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Abstract: Remote sensing datasets usually have a wide range of spatial and spectral resolutions.
They provide unique advantages in surveillance systems, and many government organizations use
remote sensing multispectral imagery to monitor security-critical infrastructures or targets. Artificial
Intelligence (AI) has advanced rapidly in recent years and has been widely applied to remote image
analysis, achieving state-of-the-art (SOTA) performance. However, AI models are vulnerable and
can be easily deceived or poisoned. A malicious user may poison an AI model by creating a stealthy
backdoor. A backdoored AI model performs well on clean data but behaves abnormally when a
planted trigger appears in the data. Backdoor attacks have been extensively studied in machine
learning-based computer vision applications with natural images. However, much less research has
been conducted on remote sensing imagery, which typically consists of many more bands in addition
to the red, green, and blue bands found in natural images. In this paper, we first extensively studied
a popular backdoor attack, BadNets, applied to a remote sensing dataset, where the trigger was
planted in all of the bands in the data. Our results showed that SOTA defense mechanisms, including
Neural Cleanse, TABOR, Activation Clustering, Fine-Pruning, GangSweep, Strip, DeepInspect, and
Pixel Backdoor, had difficulties detecting and mitigating the backdoor attack. We then proposed an
explainable AI-guided backdoor attack specifically for remote sensing imagery by placing triggers
in the image sub-bands. Our proposed attack model even poses stronger challenges to these SOTA
defense mechanisms, and no method was able to defend it. These results send an alarming message
about the catastrophic effects the backdoor attacks may have on satellite imagery.

Keywords: deep learning; backdoor attack; remote sensing monitoring systems; backdoor defense

1. Introduction

The first satellite-based remote sensing data acquisition system was started in the
1960s. Remote sensing datasets can be acquired through satellites, airplanes, or an un-
manned aerial vehicle (UAV). Different sensors can have different spatial and spectral
resolutions and can capture more proprieties of objects of interest. For example, satellite
sensors can take images of spatial resolutions from 0.25 m to 30 m with different electro-
magnetics, e.g., near-infrared (NIR), red-edge, or other wide range of wavelengths that help
identify vegetation, lands, or objects, making remote sensing imagery a good candidate for
monitoring objects on Earth from a distance [1,2].

Many government or private organizations use high-resolution satellite imagery to
monitor natural resources. National Aeronautics and Space Administration (NASA), the
Department of Commerce’s National Oceanic and Atmospheric Administration (NOAA),
and the Department of Defense (DOD) utilize remote sensing data for various applications,
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including environment management, aviation, homeland security, public health, urban
planning, and disaster relief. In the tragic event of 11 September 2001, remote sensing was a
vital asset in responding to and recovering ground zero by generating a ground map from
geographic information system (GIS) data [3].

In recent years, deep learning models have been integrated with remote sensing
imagery for applications such as image classification [1], semantic segmentation [4], pan-
sharpening [5], change detection [2], and image super-resolution [6]. However, deep
learning models are vulnerable and can be compromised by various attacks. A backdoor
attack is a model poisoning-based attack where the poisoned model performs similarly to
the clean model in the validation dataset. However, once a poisonous trigger is present in
the dataset, the model predicts the attacker’s chosen label. This backdoor attack may create
a catastrophic failure in deep learning systems.

Backdoor attacks have been extensively studied in computer vision applications
but mostly with natural images [7,8], and much less research has been conducted in
remote sensing applications. Remote sensing images can have various multispectral bands,
depending on their sensors. For example, WorldView-2 has eight bands [9,10], in contrast
to natural images which have red, green, and blue bands. The stealthiness of backdoor
attacks can be improved by distributing the backdoor trigger across these sub-bands of
multispectral images. Traditional defense methods may quickly fail because they often
assume that the attacker has planted the backdoor in all image bands. In this paper, we
investigate backdoor attacks in remote sensing data; our contributions are the following.

• We extensively evaluated the popular backdoor attack, BadNets [11], as applied to
various remote sensing datasets, including EuroSat, Sat-4, Sat-6, and so2Sat. Our
results showed that even SOTA defense mechanisms, including Neural Cleanse [12],
TABOR [13], Activation Clustering [14], Fine-Pruning [15], GangSweep [16], STRIP [17],
DeepInspect [18], and Pixel Backdoor [19], struggled to identify and mitigate this attack.

• We developed an explainable AI-guided backdoor attack using sub-bands of multispec-
tral remote sensing datasets. The proposed approach posed even more severe threats to
SOTA defense mechanisms, as demonstrated by our extensive comparative experiments.

In this paper, we first formulate the traditional BadNets and the proposed sub-band
attacks. Then, we experimentally show that our proposed sub-band-based attack im-
proves the stealthiness of the attack and penetrates more state-of-the-art (SOTA) defense
approaches. In summary, our research revealed a novel and explainable backdoor attack for
remote sensing AI models, highlighting the need for increased attention in this emerging
field. The rest of the paper is organized as follows: Sections 2 and 3 discuss related work
and the traditional all-bands BadNets attacks, respectively. Sections 4 and 5 present the
proposed sub-band backdoor attack and some state-of-the-art defense mechanisms, respec-
tively. Sections 6 and 7 discuss experimental setups and results for all-band-based attacks,
respectively. Sections 8 and 9 present the results of the sub-band attack. Sections 10 and 11
discuss the results and summarize the paper, respectively.

2. Related Work
2.1. Deep Learning

Deep learning models utilize multiple layers of processing units to extract features
from inputs for subsequent tasks such as regression, classification, or object identifica-
tion. Recently, deep learning methods have achieved state-of-the-art performance in many
applications, including computer vision [20–25], hyperspectral imaging [26], object de-
tection [27], remote sensing [28,29], medical imaging [30,31], cybersecurity [32], speech
recognition [33], and audio classification [34]. Deep learning models can have different
architectures, and the deep convolutional neural network (DCNN) is a popular one that
revolutionized the field of computer vision since the 2012 ImageNet competition [20].
Due to its effectiveness, researchers have developed numerous DCNN architectures, in-
cluding AlexNet [20], VGGNet [35], ResNet [21], DenseNet [36], InceptionV3 [37], and
Efficient-Net [38]. The ResNet [21] uses a residual connection to train large-scale neural
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network layers and achieved state-of-the-art performance in the 2015 ImageNet competi-
tion. Efficient-Net is a recent approach that uses efficient compound coefficients to scale
up the internal layers in width, depth, and resolution with balanced ratios [38]. DCNN
architectures have also been successfully applied to remote sensing applications [1].

2.2. Backdoor Attacks and Defense Mechanisms

A backdoor attack is a type of model poisoning in which the attacker embeds a trigger
in an image and labels it with a chosen target label. This poisoned data is then used to
train the model. After training, the backdoored model performs well on clean datasets
but misclassifies any image with the embedded trigger as belonging to the target class,
regardless of the actual content in the image. The attacker can either distribute the poisoned
model to victims or release the poisoned dataset for them to use. BadNets [11], one of the
initial types of backdoor attacks, involves the attacker poisoning a portion of the training
data with a specific trigger before sending it to the victim. This trigger could be a simple
pattern in the input image. Once the victim uses these poisoned datasets for training, the
model becomes compromised.

At the same time, researchers were developing potential defense approaches. Neural
cleanse [12] provides novel algorithms for detecting and identifying the backdoor in a
poisoned model and reverse-engineering the hidden trigger. The Neural cleanse approach
shows effectiveness in various benchmark datasets, such as GTSRB [39], MNIST [40], CIFAR-
10 [41], and SVHN [42], against popular backdoor attack techniques. Over time, researchers
have developed Trojan backdoor attacks [43], reflection attacks [44], and latent vector
attacks [45]. Similarly, defense methods have also been developed, including TABOR [13],
DeepInspect [18], Gangsweep [16], etc.

2.3. Backdoor Attacks in Remote Sensing

Researchers have mostly used traditional, natural image-based backdoor attacks,
and defenses in the remote sensing domain. Brewer et al. were the first to explore the
susceptibility of remote sensing domains to backdoor attacks [46]. They utilized the UC-
Merced [47] dataset and a road quality image dataset [48]. They successfully achieved
a high attack success rate with BadNets-type attacks by planting a backdoor pattern of
25× 25 white pixels in the corner of the input image and changing the label to a target label.
Their work demonstrated how backdoor attacks could seriously compromise and threaten
the safety of remote-sensing AI models. They also found that two defense approaches,
Neural Cleanse and Activation Clustering, were not always effective in identifying and
mitigating backdoor attacks. Drager et al. proposed a wavelet transform-based attack,
known as WABA, in remote sensing datasets [49]. They injected a trigger image into the
low-frequency components of the image to achieve invisibility. They first decomposed both
benign and poisoned images into wavelet coefficients and then blended the trigger image’s
wavelet coefficient with the benign image. Islam et al. developed a triggerless backdoor
attack scheme where they injected a backdoor pattern into a multi-UAV system’s offloading
policy, increasing the computational burden on the UAV system, exhausting computational
resources, and undermining observation systems [50].

3. Investigation of All-Bands BadNets Attack in Remote Sensing Dataset

In this section, we explore the BadNets attack [11] to be applied in remote sensing im-
agery, where a trigger is embedded in all bands of the data. The diagram of the experiment
is shown in Figure 1. We will detail the attack model, backdoor planting, and evaluation
schemes as follows.
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(a)

(b)

Figure 1. BadNets backdoor attack in remote sensing imagery. The EuroSat dataset [51] is used
for illustration. (a) BadNets backdoor planting. The target label is chosen as the ‘River’ class (label
8), and the backdoor trigger is defined as a white square pattern located at the bottom right corner
of the image. The attacker first poisons some samples from each of the classes in the training data
such as ‘highway’ and ‘industrial buildings’ by embedding the trigger and labeling the poisoned
samples as ‘River’. The attacker then uses the poisoned samples together with clean samples to train
the model and plant the BadNets backdoor. (b) Model inference. The backdoored model performs
well on clean data samples while misclassifying any sample as long as the trigger is presented. Note
that the trigger is embedded in all bands of the remote sensing imagery.

3.1. Dataset

We evaluated both all-bands and sub-band BadNets backdoor attacks on the remote
sensing imagery dataset EuroSat [51]. This dataset comprises 13 bands, as detailed in
Table 1, including aerosol, blue, green, red, red edge 1, red edge 2, red edge 3, NIR, red edge
4, water vapor, cirrus, SWIR-1, and SWIR-2. The spatial resolution and central wavelength
for each band are also provided in Table 1. EuroSat encompasses ten classes, including
annual crops, permanent crops (e.g., fruit orchards, vineyards, or olive groves), pastures,
herbaceous vegetation, sea and lake, river, highways, residential buildings, and industrial
buildings. Each class consists of approximately 2000 to 3000 images, amounting to around
27,000 images in total, with each image measuring 64 × 64 pixels. We conducted extensive
experiments on the EuroSat data and also carried out additional brief experiments on the
same series of datasets, with results presented in the Appendix A.
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Table 1. Specification of the EuroSat [51] dataset collected by the Sentinel-2 satellite. It consists of
13 bands, 27,000 images belonging to 10 classes with each image of size 64 × 64.

Bands Spatial Resolution (m) Central Wavelength (nm)

B01-Aerosol 60 443

B02-Blue 10 490

B03-Green 10 560

B04-Red 10 665

B05-Red Edge1 20 705

B06-Red Edge2 20 740

B07-Red Edge3 20 783

B08-NIR3 10 842

B08A-Red Edge4 20 865

B09-Water Vapor 60 945

B10-Cirrus 60 1375

B11-SWIR 1 20 1610

B12-SWIR 2 20 2190

3.2. Threat Model

We consider a targeted attack where the attacker chooses a target label, and the
backdoored model will predict the input as the target label regardless of the true label of the
input, as long as the input contains the predefined trigger. The attacker has full access to the
model during training and can modify the batch size, learning rate, and model parameters.
During training, the attacker selects a target label and poisons some training samples by
embedding the predefined trigger into the samples and labeling the poisoned samples with
the target label. In the experiment, we chose the trigger as a square with different sizes of
pixel intensity of ‘1’, and selected the ‘River’ class as the target class label. We poisoned
10% of the samples from each class in the training dataset to plant the backdoor.

These assumptions align with typical backdoor research and are appropriate, especially
considering that small companies or local government agencies may not possess significant
in-house computational capabilities. The victim may hire an outsourcing company to train
their deep learning model and keep an in-house validation dataset to validate the trained
outsourced model. The victim rejects the model if it does not perform well on the victim’s
validation datasets. Backdoor attacks in natural images typically embed the trigger into
red, green, and blue bands of natural images. Similarly, in the all-bands BadNets backdoor
attack in remote sensing imagery, we embedded the trigger into all of the bands in the data.

3.3. All-Bands BadNets Attack in Remote Sensing Imagery

As shown in Figure 1, the attacker trains the model with the poisoned dataset for a
certain number of epochs. The attacker will ensure that the model has a great validation
accuracy performance and a backdoor attack success rate (ASR) for the target label to keep
the stealthiness of the backdoor attack. Then, the attacker will handle the model to the
victim. ASR refers to the ratio of the number of successful attacks to the number of samples
poisoned with backdoor triggers.

Let the multispectral image x have n bands and x(i) denote the ith band in x, we use
the following functions to add the backdoor trigger to each band in the image,

x′(i) = (1 − m)x(i) + m∆, i = 1, . . . , n (1)

where ∆ is a 2D matrix (height, width) defining the trigger pattern, and m is the mask
that represents how much information the original image needs to be overwritten by the
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trigger pattern. The mask has a value of either 0 or 1, with 0 indicating that the pixel value
remains unchanged, and 1 indicating that the pixel value is changed into the trigger pattern.
Natural images have three channels, while remote sensing imagery typically has more than
three channels; ‘band’ is used to denote ‘channel’ in the remote sensing community. Note
that the trigger pattern is embedded into each band of the remote-sensing imagery.

4. Proposed Sub-Band BadNets Backdoor Attack in Remote Sensing Imagery

Remote sensing imagery typically has multiple bands in addition to the RGB bands
that are commonly found in natural images. Deep learning models often focus on sub-bands
differently in classification or regression tasks. We propose planting the backdoor trigger in
a subset of these bands to enhance stealthiness and achieve superior performance against
traditional defense approaches. Most defense strategies are developed with natural image
settings in mind and do not account for the unique aspects of remote sensing modalities.
Traditional backdoor defense approaches, such as Neural Cleanse [12] and TABOR [13],
assume that attackers plant the backdoor trigger in all bands. Our sub-band-based attack
will exploit this assumption, resulting in stronger attacks.

We utilize an explainable AI-based method, Score-CAM [52], to identify the important
and less important bands and then plant the backdoor in all bands, as well as in the important
or less important bands for comparison, as shown in Figure 2. The important bands usually
contain semantic information for the target object, making it easier for an attacker to hide a
backdoor pattern. Conversely, the less important bands have less semantic information, and
planting a trigger in these bands should more easily poison the deep model.

(a) Clean DCNN model training (b) Saliency maps generation.

(c) Backdoor trigger embedding (d) DCNN Model poisoning

Figure 2. Proposed sub-band BadNets backdoor attack in remote sensing imagery. The EuroSat
dataset [51] is used for illustration. (a) Clean deep convolutional neural network (DCNN) model
training using the clean EuroSat dataset. (b) Saliency maps computed by the Score-CAM method [52]
for the target class ‘River’. Six bands, including Red, Green, Blue, Red-Edge2, Red-Edge3 and Cirrus,
were marked as important for correctly classifying the input image as ‘River’, while other bands were
identified as less important. (c) Backdoor trigger embedding in the important bands identified by the
Score-CAM method. (d) Poisoning the DCNN model by fine-tuning with the combination of clean
and poisoned dataset.
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4.1. Clean DCNN Model Training

Let D = {X, Y} denote a multispectral remote sensing dataset. A clean DCNN model
is trained with the following classification loss,

L( f ) = E[l( f (X), Y)] (2)

where f represents the clean DCNN classifier that is being trained, E denotes the expectation
function, and l denotes the cross-entropy classification loss function. The diagram of the
clean DCNN classifier is shown in Figure 2a, representing the first step towards developing
the sub-band-based attack.

4.2. Score-CAM Based Saliency Map Generation

We utilize the Score-CAM method [52] to identify the important bands for the target
class as shown in Figure 2b. Score-CAM extracts activation maps from the last convolutional
layer of the DCNN model and then up-samples them to match the image size. First,
normalized activation maps are projected onto the input images through dot multiplication,
and then, these are passed to the DCNN model with softmax output. These outputs are used
as confidence weights wk for a class c in the activation maps Ak of the last convolutional
layer. To identify only the positive impact on the target class, Score-CAM uses ReLu [53] to
remove negative influence from the final activation map,

Sc = ReLU

(
∑
k

wc
k Ak

)
(3)

We feed the ith band x(i), i = 1 . . . n, separately to the Score-CAM model to generate
a saliency for the target class as shown in Figure 2b. This is achieved by keeping x(i)
unchanged and zeroing out all other bands. We generate n saliency maps for the n bands.
By comparing these n saliency maps, we identify the important bands for placing the
backdoor trigger.

There are other saliency models, such as Grad-CAM [54] and Grad-CAM++ [55].
Tasneem et al. compared Grad-CAM and Score-CAM to identify a preferable explainable
AI method for remote sensing datasets. They found that the Score-CAM method performs
better compared to the Grad-CAM method on the EuroSat [51] and UC-Merced [47] datasets.
This is because Score-CAM selects the last layer to compute importance without relying on
gradient information, which typically provides better semantic information for classification
tasks. We use Score-CAM to generate a saliency map for each band, then select the
important bands for the chosen target class to plant a backdoor trigger.

4.3. Sub-Band Backdoor Trigger Plantation

Once the important bands are identified for the target class, we place the backdoor
trigger in these important sub-bands using the following function,

x′(i) = (1 − m)x(i) + m∆ (4)

where i belongs to these identified important bands as shown in Figure 2c.

4.4. Poison Model Training

We assume that the attacker has full access to the training procedure, including model
weights, hyper-parameters, learning rate, and the number of epochs for training. We train
the model with a mixture of poisoned and clean data samples, as shown in Figure 2d. After
training the model, we evaluate the validation accuracy performance and ASR to maintain
the stealthiness of the backdoor attack. If we achieve the same validation accuracy as that
of a benign model’s validation accuracy, coupled with a high ASR, we conclude that we
have achieved strong attack performance, and the model is successfully backdoored.
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4.5. Sub-Band Attack Example

We present an example where we planted the backdoor trigger with a trigger size of
9 × 9 using both All-bands BadNets and a sub-band-based attack, as shown in Figure 3. We
then applied the Neural Cleanse approach to generate the trigger by reverse engineering.
We observe that the reverse-engineered trigger from the sub-band-based attack (Figure 3b)
is significantly larger compared to the traditional BadNets attack (Figure 3c). We also
reverse-engineered the trigger for the same target class with a clean DCNN model, as
shown in Figure 3d. Additionally, we found that the reverse-engineered trigger from the
sub-band-based attack appears similar to that from the clean model and does not exceed
the anomaly index threshold of 2. This indicates that Neural Cleanse faces a much greater
challenge in detecting sub-band-based attack scenarios.

(a) (b) (c) (d)
Figure 3. Reverse engineered triggers by Neural Cleanse. (a) Original. (b) All-bands attack. (c) Im-
portant band attack. (d) Clean model. Deep convolutional neural network (DCNN) architecture and
the Eurosat dataset [51] are used for illustration.

5. Sota Defense Mechanisms

We test all-bands BadNets and the proposed sub-band BadNets backdoor attacks against
the SOTA defense mechanisms as briefly reviewed below to evaluate their effectiveness.

5.1. Neural Cleanse

Neural Cleanse tries to construct a trigger that can miss-classify all samples with
different labels to the target label [12]. This process is repeated, with each label in the
dataset being treated as the target label planted by the attacker. After identifying the trigger
for each label, it tries to find the smallest trigger and indicates it as a trigger if it is much
smaller than other trigger candidates. Neural Cleanse utilizes the following steps to achieve
its goal.

5.1.1. Trigger Reverse Engineering

The reverse engineering optimization of the backdoor trigger pursues two objectives.
The first, for a given target label yt, is to identify a trigger (m, ∆) capable of misclassifying
clean images from various classes into yt. The second objective is to find the smallest
possible trigger that modifies only minimal portions of the input image. To achieve a
compact trigger, the optimization employs the L1 norm [12]:

min
m,∆

l(yt, f (A(x, m, ∆))) + λ ∗ |m|1, for x ∈ X (5)

where f () denotes the classifier, which predicts the class label of the input sample, l() rep-
resents the cross-entropy loss function measuring classification errors, and λ is a coefficient
controlling the L1 norm of the trigger. This optimization aims to develop a trigger that
achieves an ASR of at least 99%.

5.1.2. Trigger Identification and Backdoor Mitigation

After generating the trigger for each class, Neural Cleanse applies the median absolute
deviation (MAD) outlier detection algorithm to detect if the model is backdoored and to
identify the target class of a backdoored model [12]. The underlying assumption is that, for
a backdoored model, a small trigger can effectively misclassify poisoned samples to the
target class. In contrast, for a benign model, a significant portion of an input sample needs
to be modified to misclassify it to the target class. Once the trigger is identified, the true
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labels of the poisoned samples can be restored, and subsequently, the backdoored model
can be fine-tuned with these corrected samples to mitigate the backdoor effect.

5.2. TABOR

TABOR [13] is designed to inspect and mitigate trojan backdoors in AI systems by
employing quality measures to reduce false alarms from the model. Neural Cleanse
often fails when dealing with backdoors that have overly large, varying trigger sizes,
positions, and locations. The authors of TABOR [13] proposed this approach to overcome
the limitations of Neural Cleanse. TABOR is a Trojan backdoor detection method that
utilizes an optimization regularization inspired by explainable AI techniques and heuristics,
along with trigger quality measures, to reduce false alarms in trigger detection. TABOR
employs regularization terms for large, scattered, blocking, and overlaying triggers to
remove the constraints faced by Neural Cleanse.

5.3. GangSweep

GangSweep [16] employs a generative adversarial network (GAN) [7] to detect and
eliminate backdoors from poisoned models. Unlike other solutions, GangSweep can detect
backdoors without any training dataset. It trains a generator G to reverse engineer the
trigger using a loss Ladv, which is defined as the difference between the target label and the
maximum probability of any other labels,

Ladv = max(max
yi ̸=yt

{ f (x + G(x))yi} − f (x + G(x))yt , 0) (6)

where f (x + G(x))yi represents the probability the input belongs to the ith class. Ladv
encourages x + G(x) to be classified into the target label yt with high confidence. It also
uses the L2 norm to minimize the perturbation,

Lpert = EX(|G(x)|2) (7)

Finally, the total loss is then given by:

L = Ladv + αLpert (8)

The perturbation generated from the backdoor model remains consistent across differ-
ent image inputs, exhibiting low shifting variance and large shifting distance.

5.4. DeepInspect

DeepInspect [18] utilizes a conditional generative adversarial network (GAN) [7]
to recreate the potential trigger, treating the queried model as a discriminator, which is
denoted as D. The generator G in the conditional GAN creates the trigger from random
noise z, targeting the class t. DeepInspect is capable of generating a backdoor trigger
without requiring access to the original dataset.

5.5. STRIP

The STRong Intentional Perturbation (STRIP) [17], a runtime backdoor detection sys-
tem approach, was proposed in 2019. This method aims to identify backdoored models by
purposefully changing incoming inputs, and then observing the randomness or similarities
of the target class’s predictions to these perturbed inputs. If a particular class consistently
exhibits low entropy with various types of perturbations, this indicates the model under
suspicion may be malicious. In contrast, a benign model will display varying entropy
levels in response to different perturbations. STRIP uses two detection metrics to evaluate
the capability of backdoor detection: false rejection rate (FRR) and false acceptance rate
(FAR). FAR indicates the percentage of samples regarded as poisoned samples by the
STRIP method, although they are benign. Whereas FRR indicates the percentage of benign
samples indicated as the poisoned samples by STRIP [17].



Algorithms 2024, 17, 182 10 of 23

5.6. Fine Pruning

Fine pruning is one of the initial backdoor defense methods that effectively defends
against backdoor attacks on deep learning models [15]. This method combines pruning
and fine-tuning, and it has been shown to successfully weaken or eliminate backdoors.
As a blind backdoor removal technique, it involves removing potential backdoors by first
pruning neurons in the DNN model that contribute least to the main classification task. The
underlying assumption is that the neurons activated by clean inputs and those activated by
trigger inputs are different or separable. After pruning, fine-tuning is applied to restore the
model’s performance.

5.7. Activation Clustering

Activation clustering [14] utilizes the activation of the last layer to determine whether
a model is benign or backdoored. Typically, a model relies on the activation function
of its last layers to make a decision. This method employs clustering-based techniques
to ascertain if a model has been compromised. Each class sample is fed into the model
to collect activation data. The activations for each class are then segregated using a K-
means clustering algorithm, following dimensionality reduction with principal component
analysis (PCA) [56]. The K-means clustering algorithm separates the activation data into
groups to discern whether the model is backdoored or benign. The clustering effectiveness
is measured by the Silhouette score. A high Silhouette score indicates that the activation
functions are well-clustered, suggesting the presence of poisoned data. Conversely, the
activation functions of benign data typically yield a low Silhouette score.

5.8. Pixel Backdoor

In 2022, Tao et al. proposed Pixel-Backdoor [19], a trigger synthesis-based defense
approach. Unlike Neural Cleanse, which utilizes a mask to identify the smallest perturba-
tions that can alter any samples into the target class, Pixel-Backdoor finds triggers without
using any masks. It identifies smaller, more robust triggers with high ASRs. Pixel-Backdoor
employs a tanh function and optimization techniques to pinpoint the perturbation pixels
within all available pixels of an input image. We utilized Pixel-Backdoor as a more recent
approach for mitigating backdoors, in comparison to other existing methods.

6. Experimental Setup
6.1. Implementing Details for All-Bands BadNets Attack

We applied the all-bands BadNets attack to the EuroSat dataset, poisoning 10% of
the training samples and choosing ‘River’ as the target class. The DCNN model was
trained for 100 epochs. We embedded a square trigger in the bottom right corner of all
image bands, with a size of nt × nt and varied nt from 2 to 10 to test the impact of the
trigger size on the performance of the attack. The structure of the DCNN was defined
in [57] and used with publicly available deep learning backbones, such as ResNet-56 [21]
and EfficientNet [38]. It consists of four convolutional layers, as shown in Figure 4, with
32, 64, 128, and 256 2D convolutional kernels in the first through fourth convolutional
layers, respectively. All the convolutional kernels have a spatial size of 3 × 3, and all the
convolutional layers contain a max-pooling layer with a stride of 2 × 2. These layers are
followed by a flattened layer and a fully-connected layer with 512 neurons. Each layer
employs the “ReLu” activation function [53], with the final layer using a Softmax activation
function comprising ten neurons to classify the ten classes.

6.2. Implementing Details for Sub-Band BadNets Attack

To develop the sub-band BadNets backdoor attack, we first trained a clean deep
learning model. We then employed the Score-CAM model [52], as described in Section 4, to
identify important and less important bands for classifying images into the river class. We
embedded the square trigger into important and less important bands, respectively, to test
which approach is more effective. Figure 2b shows the saliency maps of the 13 bands in the
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dataset, where red regions indicate the focused areas when classifying the input image to
the river class. We used a threshold to decide whether or not a band is important.

Figure 4. Deep convolutional neural network (DCNN) architecture.

6.3. Performance Metrics

We used two metrics for performance evaluation: accuracy of either benign or poi-
soned model on clean data (Acc), and attack success rate (ASR), the accuracy of a back-
doored model on poisoned data samples. The best-performing backdoored model should
maintain the same accuracy on clean data as that of the benign model while achieving an
ASR on poisoned data samples for the target class.

7. Results of All-Bands BadNets Attack and Defense

In this section, we first present results on the all-bands BadNets backdoor attack
applied to the EuroSat dataset, followed by the comparative results against SOTA de-
fense mechanisms.

7.1. Results of All-Bands BadNets Attack

The performances of the benign and backdoored DCNN models on the EuroSat
dataset are shown in Table 2. It is observed that the backdoored DCNN model achieved
similar accuracy as the benign model on clean samples for all trigger sizes, ranging from
2 × 2 to 10 × 10. The ASR is 100% for all different trigger sizes, demonstrating that the
backdoored model can maintain a high ASR for the target label as well as good accuracy
on the clean dataset.

Table 2. Performances of all-bands BadNets attack with the EuroSat dataset. ‘AccClean’: Acc of benign
model, ‘AccB’: Acc of backdoored model, ’ASR’: Attack Success Rate.

Trigger Size DCNN ResNet-56

AccClean AccB ASR AccClean AccB ASR

2 × 2

0.93

0.93 1.00

0.96

0.96 1.00
3 × 3 0.93 1.00 0.97 1.00
4 × 4 0.92 1.00 0.96 1.00
5 × 5 0.93 1.00 0.96 1.00
6 × 6 0.93 1.00 0.97 1.00
7 × 7 0.91 1.00 0.96 1.00
8 × 8 0.93 1.00 0.96 1.00
9 × 9 0.93 1.00 0.97 1.00

10 × 10 0.92 1.00 0.97 1.00

The performances of the benign and backdoored ResNet-56 [21] models on the EuroSat
dataset are presented in Table 2. It is observed that the backdoored ResNet-56 model
achieved similar accuracies to the benign model on clean samples for all trigger sizes,
ranging from 2× 2 to 10× 10. The ASR is 100% for all different trigger sizes, demonstrating
that the backdoored model consistently maintains a high ASR for the target label and good
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accuracy on the clean dataset. We also employed EfficientNet [38] as a backbone in similar
settings and observed comparable performances.

In summary, these results indicate that the remote sensing domain is highly susceptible
to backdoor attacks in deep learning models, as evidenced by the maintenance of high
ASRs for the target label and good clean accuracies across multiple architectures.

7.2. Results of Defense Mechanisms
7.2.1. Neural Cleanse

We poisoned samples from EuroSat with triggers of sizes from 2 × 2 to 10 × 10 and
trained a backdoored model with a backbone of ResNet-20, ResNet-56, DCNN, and Efficient-
Net architectures. Note that the trigger was embedded in all of the 13 bands in the EuroSat
data samples. We then applied Neural Cleanse to reverse engineer the trigger and detected
whether the models were backdoored. Results by Neural Cleanse are shown in Table 3.
For most of the cases, Neural Cleanse failed to detect the backdoor, especially for the
ResNet-56 architecture. Neural cleanse performed better for the Efficient-Net architecture
than other architectures, as it succeeded five times out of nine scenarios. It also proved that
the effectiveness of the Neural cleanse method depends on the backbone architecture.

Table 3. Performances of Neural Cleanse on different architectures with different trigger sizes. ‘×’
denotes a failed case while ‘✓’ represents a successful detection.

Trigger Size ResNet20B ResNet56B EfficientNetB DCNNB

2 × 2 × × × ×
3 × 3 ✓ × × ×
4 × 4 × × ✓ ×
5 × 5 ✓ × ✓ ×
6 × 6 × × ✓ ×
7 × 7 × × ✓ ×
8 × 8 × × × ×
9 × 9 × × ✓ ✓

10 × 10 × × ×

7.2.2. Activation Clustering (AC), DeepInspect (DI), Pixel-Backdoor (PB), and TABOR

We applied AC [14], DI [18], PB [19], and TABOR [13] to detect backdoors in deep
learning models and the experiment configurations are the same as those for Neural Cleanse.
Again, the trigger was embedded into all 13 bands of the data samples. Table 4 shows the
detection results. The DI algorithm was successful in detecting the backdoor for 2 × 2 and
5 × 5 trigger sizes but ineffective in the detection for all other scenarios. We also seen a
similar pattern in other defense approaches. Any 6 out of the 36 scenarios were successful.

Table 4. Performances of DeepInspect (DI), Pixel Backdoor (PB), Tabor, and Activation Clustering
(AC) on the deep convolutional neural network (DCNN) architecture, where ‘multiple’ indicates that
more than one label has been identified as the target label.

Trigger Size DI [18] PB [19] TABOR [13] AC [14]

2 × 2 ✓ ✓ × ×
3 × 3 × × × ×
4 × 4 × × × ×
5 × 5 ✓ × × ×
6 × 6 × × ✓(multiple) ×
7 × 7 × × × ×
8 × 8 × × × ×
9 × 9 × × × ×

10 × 10 × × ✓(multiple) ✓
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7.3. Fine-Pruning and STRIP

We applied the fine-pruning method to remove the all-bands BadNets backdoor in the
DCNN architecture with the EruoSat dataset. We embedded a white square trigger at the
bottom of the image in all image bands. Fine-pruning failed to remove the backdoor for
all trigger sizes from 2 × 2 to 10 × 10 as shown in Table 5. STRIP-based defense identified
the backdoor samples six times out of ten scenarios for the BadNets attack on the EuroSat
dataset in Table 5, where all-bands refer to BadNets backdoor attack setting. However,
STRIP requires training datasets to detect a backdoor, and users typically do not have
training datasets.

Table 5. Fine-pruning (FP), Gangsweep (GP), and STRIP’s backdoor removal performances for
all-bands, important bands, and less-important-band BadNets attacks on EuroSat dataset with deep
convolutional neural network (DCNN) architecture. False positive acceptance rates (FAR(%)) used to
evaluate STRIP Performance. FAR larger than 1% represents a failure case (×).

Trigger Size All-Bands Less-Important-Bands Important-Bands

FP GS STRIP FP GS STRIP FP GS STRIP

2 × 2 × × ✓(0.2) × × ✓(0.2) × × ×(7.39)
3 × 3 × × ✓(0.0) × ×(12.4) × × ×(100)
4 × 4 × ✓ ✓(0.4) × × ×(6.5) × × ×(3.4)
5 × 5 × × ×(9.6) × ✓ ✓(0.0) × × ×(1.3)
6 × 6 × × ✓(0.0) × × ✓(0.1) × × ×(3.4)
7 × 7 × ✓ ✓(0.0) × × ✓(0.4 ) × × ✓(0.7)
8 × 8 × × ×(3.5) × × ✓(0.0) × × ×(2.7)
9 × 9 × × ×(44.7) × × ×(8.3) × × ✓(0.0)

10 × 10 × × ✓(0.0) × × ×(32.4) × × ✓(0.2)

8. Results of Sub-Band Backdoor Attack

In this section, we first present results on sub-band BadNets attack applied to the
EuroSat dataset followed by the comparative results against SOTA defense mechanisms.

8.1. Results of Sub-Band BadNets Attack

We applied the Score-CAM [52] method to identify the important bands for the target
class ‘River’ in the EuroSat dataset, which are Red, Green, Blue, RE2, RE3, and Cirrus and
the less important bands are Aerosol, RE1, NIR, RE4, WV, SWIR1, and SWIR2. We planted
triggers in the important and less important bands, and performances were similar to those
by all-bands BandNets, as shown in Table 6. The validation clean accuracy was 0.93, and
ASRs were close to 100%. We do not repeat here to save space.

Table 6. Performances of sub-band BadNets attack with important bands and less-important bands
on deep convolutional neural network (DCNN) model with the EuroSat dataset.

Trigger Size Important-Bands DCNN Less-Important DCNN

AccClean AccB ASR AccClean AccB ASR

2 × 2

0.93

0.92 0.99

0.93

0.93 1.00
3 × 3 0.92 1.00 0.92 1.00
4 × 4 0.92 1.00 0.92 1.00
5 × 5 0.93 1.00 0.92 1.00
6 × 6 0.92 1.00 0.93 1.00
7 × 7 0.93 1.00 0.94 1.00
8 × 8 0.93 1.00 0.92 1.00
9 × 9 0.93 1.00 0.91 1.00

10 × 10 0.93 1.00 0.92 1.00
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8.2. Results of Defense Mechanisms against Sub-band BadNets
8.2.1. Fine-Pruning

Experiment results showed that fine-pruning techniques could not remove the back-
door for both cases, where the trigger was embedded in either important bands or less
important bands. This showed that traditional blind backdoor removal techniques are not
useful in removing sub-band backdoor triggers in remote sensing datasets. Again, we do
not show all the failed cases here to save space.

8.2.2. STRIP

We applied STRIP to defend backdoored models where the trigger was embedded
in the important bands and less important bands and results are listed in Table 5. For the
case where triggers were embedded in the important bands, STRIP failed six times out of
nine, while for the case where triggers were embedded in the less important bands, it failed
four times out of the nine scenarios. STRIP faces greater challenges with both attacks as
compared to the all-bands attack.

8.2.3. GangSweep

We applied the Gangsweep defense approach to defend the all-bands, important-
bands and less-important-bands BadNets attack on the DCNN model with the Eurosat
dataset, and the results are shown in Table 5. We observed that it failed to detect the
backdoor for most scenarios, especially for the important-bands BadNets attack, it failed all
nine cases.

9. Case Study

To gain more insights into how the two sub-band backdoor attacks work against the
defense mechanisms, we further investigate four defense methods and visually evaluate
detailed intermediate results in this case study.

9.1. Case Study 1: Neural Cleanse and TABOR

Neural Cleanse [12] and TABOR [13] initially utilizes reverse engineering techniques
to generate embedded triggers for backdoor detection. We applied both Neural Cleanse
and TABOR to defend against all-band BadNets and sub-band BadNets attacks with the
EuroSat dataset. Figure 5 shows the reverse-engineered triggers of varying sizes. The first
and second rows of Figure 5 display the triggers reverse-engineered by Neural Cleanse
and TABOR, respectively, for the all-bands BadNets attack. Notably, neither method could
accurately recreate the planted backdoor triggers. The triggers generated by TABOR
(Figure 5b) were less precise compared to those generated by Neural Cleanse, as depicted in
Figure 5a. Similar observations apply to the settings of less-important-band and important-
band BadNets attacks, as shown in Figure 5c–f. Both Neural Cleanse and TABOR were
least effective in defending against the important-band BadNets attack, as evidenced in
Figure 5e,f.

We then utilized the generated triggers to unlearn the backdoored models and com-
puted the ASR of these models after unlearning. During the unlearning process, we
embedded the generated triggers into clean images and fine-tuned the models using these
poisoned images (but with correct labels), and the results are presented in Table 7. A lower
ASR after unlearning indicates that the unlearning process was successful. We observed
that the important-band BadNets attack was the most challenging to defend against using
Neural Cleanse and TABOR, with most cases still maintaining very high ASRs. The all-band
BadNets attack ranked second in difficulty, followed by the less-important-band BadNets
attack. Overall, even the less-important-band BadNets attack posed a significant threat to
Neural Cleanse and TABOR, maintaining relatively high ASRs.
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Table 7. Attack success rate (ASR) of different backdoored models after unlearning with reversed-
engineered triggers by Neural Cleanse (NC) and TABOR with the ‘River’ class being the target class.
TS stands for ‘trigger size’. A larger ASR is a failure.

TS All-Bands Less-Important-Bands Important-Bands

NC TABOR NC TABOR NC TABOR

2 × 2 0.51 0.29 0.29 0.12 0.14 0.12
3 × 3 1.00 1.00 0.32 0.73 0.72 0.90
4 × 4 0.18 0.92 0.24 0.11 0.98 1.00
5 × 5 0.10 0.75 0.54 0.17 0.73 1.00
6 × 6 0.77 1.00 0.31 0.21 0.95 1.00
7 × 7 0.32 0.41 0.15 0.26 1.00 1.00
8 × 8 0.15 0.09 0.11 0.13 1.00 1.00
9 × 9 0.10 0.10 0.11 0.10 1.00 1.00
10 × 10 0.12 0.10 0.10 0.10 1.00 0.92

2 × 2 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9

(a) Neural Cleanse for all-bands BadNets

(b) TABOR for all-bands BadNets

(c) Neural Cleanse for less-important-bands BadNets

(d) TABOR for less-important-bands BadNets

(e) Neural Cleanse for important-bands BadNets

(f) TABOR for important-bands BadNets

Figure 5. Triggers generated by different defense methods for all-band and sub-band BadNets attacks.
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9.2. Case Study 2: STRIP

Table 5 shows that STRIP failed for most of the cases. STRIP uses the entropy of
the predicted probabilities for classes in the dataset to detect poisoned samples. For a
backdoored model, poisoned samples will show a low entropy and the embedded trigger
makes the prediction strongly towards the target class, while benign samples will show
a larger entropy. We visually compare the entropy performances of STRIP in all-band,
important-band, and less-important-band BadNets in Figures 6–8. It was observed that
the all-band BadNets attack has a lower entropy distribution in Figure 6 compared with
important-bands attack (Figure 7) and less-important-bands attack (Figure 8), indicating
that STRIP faces more challenges in detecting sub-band BadNets backdoor attacks.

(a) Trigger Size of 2 × 2. (b) Trigger Size of 10 × 10.

Figure 6. Entropy distributions computed by STRIP for benign and poisoned samples for all-bands
BadNets backdoor attack with the EuroSat Dataset. Benign samples typically have larger entropy
(blue), while poisoned samples have small entropy (orange). Entropy for poisoned images are all
close to 0, making it easier to be detected.

(a) Trigger Size of 2 × 2. (b) Trigger Size of 10 × 10.

Figure 7. Entropy distributions computed by STRIP for benign and poisoned samples for the
important-band BadNets backdoor attack with the EuroSat dataset. Some poisoned samples have
larger entropy, making them less easy to detect for a trigger size of 2 × 2.



Algorithms 2024, 17, 182 17 of 23

(a) Trigger Size of 2 × 2. (b) Trigger Size of 10 × 10.

Figure 8. Entropy distributions computed by STRIP for benign and poisoned samples for the less-
important-band BadNets backdoor attack with the EuroSat dataset. Some poisoned samples have
larger entropy, making them less easy to be detected for a trigger size of 10 × 10.

9.3. GangSweep

GangSweep was successful for two out of nine cases for all-band BadNets attacks
and one out of nine cases for the less-important-bands scenarios, as shown in Table 5. We
display the reverse-engineered triggers by GangSweep in Figures 9 and 10. GangSweep
was only able to correctly generate the backdoor triggers of sizes 4 × 4 (Figure 9c) and 7 × 7
(Figure 9c), respectively, while it failed all other cases.

(a) 2 × 2 (b) 3 × 3 (c) 4 × 4 (d) 5 × 5 (e) 6 × 6 (f) 7 × 7 (g) 8 × 8 (h) 9 × 9

Figure 9. Reverse engineered triggers by Gangsweep for all-band BadNets backdoored deep convolu-
tional neural network (DCNN) model with EuroSat dataset.

(a) 2 × 2 (b) 3 × 3 (c) 4 × 4 (d) 5 × 5 (e) 6 × 6 (f) 7 × 7 (g) 8 × 8 (h) 9 × 9

Figure 10. Reverse engineered triggers by Gangsweep for important-band BadNets backdoored deep
convolutional neural network (DCNN) model with EuroSat dataset.

10. Discussion

We implemented the all-band and sub-band BadNets attacks on the EuroSat remote
sensing dataset, where the BadNets attack achieved an attack success rate of 100% across
various trigger sizes. The sub-band BadNets attack comprises two types: the less-important-
band attack and the important-band attack. In these attacks, triggers were embedded into
bands categorized as less important or important, as identified by the Score-CAM algorithm.
Subsequently, we applied defense approaches, including Neural Cleanse, TABOR, Deep
Inspect, Gang-sweep, Pixel Backdoor, and Activation Clustering, to counter the backdoor
attacks. In most cases, the defense mechanisms failed to eliminate the backdoor. Notably,
the important-band BadNets posed a more severe threat compared to other types of attacks.

Neural Cleanse is a popular backdoor defense method, capable of evaluating a back-
doored model offline and reverse engineering the trigger. We applied Neural Cleanse to
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various BadNets settings on a multispectral remote sensing dataset, utilizing a variety of
convolutional network backbones, such as DCNN, ResNet-20, ResNet-56, and Efficient-Net.
Although the Efficient-Net architecture achieved the highest classification accuracy com-
pared to the other backbones, it was more vulnerable to backdoor attacks than the other
architectures. Neural Cleanse correctly detected the poisoned target label in only five out of
nine instances, proving less effective in satellite imagery, in contrast to its success in natural
imagery [12].

If the victim is aware of the backdoor target label, they can use the reverse-engineered
trigger, as shown in Table 7, to remove the backdoor from the deep learning model. During
the unlearning process, we embedded the reverse-engineered trigger in 20% of the clean
training dataset and then combined these poisoned samples with an additional 10% of the
clean dataset to remove the backdoor. The model was trained for 50 epochs in each scenario,
as detailed in Table 7. The unlearning process proved most effective in the all-band BadNets
attack models. Upon comparing the unlearning performance across different patch sizes
in Table 7, we managed to reduce the ASR from 99% to 10%. While TABOR achieved
similar performance in the unlearning settings, its trigger detection performance was less
effective compared to the Neural Cleanse approach. These results underscore the challenge
of detecting and mitigating backdoors without prior knowledge of the target label.

We investigated the sub-band BadNets attack in the EuroSat satellite imagery and
discovered that defending against the important-band BadNets attacks, where the trigger
is embedded in bands identified as important by the Score-CAM algorithm, is particularly
challenging. Even when the target class is known, Neural Cleanse is unable to remove the
backdoor in these cases. In contrast, Neural Cleanse can effectively remove the BadNets
backdoor if the trigger is embedded in less important bands or all bands of the EuroSat
dataset. Additionally, we implemented defense strategies such as TABOR, Strip, Fine-
pruning, and GangSweep against the BadNets attack. TABOR and GangSweep showed
performances similar to that of the Neural Cleanse approach.

11. Conclusions

We evaluated the susceptibility of remote sensing imagery to backdoor attack threats.
Satellite imagery-based neural network models are highly susceptible to such attacks. By
poisoning only 10% of the images, we achieved a 100% ASR in satellite imagery. We
compared traditional defense approaches, such as Neural Cleanse, Activation Clustering,
TABOR, Deep Inspect, GangSweep, Pixel Backdoor, and Fine-Pruning. These methods were
unsuccessful in identifying backdoored models in the remote sensing domain. While STRIP
successfully identified the backdoor, its effectiveness in consistently detecting backdoored
models is limited, as it requires poisoned samples. Without access to poisoned samples,
STRIP fails to identify backdoored models. In addition, distributing poisoned datasets to
victims poses a significant challenge in practice, especially as most remote sensing models
undergo close scrutiny. Our findings highlighted the need for increased attention in this
emerging field.
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Appendix A

Appendix A.1. Sat-4, and Sat-6 Dataset

Sat-4 and Sat-6 [58] airbone datasets are extracted from National Agriculture Imagery
Program (NAIP) dataset [58]. The NAIP dataset has a total of 330,000 continental United
States scenes from TIFF formats uncompressed digital Ortho quarter quad tiles (DOQQs).
These images have 1 m spatial resolution with red, green, blue, and near-inferred bands.

Sat-6 dataset has barren land, trees, grassland, roads, buildings, and water bodies
classes. Sat-6 has 324,000 training and 81,000 samples, each image has a dimension of
28 × 28 × 4. Sat-4 dataset has barren land, trees, grassland, and a class that consists of
all land cover classes. Sat-4 has 400,000 training and 100,000 samples, each image has a
dimension of 28 × 28 × 4.

Appendix A.2. So2Sat Dataset

So2Sat dataset consists of co-registered synthetic aperture radar (SAR) and multispec-
tral optical image patches collected from Sentinel-1 and Sentinel-2 satellites [59]. The So2sat
dataset has B2, B3, B4, B8 with 10 m GSD, bands B5, B6, B7, B8a, B11, B12 with 20 m. Each
image has a height and width of 32. The input size of the dataset is 32 × 32 × 10. We used
all 17 classes, e.g., Compact high-rise, Compact mid-rise, Compact low-rise, Open high-rise,
Open mid-rise, Open low-rise, Lightweight low-rise, Large low-rise, Sparsely built, Heavy
industry, Dense trees, Scattered tree, Bush-scrub, Low plants, Bare rock or paved, Bare soil
or sand, and Water. The training image and testing image sizes are 352,366 and 24,188
respectively.

Appendix A.3. BadnNets Attack in Sat-4, Sat-6, and So2Sat

We plant the backdoor trigger in the DCNN and ResNet architecture using BadNets
attack (Section 3) for trigger size from 2 × 2 to 10 × 10. We achieved a superb attack success
rate for these trigger sizes, as shown in Table A1.
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Table A1. Performances of all-band BadNets attack on Sat-4, Sat-6, and So2Sat dataset. Sat-4 and So2Sat
with deep convolutional neural network (DCNN) architecture and Sat-6 with ResNet20 architecture.

TS Sat-4 (DCNN) Sat-6 (ResNet-20) So2Sat (DCNN)

AccClean AccB ASR AccClean AccB ASR AccClean AccB ASR

2 × 2

1.00

1.00 1.00

1.00

1.00 1.00

0.62

0.63 1.00
3 × 3 1.00 1.00 1.00 1.00 0.62 1.00
4 × 4 1.00 1.00 1.00 1.00 0.63 1.00
5 × 5 1.00 1.00 1.00 1.00 0.61 1.00
6 × 6 1.00 1.00 1.00 1.00 0.63 1.00
7 × 7 1.00 1.00 1.00 1.00 0.61 1.00
8 × 8 1.00 1.00 1.00 1.00 0.62 1.00
9 × 9 1.00 1.00 1.00 1.00 0.62 1.00

10 × 10 1.00 1.00 1.00 1.00 0.60 1.00

Appendix A.4. Backdoor Detection Performance of Neural Cleanse and TABOR

We found that Neural Cleanse was not able to detect the backdoor target label for
the BadNets trigger in most scenarios. In the Sat-4 dataset, Neural Cleanse detected
backdoor labels two times out of nine times and six out of nine times for DCNN and
ResNet-20, respectively, as shown in Table A2. In the Sat-6 dataset, Neural Cleanse failed
for all scenarios for DCNN and succeeded two times out of nine times for the ResNet-20
architecture, as shown in Table A2. In the So2Sat dataset, it succeeded one time out of nine
times for DCNN and one time out of six times for ResNet-56 architecture, respectively.

Table A2. Sat4, Sat6, and So2Sat Backdoor detection performances using the Neural Cleanse method
for all-band BadNets attack. If the backdoor label is correctly detected by Neural Cleanse, it is marked
with ✓, otherwise with the × sign. ’TS’ indicates trigger size and T indicates the poison target class.

TS Sat-4(4B) T-3 Sat-6(4B) T-5 So2sat(10B) T-8

DCNN ResNet-20 DCNN ResNet-20 DCNN ResNet-56

2 × 2 ✓ × × ✓ × ×
3 × 3 × ✓ × × × ×
4 × 4 × ✓ × × ✓
5 × 5 × ✓ × × ×
6 × 6 × × × × ×
7 × 7 × ✓ × × × ✓
8 × 8 × ✓ × × × ×
9 × 9 × × × × × ×

10 × 10 ✓ ✓ × ✓ × ×
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