmentation of synthetic
data, they maintained a level of performance comparable with that before oversampling
the dataset. These variations in performance across different algorithms underscore the
complexity associated with the utilization of SMOTE and its impact on various evaluation
metrics. Subsequently, we proceeded to fine-tune our models, and the attained results are
delineated in Table 6.

Table 6. Performance results after optimization (SMOTE).

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.70/0.70 0.64/0.65 0.16/0.17 0.26/0.26 0.74/0.75
Decision Tree 0.84/0.97 0.27/0.78 0.17/0.94 0.20/0.86 0.58/1.00

Random Forest 0.70/0.97 0.64/0.65 0.16/0.17 0.26/0.26 0.78/1.00
Gradient Boosting 0.83/0.84 0.39/0.40 0.21/0.22 0.27/0.28 0.77/0.78

XGBoost 0.67/0.68 0.80/0.89 0.17/0.19 0.28/0.31 0.80/0.85
CatBoost 0.70/0.71 0.79/0.80 0.18/0.20 0.30/0.33 0.81/0.87

The findings in Table 6 reveal that, despite an exhaustive grid search aimed at opti-
mizing their hyperparameters, there was no discernible enhancement in the performance
of logistic regression, decision trees, and random forest. Furthermore, the latter two
algorithms appear to have potentially overfit the training data.

However, our boosting algorithms have exceeded expectations. CatBoost achieved
an impressive recall of 79%, while XGBoost attained a noteworthy 80%. Additionally,
both models maintained a robust AUC score of 80%, underscoring their resilience and
discriminative capabilities.

As depicted in the confusion matrix presented in Figure 5, the optimized XGBoost
model successfully identified 6078 out of the total 7477 positive cases. This outcome
highlights the potential utility of our approach in the healthcare domain, showcasing its
efficacy in accurately identifying a substantial proportion of positive cases.
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3.3. ADASYN

Distinguishing itself from SMOTE, ADASYN introduces an adaptive dimension to
the generation of synthetic data. Unlike SMOTE, which uniformly enhances the minority
class with synthetic instances, ADASYN adopts a more dynamic approach. It focuses its
synthetic sampling efforts on areas of the feature space where minority instances are sparse,
offering a more nuanced adaptation to the data distribution.

ADASYN dynamically adjusted the dataset by augmenting the minority class instances
to 200,721, a substantial increase, while maintaining the count of the majority class at its
original level of 198,647 instances.

The influence of ADASYN on model performance is evident in Table 7. Upon review-
ing the performance metrics presented in this table, it becomes apparent that ADASYN,
while enhancing the recall of the models, demonstrated a somewhat more restrained impact
compared with its oversampling counterpart, SMOTE. Particularly, logistic regression and
random forest exhibited notable improvement once again, achieving a commendable 55%
in recall. However, decision trees and boosting algorithms displayed increased accuracy
but contend with a considerably lower recall.

Table 7. Performance results after implementing ADASYN.

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.73/0.74 0.56/0.56 0.16/0.16 0.25/0.25 0.73/0.73
Decision Tree 0.84/1.00 0.26/1.00 0.17/1.00 0.20/1.00 0.57/1.00

Random Forest 0.73/0.74 0.56/0.56 0.16/0.16 0.25/0.26 0.78/1.00
Gradient Boosting 0.83/0.83 0.40/0.40 0.21/0.21 0.27/0.28 0.77/0.77

XGBoost 0.90/0.92 0.11/0.15 0.32/0.44 0.16/0.23 0.80/0.84
CatBoost 0.92/0.92 0.08/0.14 0.40/0.63 0.13/0.23 0.81/0.86

Upon scrutinizing the models’ performance on the training data, a notable disparity
in the outcomes emerges particularly for decision trees when compared with their perfor-
mance on the testing data. While the model achieved remarkably high accuracy on the
training data, its performance on unseen data was notably inferior. This discrepancy raises
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concerns regarding potential overfitting, indicating that the model might have captured
noise or idiosyncratic patterns that do not generalize effectively beyond the training set.

Subsequently, we proceed with the optimization of our models, leveraging the hyper-
parameters recommended by the GridSearchCV and Optuna algorithms. The results of this
optimization endeavor are elaborated in Table 8.

Table 8. Performance results after optimization (ADASYN).

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-score/
Training F1-score

AUC/
Training AUC

Logistic Regression 0.75/0.76 0.50/0.50 0.16/0.16 0.25/0.25 0.71/0.72
Decision Tree 0.85/0.98 0.23/0.78 0.18/0.88 0.20/0.82 0.59/1.00

Random Forest 0.74/0.76 0.56/0.50 0.16/0.16 0.25/0.25 0.78/1.00
Gradient Boosting 0.83/0.90 0.41/0.17 0.21/0.27 0.27/0.21 0.77/0.79

XGBoost 0.67/0.68 0.81/0.89 0.17/0.18 0.28/0.31 0.80/0.85
CatBoost 0.70/0.71 0.80/0.90 0.18/0.20 0.30/0.34 0.81/0.87

Notably, XGBoost and CatBoost maintain a commendable AUC rate of 80%, con-
currently enhancing their sensitivity to 81% and 80%, respectively, surpassing SMOTE’s
performance on the same models. Moreover, despite the improvement in F1-score com-
pared with previous results, there remains scope for further enhancement.

3.4. SMOTE-Tomek

Subsequently, we implemented the SMOTE-Tomek algorithm, a hybrid resampling
technique widely adopted for addressing data imbalance. Through this approach, the
minority class experiences augmentation, reaching 198,031 instances, significantly strength-
ening its presence within the dataset. Concurrently, the Tomek links algorithm identifies
and eliminates instances forming Tomek links—pairs of instances from different classes
that are nearest to each other—facilitating a targeted reduction in the majority class.

Following the resampling process, we applied our ML models, and the ensuing results
are presented in Table 9.

Table 9. Performance results after implementing SMOTE-Tomek.

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.70/0.70 0.63/0.61 0.16/0.16 0.25/0.25 0.74/0.74
Decision Tree 0.84/1.00 0.27/1.00 0.17/1.00 0.21/1.00 0.58/1.00

Random Forest 0.70/0.70 0.63/0.61 0.16/0.16 0.25/0.25 0.78/1.00
Gradient Boosting 0.83/0.84 0.40/0.40 0.21/0.22 0.28/0.28 0.77/0.78

XGBoost 0.90/0.91 0.12/0.16 0.31/0.43 0.17/0.24 0.80/0.84
CatBoost 0.91/0.92 0.08/0.15 0.40/0.63 0.14/0.24 0.81/0.87

With our data now balanced, we find satisfaction in the 91% accuracy achieved by the
boosting algorithms. However, the 8% recall rate reveals a notable drawback, as the models
tend to favor the majority class, thus hindering their ability to accurately detect positive
cases. Consequently, we find the performance of logistic regression and random forest
more appealing as they strike a balance between relatively high accuracy and a satisfactory
level of recall.

Upon fine-tuning the models, as depicted in Table 10, we observed that decision trees
unfortunately overfit to the training data, while logistic regression and random forest
experienced a drop in performance. Interestingly, CatBoost and XGBoost demonstrated
noteworthy performance improvements.
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Table 10. Performance results after optimization with SMOTE-Tomek.

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.76/0.76 0.49/0.50 0.16/0.17 0.25/0.25 0.72/0.73
Decision Tree 0.86/0.98 0.21/0.79 0.20/0.93 0.20/0.85 0.59/1.00

Random Forest 0.76/0.76 0.49/0.50 0.16/0.17 0.25/0.25 0.78/1.00
Gradient Boosting 0.83/0.84 0.40/0.40 0.21/0.22 0.28/0.28 0.77/0.78

XGBoost 0.67/0.68 0.82/0.89 0.17/0.19 0.28/0.31 0.80/0.85
CatBoost 0.70/0.71 0.81/0.90 0.18/0.21 0.30/0.34 0.81/0.87

CatBoost not only achieved an impressive 70% accuracy but also excelled in identifying
positive cases, boasting an 81% recall rate. Similarly, XGBoost outperformed all models
with an 82% sensitivity rate, marking the highest result thus far. These outcomes underscore
the effectiveness and robustness of boosting algorithms in navigating the intricacies of
the dataset.

3.5. SMOTE-ENN

In the concluding phase, we implemented the SMOTE-ENN hybrid resampling algo-
rithm on the BRFSS data, merging synthetic data generation with data refinement strategies.
This approach strategically increased the minority class to 193,714 instances, substantially
reinforcing its presence in the dataset. Concurrently, it pruned the majority class, reducing
its observations to 133,109 from the original count of 198,647.

The performance results after applying the SMOTE-ENN algorithm are presented in
Table 11.

Table 11. Performance results after implementing SMOTE-ENN.

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.60/0.61 0.79/0.80 0.14/0.15 0.24/0.25 0.75/0.76
Decision Tree 0.79/0.91 0.42/1.00 0.17/0.48 0.24/0.65 0.62/0.95

Random Forest 0.60/0.61 0.79/0.80 0.14/0.48 0.24/0.25 0.79/0.99
Gradient Boosting 0.74/0.74 0.67/0.68 0.19/0.19 0.29/0.30 0.78/0.79

XGBoost 0.85/0.86 0.42/0.50 0.25/0.30 0.31/0.38 0.80/0.84
CatBoost 0.87/0.89 0.37/0.48 0.28/0.36 0.32/0.41 0.81/0.86

Upon scrutinizing these findings, a notable enhancement was discernible across all
models concerning recall, while maintaining a commendable accuracy rate, subsequent
to the implementation of the SMOTE-ENN technique. For example, gradient boosting
demonstrated a substantial surge from 4% to 67% without any additional optimization.
Furthermore, it is noteworthy that both logistic regression and random forest achieved an
impressive 79% recall. Moreover, with our dataset now balanced, we could explore the
AUC metric, revealing that nearly all our models exhibited commendable proficiency in
correctly classifying instances, with random forest notably achieving an impressive 80%.

Moving forward to optimize the models, we meticulously selected hyperparameters
tailored to our data, prioritizing those assigning different weights to each class. This
strategic decision emphasizes the minority class, which holds particular significance in our
context. The results, as illustrated in Table 12, are promising. Interestingly, we mitigated
overfitting across all models, as evidenced by the consistent performance on both the train-
ing and test sets. Additionally, we achieved peak performance for each model. Particularly,
CatBoost surpassed expectations with a remarkable 88% recall, alongside a decent accuracy
rate and an impressive 82% AUC rate.
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Table 12. Performance results after optimization with SMOTE-ENN.

Model Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Logistic Regression 0.66/0.66 0.71/0.73 0.15/0.16 0.25/0.26 0.74/0.75
Decision Tree 0.79/0.91 0.41/0.99 0.17/0.48 0.24/0.65 0.62/0.95

Random Forest 0.66/0.66 0.71/0.73 0.15/0.16 0.25/0.26 0.78/0.98
Gradient Boosting 0.74/0.74 0.67/0.68 0.19/0.19 0.29/0.30 0.78/0.79

XGBoost 0.61/0.61 0.87/0.94 0.15/0.17 0.26/0.28 0.80/0.85
CatBoost 0.63/0.63 0.88/0.94 0.16/0.17 0.27/0.29 0.82/0.86

This outcome highlights the effectiveness of integrating CatBoost with the hybrid
SMOTE-ENN algorithm, particularly for healthcare professionals grappling with imbal-
anced real-world datasets.

As depicted in Figure 6, this combination proves highly advantageous, facilitating the
detection of a significant number of positive cases—an invaluable asset for the healthcare
sector by identifying 6548 out of the total 7477 individuals at risk.
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3.6. Deep Learning

The versatility of ANNs extends beyond unstructured data, such as images and text, to
structured data as well. In our study, we demonstrated the efficacy of ANNs in surpassing
traditional ML algorithms when applied to structured data. The model’s performance
when employed with each of the resampling algorithms and on the raw data is presented
in Table 13.

Table 13. ANN performance results.

ANN Accuracy/
Training Accuracy

Recall/
Training Recall

Precision/
Training Precision

F1-Score/
Training F1-Score

AUC/
Training AUC

Raw data 0.74/0.73 0.78/0.80 0.20/0.21 0.32/0.33 0.76/0.77
SMOTE 0.58/0.78 0.80/0.93 0.14/0.71 0.23/0.81 0.68/0.77

ADASYN 0.63/0.77 0.74/0.92 0.15/0.70 0.24/0.80 0.68/0.76
SMOTE-Tomek 0.62/0.77 0.77/0.94 0.15/0.70 0.24/0.80 0.69/0.77
SMOTE-ENN 0.54/0.83 0.87/0.96 0.14/0.79 0.24/0.87 0.69/0.80
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The analysis of our results uncovers several significant findings. Firstly, our successful
mitigation of overfitting represents a notable achievement, especially when employing an
ANN in the context of structured, non-complex data.

Upon closer inspection, our ANN demonstrates superior performance compared with
previously utilized ML models on the raw data. Remarkably, it achieved a recall rate of
78% while matching the accuracy rate attained by the top-performing ML model at 74%.
This outcome underscores the effectiveness of our ANN in discerning meaningful patterns
within the data.

Furthermore, the integration of our ANN with the SMOTE-ENN hybrid resampling
algorithm yielded outstanding results, culminating in a peak recall rate of 87%. This
collaborative approach highlights the efficacy of incorporating data resampling techniques
to augment the performance of our ANN.

While our ANN, in conjunction with SMOTE, ADASYN, and SMOTE-Tomek algo-
rithms, falls slightly short of surpassing our optimized boosting algorithms, it is noteworthy
that it achieves a performance closely comparable with them. This suggests that even in
scenarios where boosting algorithms maintain a marginal advantage, our ANN remains a
competitive and promising alternative.

The nuanced interplay observed between our ANN and various resampling techniques
underscores its adaptability and potential to deliver robust performance across diverse
data types.

4. Discussion

Our investigation into predicting CVD using both ML and deep learning algorithms
has revealed crucial insights, as elucidated in this extensive evaluation. The initial phase
of our study involved the deployment of six ML models—logistic regression, decision
trees, random forest, gradient boosting, XGBoost, and CatBoost—on raw data, exposing
inherent challenges associated with dataset imbalance. Despite achieving commendable
overall accuracy, our models encountered difficulties in accurately identifying positive
cases, manifesting in a suboptimal recall rate of merely 4%. This discrepancy underscored
concerns regarding the models’ sensitivity in detecting individuals with heart-related con-
ditions, prompting a meticulous exploration of bias mitigation strategies and performance
enhancement avenues.

To address these challenges, we pursued an optimization strategy involving detailed
hyperparameter tuning using GridSearchCV for logistic regression, decision trees, and ran-
dom forest and Optuna for gradient boosting and CatBoost. Notably, XGBoost highlighted
the significance of adaptive approaches by outperforming grid searches with manually
discovered hyperparameters.

In subsequent phases, we delved into resampling techniques, implementing various
oversampling and hybrid sampling algorithms to achieve class balance. Initially, two
oversampling algorithms—SMOTE and ADASYN—were employed. SMOTE exhibited
remarkable performance improvements across all models, particularly when integrated
with XGBoost, achieving a notable accuracy rate of 67% and an impressive recall rate of
80%. While ADASYN initially lagged behind SMOTE, fine-tuning efforts yielded enhanced
performance, with XGBoost achieving an 81% recall rate while maintaining the same
accuracy rate.

Further exploration involved the utilization of two hybrid resampling algorithms—
SMOTE-Tomek and SMOTE-ENN—which strategically combined undersampling and
oversampling methods. While SMOTE-Tomek encountered challenges related to overfitting
in certain models, it demonstrated effectiveness when paired with boosting algorithms.
Notably, XGBoost attained an 82% recall rate, and CatBoost reached 81%. SMOTE-ENN
exhibited immediate enhancements in the models’ generalization abilities and effective
detection of positive cases. The combination of SMOTE-ENN with CatBoost yielded the
peak of our study’s performance, achieving an impressive 88% recall rate, indicative of
minimal missed positive cases in the dataset.
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Finally, we showcased the efficacy of ANN for structured data when appropriately
harnessed. Our proposed artificial neural network (ANN), combined with the SMOTE-
ENN algorithm, achieved an outstanding 87% recall rate and 70% AUC metric. It also
outperformed all ML models when applied on the raw data, even after their optimiza-
tion, demonstrating its potential as a valuable tool for healthcare practitioners handling
imbalanced data.

In Figure 7, we present our recommended optimal resampling algorithm–predictive
model combinations, offering a comprehensive overview of their achieved recall rates and
guiding future research and clinical applications.
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In summary, our investigation has not only shed light on the challenges associated
with predicting CVDs in real-world datasets but has also highlighted the efficacy of a multi-
faceted approach involving ML, deep learning, and resampling techniques. These findings
underscore the potential for advanced analytics to significantly impact predictive healthcare,
paving the way for improved patient outcomes and enhanced clinical decision making.

Threats to Validity and Limitations

While conducting this research, we encountered various constraints and limitations
that require recognition. A significant limitation involved the utilization of a single dataset,
potentially overlooking the diverse traits and features of the entire population. This reliance
could potentially bias our models and restrict the applicability of our conclusions. Thus,
future additional validation of our findings using broader and more diverse datasets is
desirable to ensure the robustness and verifiability of our outcomes.

Also, it is important to address the practical challenges associated with the inclusion
of 95% confidence intervals (CIs) in evaluating the statistical significance of metrics, partic-
ularly in the context of imbalanced datasets. Our analysis employed five different sampling
techniques across seven distinct models, necessitating extensive bootstrap sampling to
calculate CIs for each combination. However, conducting 1000 bootstraps for example
for each of the five sampling techniques across seven models would result in a total of
35,000 cycles, rendering it impractical within the scope of our study. Therefore, we focused
on cross-validation, prediction on unseen data, and comparison of these sets as our primary
validation strategies. While traditional CIs were not incorporated, these validation methods
are recognized as efficient and reasonable alternatives, providing robust evidence for the
validity of our findings. We encourage future studies to explore methods for incorporating
CIs in similarly complex analyses, balancing statistical rigor with practical considerations.
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5. Conclusions

In conclusion, our exploration into CVD prediction using real-life datasets, encom-
passing both ML and deep learning approaches, has yielded pivotal insights with profound
implications for healthcare practitioners and researchers. Our findings underscore the inher-
ent challenges of dealing with imbalanced datasets and emphasize the critical importance
of accurately identifying positive cases, particularly in scenarios where their representation
is limited.

Initial observations revealed a discernible trade-off between high accuracy and poor
recall for positive cases, primarily attributable to dataset imbalance. This spurred an in-
depth investigation into remedial measures, leading to the implementation of optimization
strategies, such as hyperparameter tuning and resampling techniques. By employing
oversampling methods such as Synthetic Minority Oversampling Technique (SMOTE) and
Adaptive Synthetic Sampling (ADASYN), alongside hybrid techniques like SMOTE-ENN,
we effectively balanced the distribution of classes, thereby enhancing the performance of
our predictive models. Through meticulous experimentation, we conducted five distinct
experiments for each resampling algorithm, leveraging the resampling techniques alongside
six ML models and an ANN. These interventions yielded significant enhancements, notably
improving recall rates, with optimized boosting algorithms and hybrid resampling methods
achieving impressive results. Notably, CatBoost coupled with SMOTE-ENN achieved a
remarkable 88% recall rate.

Moreover, the integration of ANNs demonstrated their efficacy in handling structured
imbalanced data, further enhancing the detection of positive cases in the healthcare domain.
Additionally, the indispensable role of electronic health records (EHRs) in predictive ana-
lytics for healthcare was emphasized, highlighting the wealth of information within EHR
that enhances model predictive capabilities and facilitates a comprehensive understanding
of individual health profiles.

There are several promising avenues for further exploration, building upon the ground-
work laid in our study. Firstly, as previously mentioned, the quality of EHR can exert a
substantial influence on model performance. Integrating more diverse and extensive
datasets holds potential to augment the generalizability of predictive models, thereby
enhancing their capacity to identify high-risk patients. Moreover, delving into the incorpo-
ration of genetic and biomarker data could furnish a more comprehensive understanding
of CVD risk, given compelling evidence suggesting a potential correlation [2].

Venturing into advanced ML techniques and deep learning architectures presents
another avenue for advancement. Employing transfer learning holds promise in signifi-
cantly bolstering the predictive capabilities of our models. Leveraging insights gleaned
from pre-trained models in health-related domains on structured data could substantially
refine CVD risk prediction. Additionally, exploring explainable AI methods stands to
mitigate interpretability challenges associated with complex models, fostering greater trust
and adoption in clinical settings. This could further empower healthcare practitioners by
elucidating the reasoning behind the models’ decision-making processes.
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